B-spline collocation simulation of non-linear transient magnetic nanobio-tribological squeeze-film flow

Beg, OA, Sohail, A, Kadir, A, Beg, T and Ravindran, Sabna

http://dx.doi.org/10.1142/S0219519418500070

<table>
<thead>
<tr>
<th>Title</th>
<th>B-spline collocation simulation of non-linear transient magnetic nanobio-tribological squeeze-film flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Beg, OA, Sohail, A, Kadir, A, Beg, T and Ravindran, Sabna</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/44289/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2018</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
B-SPLINE COLLOCATION SIMULATION OF NONLINEAR TRANSIENT MAGNETIC NANO-BIO-TRIBOLOGICAL SQUEEZE FILM FLOW

O. Anwar Bég *
Fluid Mechanics, Aeronautic and Mechanical Engineering, School of Computing, Science and Engineering, University of Salford, Newton Building, Manchester, M5 4WT, UK.

Ayesha Sohail
Applied Mathematics Group, Department of Mathematics, COMSATS, Lahore, Pakistan.

Ali Kadir
Structures and Materials, Aeronautic and Mechanical Engineering School of Computing, Science and Engineering, University of Salford, Newton Building, Manchester, M5 4WT, UK.

T.A. Bég

Sabna Ravindran
MSc Aerospace Engineering Program, Aeronautic and Mechanical Engineering Department, University of Salford, Newton Building, Manchester, M5 4WT, UK.

Abstract

A mathematical model is presented for magnetized nanofluid bio-tribological squeeze film flow between two approaching disks. The nanofluid comprises a suspension of metal oxide nanoparticles with an electrically-conducting base fluid, making the nano-suspension responsive to applied magnetic field. The governing viscous momentum, heat and species (nano-particle) conservation equations are normalized with appropriate transformations which renders the original coupled, nonlinear partial differential equation system into a more amenable ordinary differential boundary value problem. The emerging model is shown to be controlled by a number of parameters, viz nanoparticle volume fraction, squeeze number, Hartmann magnetic body force number, disk surface transpiration parameter, Brownian motion parameter, thermophoretic parameter, Prandtl number and Lewis number. Computations are conducted with a B-spline collocation numerical method. Validation with previous homotopy solutions is included. The numerical spline algorithm is shown to achieve excellent convergence and stability in nonlinear bio-tribological boundary value problems. The interaction of heat and mass transfer with nanofluid velocity characteristics is explored. In particular smaller nanoparticle (high Brownian motion parameter) suspensions are studied. The study is relevant to enhanced lubrication performance in novel bio-sensors and intelligent knee joint (orthopaedic) systems.

Key Words: Magnetic nanofluid; squeezing film; Brownian motion; B-spline collocation numerics; bio-tribology.

*Corresponding Author- email: O.A.Beg@salford.ac.uk ; gortoab@gmail.com
1. INTRODUCTION

Nanofluids are suspensions of nanometre-sized particles in base fluids. Such fluids were introduced by Choi [1] and co-workers. The nanoparticles range from single-walled (SWCNT) and multi-walled carbon nanotubes, to metal oxides (gold, silver, titanium, copper etc) and fullerene, and these have been shown to consistently elevate the thermal conductivity characteristics of base fluids (e.g. silicon oil, ethylene glycol etc). Numerous and ever-diversifying applications of such fluids have been explored. In lubrication sciences, such fluids have demonstrated great promise in recent years. Many experimental and computational studies in this regard have been communicated. Hwang et al. [2] showed experimentally that thermal conductivity of nanofluid lubricants, which aids in heat dissipation, increases with increasing particle volume fraction and that extreme pressure sustainable by nanofluids increases up to 225%. Shen et al. [3] investigated water-based Aluminium oxide and diamond nanofluids in minimum quality lubrication (MQL) grinding processes, showing that nanofluids dramatically decrease grinding forces, enhance surface roughness and mitigate workpiece burning. Khandekar et al. [4] studied performance of nano-cutting fluids (suspensions of ordinary cutting fluid and nanoparticles) using a macroscopic contact angle technique, demonstrating that introduction of nanoparticles successfully improves wettability, lubricating properties, and convective heat transfer coefficient (cooling properties) of nano-cutting fluids. They also found that nanofluids decrease workpiece surface roughness, tool wear and chip thickness compared with conventional dry machining or conventional cutting fluids. Mao et al. [5] used a pin-on-flat tribotester to investigate nanoparticles effects (Aluminium oxide) in nanofluid lubrication, showing that significant friction reduction is achieved and better anti-wear properties. Pendleton et al. [6] studied nanostructured fullerene and other particle additives in nanofluid tribological performance of titanium and its alloys for medical orthopedic applications. Sahoo et al. [7] employed Molybdenum sulphate nanoparticles to improve sliding lubrication in journal bearings. Nicoletti [8] utilized copper and silicon oxide nanoparticles, among others, to study thermal dissipation performance in nano-lubricants showing that greater volumetric heat capacity of the lubricant decreases temperature development in the bearing gap, leading to elevated viscosity distribution for the same operating conditions. Numerous other studies have

Within tribology, squeeze film flows are frequently encountered. They arise in machine elements, automotive components, prosthetics, aerospace and bridge dampers, matching gears, wet-clutch plates etc. In general, research of squeeze film characteristics concentrates attention on the use of Newtonian lubricants and modifications of Reynolds celebrated equation. However a separate group of problems also arises in which nonlinear partial differential equation systems for the regime may be formulated and solved, often for non-Newtonian and other complex lubricants. Such “thin layer” boundary value problems are of great interest to computational mechanics researchers. An extensive range of numerical algorithms have been applied in recent years to study multi-physical squeeze-film problems. Magnetohydrodynamic squeeze films have in particular garnered much attention owing to developments in smart systems. Hayat et al. [17] used a homotopy analysis technique to study magneto-micropolar squeeze films. Bég et al. [18] used an Adomian decomposition code to investigate magnetic squeeze film lubrication at generalized Batchelor numbers. Daliri et al. [19] used MATLAB software to simulate squeeze film magnetic non-Newtonian flows in wide parallel rectangular conjunctions, showing that magneto-hydrodynamic couple stress fluids are more appropriate for high relatively steady load applications. Zueco and Bég [20] employed thermo-electric code, PSPICE to simulate magnetic Newtonian squeeze films in a dual-disk spinning lubrication system. Hayat et al. [21] used homotopy methods to study magnetic viscoelastic squeeze films. Bég et al. [22] studied gyration viscosity and squeeze number
effects on unsteady magnetized micropolar squeeze films in helicopter damper systems, with a meshless numerical method. The above studies [17-22] however did not consider nanofluid lubricants. In the present work we address magnetized nanofluid squeeze film flow in dual disk systems. A robust B-spline collocation numerical method is employed to solve the transformed nonlinear boundary value problem. Validation with earlier homotopy solutions is included. The current study is motivated by potential applications of magneticnano-lubricants in heat dissipation and better flow control in dampers [23, 24]. We examine in detail the radial velocity evolution and modification by surface blowing/suction, nanofluid and magnetic field characteristics in magnetic nanofluid squeeze film flow between two parallel circular disks, one solid and the other porous. Solutions are further benchmarked with earlier homotopy solutions [25] where possible, although these are limited in the range of parameters examined. The present study also provides a useful benchmark for more complex computational fluid dynamics simulations with commercial software e.g. ADINA-F, FLUENT etc [26] and furthermore, it is hoped that it will stimulate some interest from experimental researchers engaged in nano-magnetic lubrication engineering in the medical arena.

2. MAGNETIZED NANO-BIO-TRIBOLOGICAL SQUEEZE FILM MODEL

The physical regime under investigation is illustrated in Fig. 1. Transient incompressible magnetized bio-nanofluid flow occurs between two parallel circular plates, in an \((r, \theta, z)\) coordinate system. The disks are parallel to the \(r-\theta\) plane, with the \(z\)-axis normal to this plane. A magnetic field, \(B(t) = B_o(1-at)^{1/2}\) is applied along the \(z\)-axis. The magnetic Reynolds number is small for the magneto-nano-lubricant regime, so that magnetic induction effects can be ignored. The disks are separated by a distance \(h(t) = H(1-at)^{1/2}\). The upper disk at \(z = h(t)\) descends towards/ascends away from the stationary lower disk with the velocity \(dh=dt\). The surface temperature and nanoparticle concentrations on both disks are constant and defined by \(T_w, C_w\) (lower) and \(T_h, C_h\) (upper), respectively. A constant transpiration velocity, \(w_o\), is present at the lower disk; the upper disk is impervious. The conservations equations for mass, radial and axial momentum, heat and
nanoparticle concentration (species diffusion) may be presented, following Hashmi et al. [25]:

Mass Conservation

\[
\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0
\]

(1)

r-direction Momentum Conservation

\[
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial r} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho_{nf}} \frac{\partial p}{\partial r} + \nu \left(\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial z^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{u}{r^2} \right) - \frac{\sigma}{\rho_{nf}} B^2(t) u
\]

(2)

z-direction Momentum Conservation

\[
\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial r} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho_{nf}} \frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 w}{\partial r^2} + \frac{\partial^2 w}{\partial z^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right)
\]

(3)

Figure 1: Physical Model and Coordinate System
Energy (Heat) Conservation

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial r} + w \frac{\partial T}{\partial z} = \alpha \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right) \\
+ \tau \left(D_B \left(\frac{\partial C}{\partial r} \frac{\partial T}{\partial r} + \frac{\partial C}{\partial z} \frac{\partial T}{\partial z} \right) + \frac{D_r}{T_m} \left(\frac{\partial T}{\partial r} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial r^2} \right) \right)
\]

(4)

Nano-particle Species Conservation

\[
\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial r} + w \frac{\partial C}{\partial z} = D_B \left(\frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \frac{\partial C}{\partial r} + \frac{\partial^2 C}{\partial z^2} \right) + \frac{D_r}{T_m} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right)
\]

(5)

We note that in Eq. (5), which is a statement of Fick’s law of mass (species) diffusion for nanoparticles, the first term on the left hand side is the transient concentration gradient, and the second and third terms are the convective mass transfer terms. The first bracketed term on the right hand side denotes the species diffusion and the last bracketed term is the relative contribution of thermophoresis to Brownian motion. The corresponding boundary conditions for the flow regime are prescribed as follows, which include the conventional no-slip boundary conditions at the disk surfaces:

At \(z = h(t) \):
\[
\begin{align*}
 u &= 0; \quad w = \frac{dh}{dt}; \quad T = T_h; \quad C = C_h
\end{align*}
\]

(6a)

At \(z = 0 \):
\[
\begin{align*}
 u &= 0; \quad w = -w_o \sqrt{1-at}; \quad T = T_w; \quad C = C_w
\end{align*}
\]

(6b)

where \(u, w \) are radial and axial velocity components respectively, \(t \) is time, \(\rho_{nf} \) is the nanofluid density, \(\mu \) is the dynamic viscosity of the nanofluid, \(p \) is pressure, \(T \) denotes nanofluid temperature, \(C \) is nanoparticle concentration (volume fraction), \(\alpha \) is thermal diffusivity of nanofluid, \(D_B \) is the Brownian motion coefficient (volume fraction), \(D_T \) is thermophoresis diffusion coefficient (species diffusivity of nanoparticles), \(D_r \) is the relative contribution of thermophoresis to Brownian motion, \(T_m \) denotes mean fluid temperature, \(k \) is nanofluid thermal conductivity, \(T_h \) is upper disk surface temperature, \(T_w \) is lower disk surface temperature, \(C_h \) is upper disk surface nano-particle concentration, \(C_h \) is lower disk surface nano-particle concentration, \(w_o \) is lower disk lateral mass flux velocity (suction/injection), \(\tau \) designates the ratio of effective heat capacity of nanoparticles to heat capacity of the
base fluid (a function of the type of nanomaterial e.g. copper oxide, titanium oxide, silicon oxide etc). Computational solutions to the nonlinear boundary value problem defined by eqns. (1)-(6) while tractable, are challenging. It is judicious to introduce normalization variables as similarity parameters which not only simplify the conservation equations, but introduce a set of important dimensionless parameters which provide interesting insights to the squeeze film mechanisms. Defining the following dimensionless variables:

\[u = \frac{ar}{2(1-at)} \frac{dF}{d\eta}; \quad w = -\frac{aH}{\sqrt{1-at}} F(\eta); \quad \eta = \frac{z}{H \sqrt{1-at}}; \]

\[B(t) = \frac{Bo}{\sqrt{1-at}}; \quad G(\eta) = \frac{T - T_h}{T_w - T_h}; \quad N(\eta) = \frac{C - C_h}{C_w - C_h} \]

The conservation equations then retract to the following ordinary differential equations:

Momentum conservation

\[\frac{d^4F}{d\eta^4} - S(\eta) \frac{d^3F}{d\eta^3} + 3 \frac{d^2F}{d\eta^2} - 2F \frac{d^3F}{d\eta^3} - Ha^2 \frac{d^2F}{d\eta^2} = 0 \] (8)

Heat conservation

\[\frac{d^2G}{d\eta^2} + Pr S(2F) \frac{dG}{d\eta} - \eta \frac{dG}{d\eta} + Pr Nb \frac{dG}{d\eta} \frac{dN}{d\eta} + Pr Nt \left(\frac{dG}{d\eta} \right)^2 = 0 \] (9)

Nanoparticle species conservation

\[\frac{d^2N}{d\eta^2} + Le S(2F) \frac{dN}{d\eta} - \eta \frac{dN}{d\eta} + Nt \frac{d^2G}{Nb d\eta^2} = 0 \] (10)

The associated boundary conditions for the squeezing flow contract to the following form:

At \(\eta = 1 \) (Upper disk): \(F(1) = 0.5; \frac{dF(1)}{d\eta} = 0; G(1) = N(1) = 0 \) \hspace{1cm} (11a)

At \(\eta = 0 \) (Lower disk): \(F(0) = A; \frac{dF(0)}{d\eta} = 0; G(0) = N(0) = 1 \) \hspace{1cm} (11b)

A number of key parameters emerge in the new similarity equations and boundary conditions, and these take the following definitions:
Here A is the lower disk transpiration parameter ($A > 0$ implies suction; $A < 0$ corresponds to blowing), S is the squeezing number, Ha is the Hartmann magnetic body force number (ratio of Lorentz radial magnetic drag force to the viscous hydrodynamic force), Pr is Prandtl number, Le is Lewis number, Nb is Brownian motion parameter, Nt is thermophoresis parameter. We may also define key surface parameters, namely surface radial shear stress (disk skin friction), C_{fr}, Nusselt number, Nu_r, (disk surface heat transfer rate) and Sherwood number, Sh_r, (disk surface mass transfer rate) as follows:

$$\begin{align*}
C_{fr} &= \frac{<\tau_{rz}>_{z=h(t)}}{\rho \left(-aH \right) \left(\frac{1}{2(1-at)^{1/2}} \right)};
Nu_r &= \frac{Hq_w}{k(T_w - T_h)};
Sh_r &= \frac{Hj_w}{D_b(C_w - C_h)}
\end{align*}$$

Where:

$$\begin{align*}
\tau_{rz} &= \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right)_{z=h(t)};
q_w &= -k \left(\frac{\partial T}{\partial z} \right)_{z=h(t)};
\dot{j}_w &= -D_b \left(\frac{\partial C}{\partial z} \right)_{z=h(t)}
\end{align*}$$

In terms of the dimensionless variables (7), the non-dimensional upper disk shear stress, reduced heat transfer rate and reduced nanoparticle (mass) transfer rate take the form:

$$\begin{align*}
\frac{d^2 F(1)}{d\eta^2} &= \frac{H^2}{r^2} \text{Re}_r C_{fr};
- \frac{dG(1)}{d\eta} &= Nu_r = (1-at)^{1/2} Nu;
- \frac{dN(1)}{d\eta} &= Sh_r = (1-at)^{1/2} Sh
\end{align*}$$

Where a radial Reynolds number is used and defined as, $\text{Re}_r = \frac{raH(1-at)^{1/2}}{2\nu}$. We note that a non-dimensional load carrying capacity and time of approach can also be derived to simulate squeezing effects and tribological performance.
3. B-SPLINE COLLOCATION NUMERICAL SOLUTIONS

This method reduces the computational cost on a large domain with small step size and a range of parameters. For the application of the spline collocation method, the system of differential equations (8-10) can thus be rendered into a simpler system of differential equations:

\[w^m_\epsilon (\eta) = f(\eta; z(w)) \]

Here:

\[0 \leq \eta \leq 1; \, n_s = 4, 2, 2 \, \text{for} \, s = 1, 2, 3. \]

The numerical solver will produce the following vector solution:

\[w = [w_1, w_2, w_3]^T \]

\[z(w) = [w_1, w'_1, w''_1, w'''_1, w_2, w'_2, w_3, w'_3] \]

After simplifying the system of differential equation(s) (16) as a function \(f_s; \, s=1, 2, 3 \) of the independent variable, \(\eta \), and the function \(z(w) \), under the boundary conditions (11a-11b), we obtain the desired numerical solution. The method of spline collocation at Gaussian points using a B-spline basis has been implemented to calculate the B-splines and their derivates. The matrix has been simplified using the Gaussian elimination with partial pivoting [29]. B-Splines employ the mathematical principle of splines which are continuous piecewise curves used to approximate a solution to a mathematical problem. A spline curve is dependent upon a relationship between the basis function and the vertices of a defining polygon. The B-spline curve has its own type of basis function, known as the B-spline basis, to establish the relationship with the defining polygon. Many other types of splines are employed in numerical analysis including the Bezier spline (which deploys a Bernstein basis function to establish the relationship). However, the B-spline basis function is advantageous in that the order of the base function can be reduced, resulting in curves with a lower degree, without the penalty of a reduction in approximation accuracy. This allows increased computational speed and less memory.
requirements during compilation. Furthermore B-splines allow relatively easy local refinement to the function. The nonlinear parts of the system are dealt by the use of a modified-Newton method. The mesh refinement has been controlled by the redistribution of mesh points for better accuracy and hence to reduce the error. To validate the B-spline numerical solutions, we benchmark against the earlier HAM solutions in [25]—see Tables 1 and 2.

Table 1: Benchmark solutions for upper disk surface friction with $N_t=N_b=0.1$, $Le=1$, $Pr=1$, $A=2$, for various values of Hartmann number and squeeze number.

<table>
<thead>
<tr>
<th>Ha</th>
<th>S</th>
<th>$\frac{d^2 F(1)}{d\eta^2}$ (HAM [25])</th>
<th>$\frac{d^2 F(1)}{d\eta^2}$ (B-Spline collocation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>7.533165</td>
<td>7.532158</td>
</tr>
<tr>
<td>2</td>
<td>“</td>
<td>8.263872</td>
<td>8.241627</td>
</tr>
<tr>
<td>3</td>
<td>“</td>
<td>9.097326</td>
<td>9.095184</td>
</tr>
<tr>
<td>5</td>
<td>“</td>
<td>11.34929</td>
<td>11.337581</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7.721946</td>
<td>7.718385</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.940773</td>
<td>6.939045</td>
</tr>
</tbody>
</table>

Table 2: Benchmark solutions for reduced Nusselt number and reduced Sherwood number for various N_t and N_b with $A=2$, $Ha=S=Le=Pr=1.0$.

<table>
<thead>
<tr>
<th>Nb</th>
<th>Nt</th>
<th>$\frac{-dG(1)}{d\eta}$ (HAM [25])</th>
<th>$\frac{-dG(1)}{d\eta}$ (B-Spline collocation)</th>
<th>$\frac{-dN(1)}{d\eta}$ (HAM [25])</th>
<th>$\frac{-dN(1)}{d\eta}$ (B-Spline collocation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.5263</td>
<td>0.5192</td>
<td>0.8660</td>
<td>0.8657</td>
</tr>
<tr>
<td>0.5</td>
<td>“</td>
<td>0.6343</td>
<td>0.63414</td>
<td>0.5301</td>
<td>0.5298</td>
</tr>
<tr>
<td>1</td>
<td>“</td>
<td>0.7864</td>
<td>0.78644</td>
<td>0.4860</td>
<td>0.4856</td>
</tr>
<tr>
<td>1.5</td>
<td>“</td>
<td>0.9557</td>
<td>0.9556</td>
<td>0.4698</td>
<td>0.4696</td>
</tr>
</tbody>
</table>
Inspection of the tables reveals that very close correlation is achieved between the present B-Spline collocation approach and established homotopy solutions in the literature. Confidence in the B-spline collocation solutions is therefore justifiably high. Table 1 shows that as Hartmann number (Ha) increases (with squeeze parameter, S, invariant at unity), there is a significant elevation in the upper disk friction, $\frac{d^2 F(l)}{d\eta^2}$. As Hartmann number is elevated, there is a corresponding increase in magnetic field, based on the definition of Ha in eqn. (12). The magnetic body force term, $-Ha^2 \frac{d^2 F}{d\eta^2}$, in the momentum conservation eqn. (8) is inhibiting to the radial squeeze film flow (which is perpendicular to the line of application of the magnetic field in the axial direction). Via this Lorentzian drag force, the radial squeeze film flow is decelerated and this manifests in a enhancement of shear stress at the disk i.e. upper disk surface friction. With increasing squeeze film number, S, the converse response is observed and disk friction is markedly decreased. This implies that as the disk separation is increased (or as viscosity is decreased) the flow is accelerated, and this results in a decrease in shear stress i.e. disk friction. Evidently both Hartmann number and squeeze number are instrumental parameters in regulating the flow and particularly important since they can be manipulated relatively easily in real designs to achieve a desired performance. Table 2 shows that with increasing Brownian motion parameter (Nb) there is a considerable increase in heat transfer rate i.e. reduced Nusselt number, $-\frac{dG(l)}{d\eta}$, at the upper disk. Greater Brownian motion therefore aids in the transport of thermal energy from the bio-lubricant to the disk which achieves the desired effect of cooling the squeeze film. Conversely the mass transfer rate i.e. rate of nano-particle diffusion to the upper disk, $-\frac{dN(l)}{d\eta}$ i.e. reduced Sherwood number is substantially lowered. This is a result of enhanced diffusion of nano-particles into the body of the squeeze film i.e. greater

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“</td>
<td>0.5</td>
<td>1.1768</td>
<td>1.1767</td>
<td>0.4018</td>
<td>0.4016</td>
</tr>
<tr>
<td>“</td>
<td>1.0</td>
<td>1.4858</td>
<td>1.4849</td>
<td>0.1261</td>
<td>0.1256</td>
</tr>
</tbody>
</table>
concentration within the bio-lubricant. This is consistent therefore with the enhanced migration of nano-particles away from the upper disk. With greater thermophoretic parameter (Nt), the reduced Nusselt number at the upper disk is depressed. However there is a much more profound elevation in local Sherwood number. Thermophoresis is related to the encouraged trans-location of nano-particles under the force of a temperature gradient. The enhanced heat transfer rate to the upper disk displaces nano-particles away from this zone. These nano-particles in the lubricant create an accelerated flow down the temperature gradient and this results in a noticeable decrease in nano-particle mass transfer rate to the upper disk i.e. decreasing reduced Sherwood number. The migration of nano-particles back into the main body of the squeeze film is also advantageous since more homogenous distributions can be achieved and better global cooling of the nanolubricant is sustainable, a key desire of bio-tribologists.

4. B-SPLINE NUMERICAL SIMULATION RESULTS AND DISCUSSION

Extensive computations have been conducted for a comprehensive range of the key bio-tribological and nanoscale parameters. The present investigation considerably extends the analysis performed by Hashmi et al. [25] and in particular provides deeper interpretation of computations, which is of great interest to bio-tribologists.

Fig. 2: Radial velocity distribution ($dF/d\eta$) versus transverse coordinate (η) for various wall transpiration parameters (A) and various squeeze film parameters (S) with $Le=1$, $Pr = 1$, $Nb = Nt = 0.2$, $Ha=2$.
Fig. 2 depicts the evolution of radial velocity with different transpiration and squeeze film parameter values. With wall blowing present at the disk ($A<0$) there is a significant enhancement in velocity compared with wall suction ($A>0$).

![Fig. 2](image)

Fig. 3: Temperature distribution (G) versus transverse coordinate (η) for various wall transpiration parameters (A) and squeeze film parameters (S) with $Le=1$, $Pr = 1$, $Nb = Nt = 0.2$, $Ha=2$.

![Fig. 3](image)

Fig. 4: Nano-particle concentration distribution (N) versus transverse coordinate (η) for various wall transpiration parameters (A) and squeeze film parameters (S) with $Le=1$, $Pr = 1$, $Nb = Nt = 0.2$, $Ha=2$.

![Fig. 4](image)
Fig. 5: Temperature \((G)\) versus \(\eta\) for \(Le = 1, Pr = 1, Nt = 0.2, Ha = 2, S = 1\) with various Brownian motion numbers \((Nb)\) and transpiration parameters \((A)\).

Fig. 6: Nano-particle concentration distribution \((N)\) versus \(\eta\) for \(Le = 1, Pr = 1, Nt = 0.2, Ha = 2, S = 1\) with various Brownian motion numbers \((Nb)\) and transpiration parameters \((A)\).
Fig. 7: Nano-particle concentration distribution (N) versus η for $Le=1$, $Pr=1$, $Nb=0.2$, $Ha=2$, $S=1$ with various thermophoretic numbers (N_t) and transpiration parameters (A).

Fig. 8: Temperature (G) versus η for $Le=1$, $Pr=1$, $Nb=0.2$, $Ha=2$, $S=1$ with various thermophoretic numbers (N_t) and transpiration parameters (A).
Fig 9: Radial velocity distribution versus η for $Le=1$, $Pr =1$, $Nb = 0.2$, $Nt =0.3$, $A = 1$, $S = 1$ with various Hartmann numbers (Ha) and transpiration parameters (A).

Fig 10: Nano-particle concentration (N) distribution versus η for $Le=1$, $Pr =1$, $Nb = 0.2$, $Nt =0.3$, $A = 1$, $S = 1$ with various Hartmann numbers (Ha) and transpiration parameters (A).
The latter i.e. suction, causes adherence of the squeeze film to the disk surfaces and destroys momentum in the regime. The former i.e. blowing (injection) adds more bio-lubricant via perforations in the disk surfaces to the squeeze film and this serves to accelerate the flow. Lateral mass flux via geometrical modification of the disk surface using machined pores is therefore a potent mechanism for controlling the flow in the squeeze film.

Fig. 3 presents temperature profiles in the disk gap for various transpiration (A) and squeeze film parameter (S) values. There is a general decay in temperatures from the lower disk to the upper disk which becomes increasingly monotonic in nature (i.e. progressively less linear) with increasing squeeze film parameter. Greater squeezing effect therefore stifles temperatures and inhibits thermal diffusion in the nano-lubricant. This has important implications in sustaining cooling in the regime, which prolongs lubricant life. A similar response was computed by Hashim et al. [25] and furthermore has also been reported by Zhao et al. [30] and Mivake et al. [31]. The behaviour is similar to conventional lubricants, however the temperature reduction is more dramatic. With increasing suction effect at the disk, temperature is also significantly lower in magnitude than with transpiration. Furthermore with transpiration present, the supplementary injection of nano-lubricant into the gap serves to elevate temperatures with greater squeeze parameter. The squeezing effect is therefore reversed and for high S values, the profiles becoming increasingly parabolic i.e. they deviate from the gentler parabolic decays associated with lower S values.

Fig. 4 illustrates the response in nano-particle concentration (N) with the combined effects of transpiration (A) and squeeze film parameter (S). As with temperature field, a significant suppression in N values is observed, with disk wall suction present (A = 2). For low squeeze parameter (S=0.5), the decay in nano-particle concentration is approximately linear. It evolves into a strongly parabolic distribution for high S values. Nano-particle concentrations achieve a maximum at the lower disk ($\eta=0$) and consistently a minimum at the upper disk ($\eta=1$). The Brownian motion ($Nb=0.2$) and thermophoresis parameter ($Nt = 0.2$) values prescribed are high and correspond to smaller nano-particles. With wall transpiration present (A = -2), the influence of increasing squeeze film parameter is reversed and nano-particle concentration magnitudes are significantly elevated. The
addition of lateral mass of nano-lubricant via the disk surfaces therefore assists in nano-
particle diffusion across the gap and disperses nano-particles more evenly between the
two disks.

Figs 5 and 6 illustrate the collective influence of transpiration parameter \((A)\) and
Brownian motion number \((Nb)\) on temperature and nano-particle species distribution in
the disk gap. A non-trivial elevation in the temperature (fig. 5) is induced either with
suction present or injection present, with an increase in \(Nb\) values. However significantly
greater magnitudes are attained with disk injection (blowing) across the entire inter-disk
gap zone. There is an approximate reflective symmetry in the profiles for suction or
injection present. Maximum temperature enhancement is achieved closer to the lower
disk, with wall suction present and a short proximity from the lower disk, there is an
asymptotic convergence in all the temperature profiles. Conversely with transpiration
present, the maximum boost in temperature arises in the vicinity of the upper disk, with
all profiles converging to a single value at the lower disk. Experimental works have also
demonstrated similar findings, notably the study by Liu and Wang [32] and Kulkarni *et
al.* [33], both considering metallic nano-particles, which are consistent with the model
developed in the present article. The presence of wall injection also serves to enhance
notably the nano-particle concentration \((N)\), as shown in fig. 6, whereas disk wall suction
generates significant reduction in \(N\) magnitudes. The reflective symmetry observed in
temperature profiles is again present in the \(N\)-profiles. Increasing Brownian motion
number, \(Nb\) however only enhances nano-particle concentration when wall injection is
present, whereas it depresses concentration when wall suction is present. The influence of
Brownian motion on nano-particle species diffusion is therefore dependent on the
transpiration scenario at the disk, whereas for temperature it is independent. It has been
observed experimentally [34] that for very small nanoparticles (i.e. higher \(Nb\) values), the
random “walk” component of the particle displacement is of a similar order of magnitude
to the displacement associated with the particle diffusion due to the interparticle repulsive
forces. Brownian motion is the random thermally driven movement of particles
suspended in the nano-lubricant. This random motion serves to convey energy directly by
nanoparticles in addition to the micro-convection effect, which is attributable to the fluid
mixing around nanoparticles. The exacerbated motion at higher \(Nb\) values is assisted with
the momentum boost (transpiration) whereas it is inhibited by momentum destruction (wall suction). Of course, there are many other factors which influence Brownian motion including the geometry of nano-particles, ballistic collisions and further experimental studies are required to exactly establish how these characteristics are modified in squeeze films [35]. Indeed molecular dynamics simulation may also provide an insight into these complex mechanisms in lubrication applications [36].

Figs. 7 and 8 illustrate the influence of thermophoresis parameter \((N_t) \) and transpiration parameter \((A) \) on respectively the nano-particle concentration and temperature profiles. A significant elevation is observed in the nano-particle concentrations (fig. 7) near the lower disk with increase in thermophoresis effect, with wall suction present \((A=2) \). This growth in profiles is sustained to the upper disk although magnitudes decay quickly beyond the gap centre line. Conversely with increasing \(N_t \) values, and wall injection present at the disk, there is significant reduction in nano-particle concentrations, in particular close to the upper disk. Peak nano-particle concentration is computed therefore for strong suction and high \(N_t \) value, near the lower disk, whereas the minimum nano-particle concentration arises for strong injection (blowing), near the upper disk, again with high \(N_t \) (=0.7). As elaborated earlier thermophoresis is experienced by the nano-particles owing to the thermophoretic force which acts in a direction opposite to the imposed temperature gradient, in the nano-lubrication squeeze film. Even though the fluid zone is confined, the thermophoresis effect is still prominent. It also exerts a different influence depending on the nature of the lateral mass flux at the disks i.e. whether suction or injection is present. Generally to achieve greater magnitudes and more homogenous distributions of nano-particles across the squeeze film gap, strong thermophoresis and suction are effective, however only in the vicinity of the lower disk (note in the boundary conditions 11a,b, transpiration is only imposed at the lower disk which is stationary; the upper disk which descends, is impervious). Temperature (fig. 8) is affected to a much lesser extent than nano-particle concentration. Thermophoresis parameter, \(N_t \) arises in both energy (heat) and nano-particle species conservation equations i.e. eqns. (9) and (10), in the terms \(\text{Pr} \, N_t \left(\frac{dG}{d\eta} \right)^2 \) and \(\frac{N_t}{Nb} \frac{d^2 G}{d\eta^2} \). Both terms evidently exert a significant effect. However in the latter there is also a Brownian motion
parameter present. This leads to a more erratic response in the nano-particle concentration field than in the temperature field. Generally temperature is increased with greater thermophoretic effect, irrespective of whether suction or injection is prescribed at the lower disk. However the temperature magnitudes are significantly higher with injection (blowing) than they are for suction. Cooling of the squeeze film is therefore more effective when wall suction is applied at the lower disk and when weak thermophoresis is present. The temperature field is influenced in a more orderly fashion than the nano-particle concentration (fig. 7). In these computations, Prandtl number has been fixed at unity indicating that the energy and species diffusion rates are of the same order of magnitude. This is representative of certain bio-nano-lubricants as described in [35].

Figs. 9, 10 present the evolution of velocity and nano-particle concentration distributions with Hartmann number (Ha) and transpiration parameter (A). Significant radial flow deceleration is achieved with an increase in Hartmann number when suction is present at the lower disk, as observed in fig. 9. However the converse behavior is observed with injection at the lower disk, and furthermore markedly greater velocities are computed with injection than with suction. The nature of the applied magnetic field, which is axially orientated, is to generate a transverse Lorentzian magnetohydrodynamic drag force. This acts in the radial direction and when Hartmann number increases, this drag force is accentuated. This leads to a retardation in radial velocity. The effect is however only achieved with suction present. However with injection present (wall blowing at the lower disk i.e. $A = -2$), the introduction of mass flux into the squeeze film regime counteracts the inhibiting nature of the magnetic field and in fact accelerates the radial flow. For bio-tribologists, therefore suction is best combined with strong magnetic field (Hartmann number is a function of magnetic field), to achieve greater control of the squeeze film dynamics. Similarly we observe in fig. 10, that the nano-particle concentration is also decreased with greater Hartmann number, when suction is present at the lower disk. Although the reduction is significantly less prominent than the radial velocity field (fig. 9) it is still substantial. With wall injection present, however a very weak increase is computed in nano-particle concentration and the modifications to profiles are most pronounced in the intermediate gap zone i.e.at some distance from both disks. The
compaction in nano-particle profiles with strong suction may be attributable to the greater organization of the adsorption layer around the nanoparticle, which promotes the nano-lubricant molecules arrangement and this will inevitably contribute to enhanced lubricant film strength and load-carrying capacity.

5. CONCLUSIONS
A mathematical model has been presented for the laminar, squeezing hydrodynamics, heat and mass transfer in magnetic nanofluid bio-tribological film flow between two approaching disks, the upper descending and the lower stationary. Wall suction/injection i.e. mass flux characteristics at the lower disk have been incorporated. The nano-lubricant is composed of suspension of metal oxide nanoparticles with an electrically-conducting base fluid. The Buongiorno model has been employed to simulate nanoparticle Brownian motion and thermophoresis effects, for the case of dilute nanofluid lubricants. The non-dimensional momentum, heat and species (nano-particle) conservation equations are solved as an ordinary differential boundary value problem, subject to physically viable boundary conditions, using an efficient, stable B-spline collocation numerical method. The influence of squeeze number, Hartmann (magnetic body force) number, disk surface transpiration parameter, Brownian motion parameter and thermophoretic parameter are explored. Solutions are validated with the earlier homotopy method results of Hashmi et al. [25]. The present computations have shown:

(i) Increasing Hartmann number (magnetic field parameter) causes strong retardation in the radial flow with suction present at the lower disk, whereas with injection present (wall blowing at the lower disk), a weak acceleration in the radial flow is generated. Increasing Hartmann number also lowers nano-particle concentration, when suction is present at the lower disk, whereas it slightly enhances concentration of nano-particles for the case of wall injection at the lower disk.

(ii) Increasing Brownian motion parameter and also suction or injection at the lower disk serve to increase temperature in the nano-lubricant, although much greater magnitudes are achieved with injection. Nano-particle concentrations are also enhanced with greater Brownian motion parameter when wall injection is present, but reduced when wall suction is imposed at the lower disk.
(iii) Increasing thermophoresis parameter effectively enhances nano-particle concentrations near the lower disk when wall suction is present, whereas the reverse trend is observed when wall injection is present at the lower disk and the decrease is most pronounced near the upper disk. Temperature is also increased with greater thermophoretic effect, both when suction or injection are prescribed at the lower disk, although lower temperatures (enhanced cooling of the squeeze film) is achieved with suction.

(iv) With increasing squeeze film parameter, there is a substantial reduction in temperatures and increasing suction effect at the disk also results in lesser temperature magnitudes i.e. more effective cooling of the nano-lubricant squeeze film. A substantial decrease in nano-particle concentration is also accompanied with increasing squeeze film parameter with lower disk wall suction whereas with wall injection, the contrary trend is found and nano-particle concentration magnitudes are markedly enhanced.

The present simulations provide a first step towards more generalized squeeze film nano-bio-lubricant dynamics. Non-Newtonian effects have been neglected in the current model and these are currently being explored using couple stress, micropolar and also viscoelastic models, which may provide deeper insight into nano-lubricant rheology.

REFERENCES

