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Abstract
Purpose Urbanisation is a leading cause of biotic
homogenisation in urban ecosystems. However, there
has been little research examining the effect of
urbanisation and biotic homogenisation on aquatic
communities, and few studies have compared Þndings
across different urban landscapes. We assessed the
processes that structure aquatic macroinvertebrate
diversity within Þve UK cities and characterise the
heterogeneity of pond macroinvertebrate communities
within and among urban areas.
Methods A total of 132 ponds were sampled for
invertebrates to characterise biological communities

of ponds across Þve UK cities. Variation among sites
within cities, and variation among urban settlements,
was partitioned into components of beta diversity
relating to turnover and nestedness.
Results We recorded 337 macroinvertebrate taxa,
and species turnover almost entirely accounted for the
high beta-diversity recorded within each urban area
and when all ponds were considered. A total of 40% of
all macroinvertebrates recorded were unique to a
particular urban settlement. In contrast to the
homogenisation of terrestrial and lotic communities
in urban landscapes reported in the literature, ponds
support highly heterogeneous communities within and
among urban settlements.
Conclusions The high species turnover (species
replacement) recorded in this study demonstrates that
urban pond biodiversity conservation would be most
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efÞcient at a landscape-scale, rather than at the indi-
vidual ponds scale. Pond conservation practices need
to consider the spatial organization of ecological
communities (landscape-scale) to ensure that the
maximum possible biodiversity can be protected.

Keywords Beta-diversity� Landscape-scale
conservation� Lentic habitat� Species turnover�
Anthropogenic landscape

Introduction

Ponds are dynamic habitats that support signiÞcant
biological diversity and provide important ecosystem
services globally (Hill et al. in review; Biggs et al.
2017; Stewart et al.2017; Vad et al.2017). There has
been a signiÞcant increase in research attention
directed towards pond habitats and their biota in
recent years (Cereghino et al.2014), yet the majority
of studies have focussed on ecological communities
among ponds in rural and agricultural landscapes (e.g.,
Usio et al.2013; De Marco Jr et al.2014; Simaika et al.
2016). By contrast, urban ponds have received less
research attention globally (see Hassall2014), despite
predictions that global urban land coverage is set to
increase by 1.2 million km2 by 2030 (Seto et al.2012).
Urban ponds are typically of anthropogenic origin, and
often display a wide range of environmental condi-
tions (Hill et al. 2015) reßecting the diversity of
habitats and locations where they occur including
private gardens (Gaston et al.2005; Hill and Wood
2014), industrial areas (Wood et al.2001), public
parks (Hassall2014) and at the margins of roads (e.g.,
stormwater ponds: Hassall and Anderson2015). They
have typically been constructed for purposes other
than biodiversity conservation i.e. for ßood preven-
tion/stormwater collection, sediment capture, water
puriÞcation and for aesthetics (Lundy and Wade
2011). As a result, some urban ponds may suffer from
contamination from heavy metals and other pollutants
while others may be almost pristine due to intensive

conservation management to enhance ecological
communities.

Urbanisation has led to the destruction of natural
habitat and the creation of a more artiÞcial, uniform
landscape (Tratalos et al.2007). Conversion to urban
land cover has altered natural geomorphological and
hydrological processes (OÕDriscoll et al.2010), nutri-
ent cycling (Gu et al.2012; Kaushal et al.2014),
reduced soil and water quality (Shao et al.2006) and
exacerbated climate variability (urban heat island
effect; Streutker2003), resulting in disturbance and
chronic stresses on ßora and fauna inhabiting these
areas (Alberti2005; McKinney 2008; Ortega-Alvarez
and MacGregor-Fors2009). These effects have typ-
ically led to reduced biotic diversity in urban areas
(although greater diversity of ßoral communities has
been recorded at moderate levels of urbanisation;
McKinney 2008) and increasingly fragmented and
isolated remnant natural habitat patches (Stepenuck
et al. 2002; Chace and Walsh2006; Pauchard et al.
2006). In particular, urbanisation is a primary cause of
biotic homogenization (McKinney2006; Knop2016).
Local extinctions of indigenous taxa sensitive to
changes in environmental conditions have resulted in
replacement by synanthropic, disturbance tolerant
taxa able to exploit urban habitats (McKinney2006).
Homogenisation is a common phenomenon in urban
terrestrial and lotic habitats, although there may be
scale dependence in the response to urbanisation, with
some evidence from avian and plant communities that
at a global scale homogenisation is less evident
(Aronson et al.2014).

While the detrimental effects of urbanisation (e.g.,
reduced diversity) have been extensively documented
for terrestrial (Holway and Suarez2006; Sol et al.
2014; Knop 2016) and lotic systems (Roy et al.2003;
Walters et al.2003), ponds have recently been found to
follow a different trajectory. Although some studies
have reported lower faunal diversity in urban ponds,
reßecting management practices for purposes other
than biodiversity (Noble and Hassall2014), others
have found urban ponds to support similar faunal
diversity to ponds in non-urban settings (Hassall and
Anderson2015; Hill et al. 2017a). Urban ponds may
thus serve as refuges and stepping stones for aquatic
taxa moving between natural habitat patches. In non-
urban landscapes, ponds have been demonstrated to
have high community dissimilarity (greater than other
waterbodies) driven by their discrete, small
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catchments which promote heterogeneous physical
and chemical conditions (Davies et al.2008a, b) and
the large inßuence of stochastic processes (Jeffries
1988). The wide environmental heterogeneity among
urban ponds and their relatively high frequency of
occurrence suggests that complex networks of ponds
exist in urban areas, promoting high community
heterogeneity (Hassall2014; Hill et al. 2017a).
However, the effect of urbanisation on community
heterogeneity among urban ponds at a multi-city scale
has not previously been considered.

The continued expansion of urban land cover
globally has led to a need to pursue biodiversity
conservation in urban areas at multiple spatial scales
(Socolar et al.2016). Beta-diversity, (the composi-
tional differences between local assemblages) which
describes how communities are organised in space,
can provide conservation relevant information to
protect biological diversity (Rickbeil et al.2014).
Beta diversity can be separated into two components:
(1) species turnover, which reßects the replacement of
taxa from one site by others in different sites and is
typically a response to high environmental hetero-
geneity and biotic competition within sites; and (2)
nestedness which occurs when species poor sites are
subsets of sites with species rich communities (Base-
lga 2010; Corti and Datry2015; Gianuca et al.2016).
Beta-diversity is rarely organised by species turnover
and nestedness separately, but is often structured by
varying contributions of nestedness and turnover.
While there has been increasing research on nested-
ness and turnover in non-urban areas (e.g., Brendonck
et al. 2015; Viana et al.2016) there has been little
research attention focussed on the organisation of
beta-diversity in highly disturbed environments such
as urban ponds. Urban ponds may demonstrate a
different spatial organisation of biodiversity compared
to non-urban ponds given the very different architec-
ture and levels of disturbance (Heino et al.2017).
Examining and understanding beta-diversity within
and among pond assemblages within urban settle-
ments could inform the future placement and design of
sites, supporting networks of protected aquatic habi-
tats (city parks or urban wildlife conservation areas)
and the management of invasive species within urban
areas at an inter-city scale (Socolar et al.2016). In
addition, incorporating beta-diversity into conserva-
tion strategies could provide the detailed information
required to deliver the most cost effective and efÞcient

biodiversity conservation possible in anthropogeni-
cally dominated landscapes (Socolar et al.2016).

To our knowledge, this is the Þrst study to examine
the aquatic macroinvertebrate beta-diversity in urban
ponds across multiple urban settlements. This study
speciÞcally aimed to quantify the macroinvertebrate
diversity within multiple UK urban settlements and
characterise the heterogeneity of macroinvertebrate
communities within and among urban areas. It is
hypothesised that (1) variation in community structure
within each urban settlement and for the entire study
region will predominantly be driven by species
turnover as highly heterogeneous local habitats result
in discrete, rather than nested, communities; (2) there
will be high macroinvertebrate community hetero-
geneity (beta-diversity) within each urban settlement;
and (3) there will be high community heterogeneity
(beta-diversity) among the urban settlements.

Methods

Data management

Urban spaces are deÞned as areas[ 20 ha contain-
ing[ 10,000 people (UKNEA 2011). In Eng-
land,[ 10% of the total land cover is classiÞed as
urban (UKNEA2011). Macroinvertebrate community
data and environmental data from 132 urban ponds
from Þve (5) UK urban settlements (Halton: n= 25,
Loughborough: n= 41, Stockport: n= 16, Birming-
ham: n= 30 and HuddersÞeld: n= 20) were collated
from previous studies and examined (Table1; Fig. 1).
A wide range of environmental data was collected
between the contributing studies with pond area, pH,
percentage pond shading, altitude and percentage
pond coverage of emergent macrophytes being
recorded in most of the studies. However, the
percentage of pond shaded was not recorded in study
2 and pH was not recorded by study 5. Studies 1, 2, 3
and 4 were sampled across two or three seasons, while
study 5 was sampled during the summer season only.
Aquatic macroinvertebrate sampling methods under-
taken by the Þve (5) urban pond studies broadly
followed the guidelines of the National Pond Survey
(Biggs et al.1998). A three (3) minute sweep sample
was undertaken in each urban pond, divided between
the microhabitats present (studies 1, 2 and 3). The
remaining two studies (studies 4 and 5) sampled for
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macroinvertebrate species in all available microhab-
itats until no new species were recorded. However,
macroinvertebrate richness recorded from the two
sampling strategies has been shown to be comparable
(see Hill et al.2017a). Preliminary analysis in this
study showed no signiÞcant difference in macroinver-
tebrate diversity between sites that were sampled for
3 min or sampled exhaustively (MannÐWhitney,
W = 1812, p value= 0.7943). In addition, there
was no signiÞcant difference in diversity between
sampling across multiple seasons or only the summer
season (MannÐWhitney, W= 912, p value= 0.9139).
Ponds were designated as urban based on their
location within Ôdeveloped land use areasÕ (DLUA).
DLUAs are used by the UK Ordnance Survey to
delineate urban and non-urban land cover (see Hill
et al. 2017asupplementary material for a discussion

on the deÞnition of an urban pond). The urban ponds
examined in this study were located in a range of urban
settlements, from a large, densely populated city (e.g.,
Birmingham) to smaller towns (e.g., Stockport) and
included ponds in domestic gardens and urban parks,
industrial ponds and ponds principally designed to
facilitate drainage (e.g., stormwater ponds). Across the
Þve studies, the majority of macroinvertebrates were
identiÞed to species level, however Diptera were
recorded to family level and Oligochaeta, Sphaeriidae,
Collembola and Hydrachnidiae were recorded as such.
The data provided by the Þve contributing studies was
converted into a presence-absence matrix to reduce
any sampling bias and ensure the studies were
comparable.

Table 1 Summary table of the urban settlement size and population size of the study areas and macroinvertebrate sampling method
of the 5 contributing studies (adapted from Hill et al.2017a, pp. 4Ð5)

Reference
number

Location Urban
settlement
size

Population Macroinvertebrate sampling method Taxonomic
resolution

Reference

1 Loughborough,
UK n = 41

* 35 Km2 60,000 Ponds were sampled during spring,
summer and autumn seasons.
Sampling time was proportional to
pond surface area, up to a maximum
of three minutes. Allocated
sampling time was divided between
the mesohabitats present

Species, except
Diptera,
Oligochaeta,
Hydrachnidiae and
Collembola

Hill et al.
(2015)

2 HuddersÞeld,
West
Yorkshire,
UK n = 20

* 68 Km2 162,949 Ponds were sampled following the
guidelines of the National Pond
Survey, during the spring and
autumn seasons. Soft benthic
samples were also collected

Species, except
Ostracoda,
Copepoda and
Diptera

Wood
et al.
(2001)

3 Birmingham
and the Black
Country, UK
n = 30

* 599
Km2

1,111,300 Ponds were sampled following the
guidelines of the National Pond
Survey, during the spring and
summer seasons.

Species, except
Diptera,
Sphaeriidae and
Oligochaeta

Thornhill
(2013)

4 Halton, UK

n = 25

* 91 Km2 125,746 Individual ponds were sampled in the
summer and autumn seasons for
2 years. Samples were collected
from all identiÞed mesohabitats
until no new species were recorded

Species Gledhill
et al.
(2008)

5 Stockport, UK

n = 16

* 122
Km2

24,497 Samples were collected in the
summer season from all identiÞed
mesohabitats until no new species
were recorded

Species except
Diptera, and
Oligochaeta which
were not
examined

Pond life
Project
(2000)
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Statistical analysis

Alpha and gamma diversity

All statistical analysis was conducted in R (R Devel-
opment Core Team2013). Alpha diversity is deÞned
here as the diversity within an individual sample site
(pond) whilst gamma diversity refers to the overall
diversity of a given settlement. The Chao2 estimator
(in the vegan package in R: Oksanen et al.2017) was
used to calculate estimated gamma diversity for the
different urban settlements. Differences between

estimated gamma diversity for the urban settlements
were considered signiÞcant if the 95% conÞdence
intervals (CI) did not overlap. Differences in macroin-
vertebrate diversity (alpha diversity) and environmen-
tal conditions among urban ponds from the Þve urban
settlements were examined using a KruskalÐWallis
test. Pairwise comparisons using Nemenyi post hoc
tests (in the PMCMR package in R: Pohlert2016)
were undertaken to determine where signiÞcant
differences among the Þve urban settlements occurred.
KruskalÐWallis tests with Nemenyi post hoc tests

Fig. 1 Location of the 132
surveyed urban ponds (25 in
Halton, 41 in
Loughborough, 16 in
Stockport, 30 in
Birmingham and 20 in
HuddersÞeld) across
England
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were also used to test for differences in environmental
characteristics among the Þve urban settlements.

Beta diversity

Beta-diversity is deÞned here as the spatial distribu-
tion and variation of communities between sample
sites within a selected area (Socolar et al.2016). Non-
Metric Multidimensional Scaling (NMDS; using the
metaMDSfunction in R) was used to visualise the
variability in macroinvertebrate community composi-
tion and environmental conditions within and among
urban settlements. Heterogeneity in community com-
position and environmental parameters among the Þve
urban settlements was statistically analysed using a
permutational multivariate analysis of variance (Per-
MANOVA) and pairwise comparisons were calcu-
lated (Pedro Martinez Arbizupers comm). To examine
the heterogeneity of pond macroinvertebrate compo-
sitions and environmental parameters within the urban
settlement groups (Halton, Loughborough, Hudders-
Þeld, Birmingham and Stockport) homogeneity of
multivariate dispersions were calculated using the
betadisperfunction in vegan and comparisons were
statistically tested using an ANOVA. Pairwise
TukeyÕs HSD tests were used to determine where
signiÞcant differences in multivariate dispersion
among the urban settlements occurred. For NMDS,
assessment of homogeneity of dispersion and PerMA-
NOVA analyses, the Sorensen dissimilarity measure
was used for macroinvertebrate data and Euclidean
distance for environmental conditions. The percentage
of pond shaded and pH were removed from these
analyses as the percentage pond shading was not
recorded from study 2 and pH was not recorded from
study 5. Partial Mantel tests (based on the Pearson
correlation coefÞcient and 999 random permutations)
were used to examine the relationships between
biological dissimilarity (based on the BrayÐCurtis
dissimilarity) and spatial distance within and among
urban settlements using the functionmantel.partialin
the vegan package. Partial Mantel tests examine the
relationship between two pairwise matrices (in this
case the biological dissimilarity and geographic dis-
tance) while holding a third pairwise matrix (Euclidian
environmental dissimilarity) constant (Wright et al.
2016). The weighted mean location (centroids of the
locations of the ponds within each settlement) was
used to determine spatial distance between each urban

settlement. Indicator value analysis (Dufreöne and
Legendre1997) was undertaken using the function
multipattin the indicspecies package (De Caceres and
Jansen2016) to assess which taxa were characteristic
of the Þve urban settlements. To examine the
processes driving community heterogeneity within
ponds in each urban settlement and for all ponds across
the study region, beta-diversity (calculated here using
the S¿rensen dissimilarity metric) was partitioned into
nestedness and species turnover using the function
beta.samplefrom the package betapart (Baselga et al.
2017) in R. The function beta.samplerandomly
resamples the three multiple-site dissimilarities (total
beta-diversity, nestedness and turnover) for a chosen
subset of sites of the original dataset (Baselga et al.
2017). The urban group with the lowest number of
sites in the dataset in this study was Stockport (16
ponds) and as a result 16 ponds were randomly
sampled 100 times from each of the other 4 urban
groups and for all ponds to facilitate a direct compar-
ison among the urban pond groups. The relative
contribution to total macroinvertebrate diversity from
three hierarchical levels of spatial scale was calculated
using additive partitioning of taxonomic richness. The
data was organised according to the following hierar-
chical structure: diversity among all individual ponds,
among ponds within the urban settlements and among
urban settlements within England. As a result, the
diversity model examined in this study was:
c = a ? b1 ? b2 (c refers to the total macroinverte-
brate diversity (gamma diversity),a reßects the
average diversity among all ponds (alpha diversity),
and b1 refers to the compositional variation in
communities between ponds within individual urban
settlements andb2 refers to the compositional varia-
tion in communities among urban settlements within
England). The observed diversity of each component
(a, b1 andb2) was compared with a null model of
expected diversity, generated by individual-based
randomisations, to test the signiÞcance of observed
patterns of diversity (Crist et al.2003). The p-values
calculated by this procedure indicate the signiÞcance
of departure (greater or less) in the observed values
from the expected values. Additive partitioning of
taxonomic richness was undertaken using the function
adipart in the vegan package.
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Results

Environmental characteristics

SigniÞcant differences in altitude (KruskalÐWallis test
df = 4, v2 = 95.419, p\ 0.01), pH (KruskalÐWallis
test df= 4,v2 = 36.905, p\ 0.01), percentage emer-
gent macrophytes (KruskalÐWallis test df= 4,
v2 = 19.902, p\ 0.01), pond area (KruskalÐWallis
test df= 4, v2 = 57.081, p\ 0.01) and percentage
shading (KruskalÐWallis test df= 4, v2 = 15.946,
p\ 0.01) were recorded among the Þve (5) urban
settlements (Table2). Pair-wise Nemenyi post hoc
tests indicated; (1) ponds in Halton and Loughborough
were at a signiÞcantly (p\ 0.01) lower altitude than
urban ponds in Birmingham, HuddersÞeld and Stock-
port, (2) pH was signiÞcantly (p\ 0.01) lower among
ponds in HuddersÞeld compared to ponds from
Halton, Loughborough and Birmingham, (3) ponds
in Birmingham had a signiÞcantly (p\ 0.05) lower
macrophyte coverage than ponds from Halton and
Stockport, and macrophyte coverage was signiÞcantly

(p\ 0.05) higher among ponds from Stockport than
Loughborough, (4) ponds in Halton and Loughbor-
ough were signiÞcantly (p\ 0.05) smaller than ponds
in Birmingham and HuddersÞeld and (5) ponds were
signiÞcantly (p\ 0.05) less shaded from Loughbor-
ough than Halton and Birmingham (Table2: Table3).

Alpha and gamma diversity

A total of 337 macroinvertebrate taxa were recorded
across the Þve urban pond groups: Halton (108 taxa),
Loughborough (170 taxa), Stockport (140 taxa),
Birmingham (193 taxa) and HuddersÞeld (100 taxa)
(Table4). Estimated gamma diversity (based on the
Chao 2 estimator) was signiÞcantly (p\ 0.05) higher
in Loughborough (estimated gamma: 243.7 CI
190.4Ð297.2) and Birmingham ponds (estimated
gamma: 217.5 CI 196.8Ð238.2) than urban ponds in
Halton (estimated gamma: 131.1 CI 107.1Ð155).
Estimated gamma diversity from urban ponds in
Stockport (estimated gamma: 185.1 CI 151.9Ð218.2)
and HuddersÞeld (estimated gamma: 199 CI

Table 2 Summary table of environmental characteristics for urban ponds in the 5 urban settlements. EM: emergent macrophytes

Area (M2) EM (%) pH Shading (%) Altitude
(Masl)

Loughborough (N= 41) Mean 780.3 23 7.8 17.5 59.1

Standard error 301.3 4.6 0.1 4.5 3.9

Median 21.2 10 7.7 2 49

Range 1Ð9309 0Ð100 6.3Ð9.8 0Ð100 35Ð138

HuddersÞeld (N= 20) Mean 3121.3 24.5 6.8 n/a 153.5

Standard error 1043.1 4.1 0.1 n/a 11.3

Median 1400 17.5 7 n/a 170

Range 50Ð16,000 0Ð60 5.2Ð7.7 n/a 65Ð230

Birmingham (N= 30) Mean 3597.1 12.62 7.7 30.1 138.8

Standard error 739.9 2.4 0.1 5.7 2.8

Median 1798 8.6 7.6 17.9 140.5

Range 299Ð14,967 0Ð41 6.7Ð9.1 0Ð100 93Ð164

Halton (N = 21) Mean 324.6 27.1 7.7 30.9 37.6

Standard error 37.2 3.6 0.1 4.7 3.8

Median 300 25 7.7 30 36.3

Range 33.5Ð826.2 2Ð75 6.8Ð8.2 2Ð90 6.7Ð69.2

Stockport (N= 16) Mean 895.9 57.8 n/a 14.4 97.2

Standard error 156.5 10.4 n/a 5.6 8.2

Median 758.7 72.5 n/a 10 80

Range 88Ð2123.2 1Ð100 n/a 0Ð85 65Ð155
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118.2Ð279.7) was not statistically different from the
other urban centres. SigniÞcant differences (KruskalÐ
Wallis test df= 4, v2 = 34.812, p\ 0.01) in alpha
diversity were recorded among the 5 urban settlements

(Table4; Fig. 2). Results from the Nemenyi post hoc
test indicated that ponds in Birmingham (mean: 44.6
median: 44.5) had signiÞcantly higher alpha diversity
than ponds in Halton (mean: 24.6 median: 28),

Table 3 Post hoc Tukey pairwise tests of (a) altitude, (b) pH, (c) pond shading, (d) area, and (e) emergent macrophytes between the
Þve urban settlements; Loughborough, HuddersÞeld, Birmingham, Halton and Stockport

^Indicates that the environmental variable was signiÞcantly greater in the urban settlement in the table column than the table row
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Loughborough (mean: 22.3 median: 15), Stockport
(mean: 26.7 median: 20.5) and HuddersÞeld (mean:
15.6 median: 15) (Fig.2).

Beta-diversity

PerMANOVA tests found environmental characteris-
tics to be signiÞcantly different between ponds in
Halton and Stockport, Birmingham and HuddersÞeld
(p\ 0.05; Fig.3a; see Supplementary Material
Table S1 for all pairwise PerMANOVAR and p
values). In addition, environmental conditions were
recorded to be signiÞcantly different between ponds in
Loughborough and Birmingham (p\ 0.05). Pairwise
comparisons of multivariate dispersion for environ-
mental parameters found dispersion to be signiÞcantly
higher in ponds in Birmingham (median distance:
2538) and HuddersÞeld (median distance: 2520) than
Halton (median distance: 137; p\ 0.05, Fig.3c).
Ponds in Birmingham also had signiÞcantly higher
dispersion compared to Loughborough (median dis-
tance: 446; p\ 0.05; see Supplementary Material
Table S2 for full pairwise results).

A clear distinction among aquatic macroinverte-
brate assemblages in ponds in Stockport, Halton and
Birmingham was observed within the NMDS ordina-
tion, but macroinvertebrate communities among
ponds in Loughborough and HuddersÞeld overlapped
in the NMDS biplot (Fig.3b). PerMANOVA pairwise

Fig. 2 Median macroinvertebrate richness of macroinverte-
brates recorded from urban ponds in Halton, Loughborough,
Stockport, Birmingham and HuddersÞeld. Boxes show 25th,
50th, and 75th percentiles and whiskers show 5th and 95th
percentiles

Table 4 Summary table of macroinvertebrate diversity recorded from urban ponds in Halton, Loughborough, Stockport, Birm-
ingham and HuddersÞeld and from all ponds combined

Loughborough HuddersÞeld Birmingham Halton Stockport All
cities

Estimated
richness

243.7 199 217.5 131.1 185.1 418.1

Total
richness

170 100 193 108 140 338

Mean 22.3 15.6 46.5 24.6 26.7 27.7

SE 2.7 1.4 3.7 2.4 4.2 1.7

Median 15 15 44.5 28 20.5 21.5

Min 2 6 14 6 10 2

Max 61 27 87 43 61 87

Unique
Taxa

11 Coleoptera, 3
Gastropoda, 11
Trichoptera, 1
Ephemeroptera, 1
Arhynchobdellida,
2 Diptera, 1
Collembola

9 Coleoptera, 2
Gastropoda, 1 Bivalvia,
1 Hemiptera, 7
Veneroida, 7
Trichoptera, 2
Ephemeroptera, 2
Plecoptera, 1
Megaloptera, 1
Neuroptera

9 Coleoptera, 2
Gastropoda, 10
Hemiptera, 4
Trichoptera, 1
Ephemeroptera, 1
Arhynchobdellida, 2
Odonata, 4 Seriata, 4
Diptera, 1 Amphipoda

7 Coleoptera,
1
Gastropoda

20
Coleoptera,
1
Gastropoda,
2
Hemiptera,
1 Odonata,
1 Seriata
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tests found macroinvertebrate communities among the
Þve urban settlements to be signiÞcantly different to
each other (p\ 0.01; see Supplementary Material
Table S3 for pairwise PerMANOVAR and p values).
SigniÞcant differences in multivariate dispersions
(ANOVA df = 4, F = 5.521, p\ 0.01) were
recorded among the 5 urban settlements (Fig.3d).
Multivariate dispersion was signiÞcantly lower among
macroinvertebrate assemblages in Birmingham (aver-
age median distance to group centroid: 0.39) than
pond assemblages in Loughborough (average median
distance to group centroid: 0.49; p\ 0.01), Stockport
(average median distance to group centroid: 0.52;
p\ 0.01) and HuddersÞeld (average median distance
to group centroid: 0.47; p\ 0.05, Fig.3d). No
signiÞcant difference was recorded in multivariate
dispersion among communities in Halton (average
median distance to group centroid: 0.46) compared to
the other urban settlements, although

macroinvertebrate communities from Halton demon-
strated a much greater range of multivariate disper-
sions (Fig.3d). No signiÞcant correlation was
recorded between macroinvertebrate community dis-
similarity (BrayÐCurtis) and spatial distance of ponds
within Loughborough (Mantel r= 0.03, p= 0.31),
Birmingham (Mantel r= 0.11, p= 0.08) and Hud-
dersÞeld (Mantel r= - 0.17, p= 0.97), although a
signiÞcant weak positive correlation was recorded in
Halton (Mantel r= 0.14, p\ 0.02) and moderate
positive correlation in Stockport (Mantel r= 0.48,
p\ 0.01). In addition, Mantel tests showed that there
was no signiÞcant correlation between macroinverte-
brate community dissimilarity and spatial distance
(weighted mean location) between urban settlements
(Mantel r = 0.19, p= 0.33).

A total of 8 taxa were recorded only from ponds in
Halton, 30 in Loughborough, 25 in Stockport, 38 in
Birmingham and 33 in HuddersÞeld amounting to

Fig. 3 Non-metric
multidimensional scaling
plots of dissimilarity in
(a) environmental
conditions (Euclidean
distance) andb aquatic
macroinvertebrate
communities (S¿renson
dissimilarity) from urban
ponds in the 5 UK urban
settlements and boxplots of
multivariate dispersion
distances for
c environmental conditions
andd urban pond
macroinvertebrate
communities from the 5 UK
urban settlements
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40% of all macroinvertebrate taxa recorded in this
study (134 taxa, Table4). A total of 7 macroinverte-
brate taxa were identiÞed as indicator taxa (using
Indicator Value Analysis) for ponds in Halton, 4 were
statistically associated with ponds in Loughborough,
26 taxa were associated with ponds in Stockport, 46
taxa were identiÞed as indicator taxa for ponds in
Birmingham and 10 taxa were identiÞed as indicator
taxa for ponds in HuddersÞeld. The top Þve macroin-
vertebrate taxa identiÞed as indicator species for urban
ponds in the Þve UK urban settlements are presented
in Table5 (see Supplementary Material Table S4 for
the full list of statistically signiÞcant indicator taxa).

Aquatic macroinvertebrate communities demon-
strated high levels of beta-diversity within ponds in
each of the 5 urban settlements based on the S¿rensen
dissimilarity metric (Halton: 0.86, Loughborough:
0.89, Stockport: 0.89, Birmingham: 0.84 and Hudder-
sÞeld: 0.89) and when all ponds in the study area were
considered (0.90; Fig.4). Almost all of the variation in
macroinvertebrate composition was explained by
species turnover, rather than nestedness for commu-
nities in Halton (species turnover: 90.1%, nestedness:
9.9%), Loughborough (species turnover: 83.5%, nest-
edness: 16.5%), Stockport (species turnover: 91.5%,
nestedness: 8.5%), Birmingham (species turnover:
88.3%, nestedness: 11.7%), and HuddersÞeld (species
turnover: 94.7%, nestedness: 5.3%) and when all
ponds were considered (species turnover: 91.0%,
nestedness: 9.0%; Fig.4). Additive partitioning of
diversity showed that alpha diversity was signiÞcantly
lower than that expected under the null model

(p = 0.001) despite contributing 42% to gamma
(total) diversity (Fig.5). Similarly, compositional
variation within cities (b1: contributed 34% to gamma
diversity) was signiÞcantly lower than expected by
chance (p\ 0.001). However, the contribution to total
diversity by b2 (the compositional variation in
macroinvertebrate communities among urban settle-
ments; 24%) was signiÞcantly greater (p\ 0.001)
than that expected under the null model (Fig.5).

Discussion

We demonstrate signiÞcant differences in aquatic
macroinvertebrate community composition within and
among urban settlements. This suggests that ponds do

Fig. 4 Relative contribution of species turnover and nestedness
to total community dissimilarity within urban ponds in Halton,
Loughborough, Stockport, Birmingham and HuddersÞeld

Table 5 Top 5 macroinvertebrate taxa identiÞed as indicator species for urban ponds in the 5 UK urban settlements (see supple-
mentary material Table S3 for the full list of statistically signiÞcant species indicator values)

Loughborough Stat HuddersÞeld Stat Birmingham Stat Halton Stat Stockport Stat

Planaridae sp. 0.56Leptophlebia
marginata

0.55 Sphaeriium spp. 0.85Anacaena
limbata

0.70 Hydroporus
planus

0.68

Physa acuta 0.52 Nemurella picteti 0.50 Corixidae Nymph 0.78 Nepa cinerea 0.58 Hydroporus
memnonius

0.61

Zonitoides
nitidus

0.38 Tinodes waeneri 0.50 Zygoptera instar I
& II

0.75 Scirtdae larvae 0.51Limnephilus
vittatus

0.59

Hydrophilidae
larvae

0.31 Agrypnia obsoleta 0.45 Dugesia tigrina 0.73 Anisus
leucostoma

0.42 Hydroporus
gyllenhalii

0.56

Pisidium indet 0.45 Hydrometra
Nymph

0.71 Laccobius
bipunctatus

0.40 Hydroporus
nigrita

0.56

All p\ 0.01
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not follow the same ecological response to urbanisa-
tion as terrestrial and lotic habitats (biotic homoge-
nization) but support highly heterogeneous
macroinvertebrate communities. The high beta-diver-
sity of macroinvertebrate communities within urban
settlements could almost entirely be attributed to
species turnover (species replacement from one pond
to another) across all urban settlements, indicating that
it was the variation in community composition
(species replacement from one site to another) rather
than differences in taxonomic richness (species poor
communities being subsets of species rich communi-
ties) that was driving the heterogeneity in community
assemblage (Viana et al.2016). The high contribution
of species turnover to beta-diversity within urban
ponds in individual urban settlements most likely
reßects the wide variety of anthropogenic uses of
urban ponds (e.g., stormwater retention, aesthetics,
sediment collection and biodiversity) and the different
management practices which they are subject to. The
small catchment areas of ponds (Williams et al.2003)
and the different management practices promotes a
wide range of successional stages and environmental
conditions across urban areas for macroinvertebrate
taxa to utilise (Hill et al.2015; Thornhill et al.2017a).
Previous studies have demonstrated that variation in
local environmental conditions are often the principle

regulator of species turnover in pond systems as
macroinvertebrate taxa are essentially Þltered by
environmental gradients (Cottenie2005; Hill et al.
2017b). Compositional differences driven by species
turnover may also reßect the isolation of some ponds
within urban settlements, which may increase the level
of ecological uniqueness of urban ponds (Thornhill
et al.2017b; Fahrig2003). Although ponds may exist
in close spatial proximity, the structural complexity of
urban landscapes (high-rise developments, walls and
roads) may effectively isolate some ponds from other
sites. Walls and buildings provide complex and
impermeable vertical structures, and roads are a
source of invertebrate mortality (from road trafÞc) as
well as a physical barrier, which reduces the oppor-
tunity for successful dispersal and colonisation of
macroinvertebrates. Complex structural mosaics may
limit dispersal to such an extent that macroinvertebrate
communities in some urban ponds may be separated
from any species pool effect (spatial effects) on local
communities (Heino et al.2017). However, many
urban ponds exist in networks, where they are linked
through urban parks/nature reserves and blue/green
corridors (Dallimer et al.2012; Hassall2014). Even
where there is high spatial connectivity and dispersal
rates, species turnover may still be high as the local
variation in environmental conditions has been shown
to be the dominant structuring process for pond
communities (Cottenie2005). Among small water-
bodies, stochastic events such as priority effects
(where the initial colonisation of one taxa at a site
alters the biotic or abiotic condition of the site that
positively or negatively effects later colonising taxa)
and dispersal limitation often exerts a strong inßuence
and may be contributing to the high community
heterogeneity (taxonomic turnover) recorded (Schef-
fer et al.2006).

Considerable differences in macroinvertebrate
composition at an inter-city scale and the signiÞcantly
greater contribution of broad scale beta components
(b2: the compositional variation in macroinvertebrate
communities among the Þve UK urban settlements) to
gamma diversity than expected by chance may be best
explained by the effect of the developmental charac-
teristics of an individual city and also between-
settlement isolation. Urban settlements develop in a
variety of ways (reßecting local urban planning
choices and historical context) such as low density,
urban sprawl spread over a large spatial area (Terando

Fig. 5 Relative contribution of alpha diversity (a) and beta
diversity (b1 among sites within urban settlements,b2 among
urban settlements within the study area) to gamma diversity
(total aquatic macroinvertebrate richness among urban ponds).
Observed results were compared to expected results using
individual based randomizations (? signiÞcantly larger,- sig-
niÞcantly smaller)
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et al.2014) or as high density, compact landscapes (Ng
et al.2012) with varying amounts of green/blue space
(Dallimer et al. 2011). This is likely to affect the
within-settlement environmental conditions, connec-
tivity and the complexity of colonisation and dispersal
pathways. This signiÞcant dissimilarity in community
composition and high numbers of unique taxa at an
inter-city scale may also reßect the ecological isola-
tion between the Þve urban settlements. Urban areas
can be disconnected from other nearby urban and non-
urban landscapes (Laurenco et al.2017) and as a
result, there may be reduced colonisation to, or
dispersal among, proximal and distant urban settle-
ments, which may be driving the development of
relatively unique faunal and ßoral communities
recorded between urban settlements in this study. In
addition, aquatic taxa that colonise isolated urban
ponds may become trapped as they may be unable to
navigate the complex dispersal routes in an urban
landscape (Smith et al.2009), or through the loss of
aquatic stepping stones as a result of urban pond loss
(Thornhill et al. 2017b). However, in the last few
decades there has been signiÞcant improvement to
freshwater quality in urban areas (Vaughan and
Ormerod2012), and the high beta diversity recorded
among urban settlements may be the result of the
sporadic recolonization of urban ponds from the
proximal non-urban landscape as urban quality
improves (Hill et al.2017a).

Alpha and gamma diversity

In this study, signiÞcant differences were recorded
among the urban settlements for both alpha and
gamma diversity. The signiÞcantly higher alpha
diversity in Birmingham compared to the other urban
settlements is surprising considering that it is a highly
developed, densely populated city, but may be
explained by; (1) the signiÞcant amount of green
space present in the city (Birmingham City Council
2013) increasing the colonisation and dispersal poten-
tial between ponds and; (2) by Birmingham City
CouncilÕs recent efforts to improve water quality
within the city (Birmingham City Council2007). In
addition, Birmingham displayed the highest alpha
diversity but lowest beta-diversity, which may also be
explained by the increased dispersal and colonisation
potential reducing community heterogeneity. How-
ever, using average alpha diversity across a series of

individual habitat patches to quantify biodiversity at a
habitat network scale, such as an urban pondscape,
may not be suitable and provide misleading informa-
tion as alpha diversity operates at an individual scale
and fails to acknowledge the complementarity of
patches within habitat networks. Gamma diversity
provides a useful measure to quantify large scale
patterns of biodiversity although may not be an
appropriate measure (if used individually) for aquatic
management and conservation of ponds as it is unable
to quantify how or where habitats contribute to gamma
diversity (e.g. a few ponds with high species richness
contributed most to gamma diversity or a large number
of ponds across a given area contributed to gamma
diversity). In contrast, beta-diversity approaches can
provide more meaningful information about the spa-
tial structure of habitat networks, and practical guid-
ance for their management based on the relative
importance and complementarity of the constituent
patches. For example, beta-diversity can provide
relevant information for the suitability of a Ôsingle
largeÕ or Ôseveral smallÕ habitats for biodiversity
conservation in a given area (Socolar et al.2016).

Conservation implications

Quantifying spatial patterns and processes operating
within ecological communities (beta-diversity) can
provide more accurate and detailed information to
identify the most suitable/efÞcient biodiversity man-
agement and conservation strategies (Socolar et al.
2016). Current pond conservation focuses on protect-
ing individual sites of high biodiversity (Hassall et al.
2012), which is based on the assumption that macroin-
vertebrate communities among ponds demonstrate
strong patterns of nestedness (conservation of the most
species rich sites as other sites are nested subsets of
these species rich sites). However, high beta-diversity
among urban ponds in this study was dominated by
species turnover (species replacement from one pond
to another) rather than nestedness indicating that pond
conservation practices (individual sites of high diver-
sity) are not providing the most effective conservation
of pond biodiversity. The dominance of species
turnover suggests that conservation actions to enhance
pond biodiversity would be most beneÞcial if under-
taken at a landscape/network scale, conserving an
array of complementary sites (incorporating the
Ôprinciple of complementarityÕ; Justus and Sarkar
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2002) with different species compositions (Hill et al.
2017b). Current pond conservation strategies need to
be adapted in recognition of the fact that the greatest
conservation value of ponds lies at the network scale
reßecting the high contribution of species turnover to
beta-diversity, in the heterogeneity of conditions
among sites (promoting high community turnover
and heterogeneity); and that conservation efforts
should be focussed to ensure that pondscapes and
heterogeneous environmental conditions at a land-
scape scale are maintained and where possible
enhanced.

There has been a concerted effort to increase
connectivity between fragmented natural habitat in
urban landscapes, particularly for terrestrial habitats
(Crook and Sanjayan2006; LaPoint et al.2015). There
was some evidence of potential inßuence of connec-
tivity in the fact that macroinvertebrate community
dissimilarity within Halton and Stockport was signif-
icantly correlated to spatial distance between ponds,
but this was inconsistent in the other areas sampled
suggesting that such effects may be context speciÞc.
Among aquatic macroinvertebrate communities,
increasing connectivity will increase the dispersal
and colonisation potential for macroinvertebrate taxa
but may also be detrimental to pond diversity,
increasing the potential for the homogenisation of
communities and the proliferation of non-native taxa
and larger predators (particularly Þsh) in urban areas
(Fahrig2003; Scheffer et al.2006). Combining high
connectivity of some urban pond sites and moderate
isolation for other ponds will promote aquatic diver-
sity and maintain high community heterogeneity. At a
local scale isolated ponds are less likely to support
transient or sink species and could support specialist
taxa that may be outcompeted in more highly
connected sites (Scheffer et al.2006).

Urban biodiversity conservation is currently pri-
marily focussed upon terrestrial and lotic systems and
small lentic pond habitats are almost entirely excluded
from international conservation legislation (e.g. the
Water Framework Directive and the Habitats Direc-
tive; EC 1992; EC 2000; Biggs et al.2005; Hering
et al. 2010). This study demonstrates that current
conservation strategies are overlooking a key biodi-
versity resource in urban landscapes, which appears to
be highly resilient to many of the effects of urbani-
sation and provides suitable habitats for colonisation
and refuge for aquatic macroinvertebrate taxa (Hill

et al. 2017a). Ponds may be easier and economically
more effective to manage for biodiversity conserva-
tion than other waterbodies in urban areas (while
simultaneously being able to provide key ecosystem
services to citizens) as a result of; (1) the high
frequency of ponds across urban landscapes; (2) the
small catchment size of ponds (Davies et al. 2008a);
(3) the signiÞcantly better water quality in ponds
compared to ßowing systems in urban areas (McGoff
et al.2016); (4) being a highly recognisable freshwater
habitat suitable for citizens/volunteers to engage in
urban freshwater conservation and management
(Loiselle et al.2017) and; (5) the high community
and environmental heterogeneity of urban ponds,
suitable for landscape-scale conservation measures.

Conclusion

This study has demonstrated that urban pond commu-
nities do not respond to urbanisation in the same way
as lotic and terrestrial systems, supporting highly
heterogeneous communities (high species turnover)
within and among urban settlements. This is most
likely the result of the wide range of environmental
conditions present in an urban pondscape and the
isolation of urban ponds at both a local scale (within
urban settlements) and a regional scale (among urban
settlements). High species turnover recorded in this
study has demonstrated that urban pond biodiversity
conservation would be most efÞcient at a pondscape
scale (incorporating a wide range of pond sites). Pond
conservation practices need to move away from a
focus at an individual scale to conservation at a
network scale to ensure the maximum possible
diversity is being protected. Urban conservation
planning must consider the organization of ecological
communities in space to ensure the most accurate and
detailed information is available for the development
of freshwater conservation strategies.
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