Comparison of whole house heat loss test methods under controlled conditions in six distinct retrofit scenarios

Alezzo, F, Farmer, D, Fitton, R ORCID:, Hughes, T and Swan, W ORCID: 2018, 'Comparison of whole house heat loss test methods under controlled conditions in six distinct retrofit scenarios' , Energy and Buildings, 168 , pp. 35-41.

PDF - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (763kB) | Preview


The accurate assessment of buildings to assess their performance across a range of parameters is an essential part of understanding both new and retrofit buildings. The growing understanding of the performance gap in terms of its assessment and characterisation relies on effective methods of analysis. Here, we evaluate an experimental whole house method, known as QUB. As with many whole building approaches the method establishes heat loss through transmission and ventilation losses.

This study compares QUB against an alternative, established, whole house test known as coheating. It was applied in a whole house test facility under controlled conditions. The test property, a solid wall pre-1919 UK archetype, was retrofit using a set of commercially available products and then the retrofit was removed in stages. At each of these stages a QUB test, which commonly takes one night, and coheating test, which can take few weeks, were applied. The objective of the study was to provide a comparison between the new method and more established method in terms of accuracy.

The two methods showed close agreement in terms of results, suggesting that the quicker test has great potential as a more practical and economic test. There were higher levels of uncertainty with the QUB method due to shorter measurement periods. The lack of full boundary conditions within the test facility should be considered a limitation in applying the findings directly to the field. However, this study indicates the potential for QUB in validating performance, warranting further investigation.

Item Type: Article
Schools: Schools > School of the Built Environment > Centre for Urban Processes, Resilient Infrastructures & Sustainable Environments
Journal or Publication Title: Energy and Buildings
Publisher: Elsevier
ISSN: 0378-7788
Related URLs:
Depositing User: Prof Will Swan
Date Deposited: 16 Mar 2018 15:00
Last Modified: 15 Feb 2022 22:58

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)


Downloads per month over past year