The design and mathematical model of a novel variable stiffness extensor-contractor pneumatic artificial muscle

Al-Fahaam, HSH ORCID: https://orcid.org/0000-0001-6000-2540, Nefti-Meziani, S, Theodoridis, T ORCID: https://orcid.org/0000-0001-7482-318X and Davis, ST ORCID: https://orcid.org/0000-0002-4365-5619 2018, 'The design and mathematical model of a novel variable stiffness extensor-contractor pneumatic artificial muscle' , Soft Robotics, 5 (5) , pp. 576-591.

[img]
Preview
PDF - Accepted Version
Download (1MB) | Preview
[img] Microsoft Word - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

This article presents the design of a novel Extensor-Contractor Pneumatic Artificial Muscle (ECPAM). This new actuator has numerous advantages over traditional pneumatic artificial muscles. These include the ability to both contract and extend relative to a nominal initial length, the ability to generate both contraction and extension forces and the ability to vary stiffness at any actuator length. A kinematic analysis of the ECPAM is presented in this article. A new output force mathematical model has been developed for the ECPAM based on its kinematic analysis and the theory of energy conservation. The correlation between experimental results and the new mathematical model has been investigated and show good correlation. Numerous stiffness experiments have been conducted to validate the variable stiffness ability of the actuator at a series of specific fixed lengths. This has proven that actuator stiffness can be adjusted independently of actuator length. Finally a stiffness-position controller has been developed to validate the effectiveness of the novel actuator.

Item Type: Article
Schools: Schools > School of Computing, Science and Engineering > Salford Innovation Research Centre
Journal or Publication Title: Soft Robotics
Publisher: Mary Ann Liebert
ISSN: 2169-5172
Related URLs:
Depositing User: ST Davis
Date Deposited: 09 May 2018 08:58
Last Modified: 15 Feb 2022 23:16
URI: https://usir.salford.ac.uk/id/eprint/46959

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)

Downloads

Downloads per month over past year