Shear behaviour of lightweight concrete beams strengthened with CFRP composite

Al-Allaf, MHF, Weekes, L and Augusthus Nelson, L

http://dx.doi.org/10.1680/jmacr.17.00488

<table>
<thead>
<tr>
<th>Title</th>
<th>Shear behaviour of lightweight concrete beams strengthened with CFRP composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Al-Allaf, MHF, Weekes, L and Augusthus Nelson, L</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/47134/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2019</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
SHEAR BEHAVIOUR OF LIGHTWEIGHT CONCRETE BEAMS

STRENGTHENED WITH CFRP COMPOSITE

Figure 1: Beams reinforcement details
Figure 2: Strengthening detail
Figure 3: Details of test set-up
Figure 4: Position of strain gauges attached to the central bottom steel bar (plan view and all dimensions are in mm)
Figure 5: Position of CFRP strips and strain gauges (all dimensions are in mm)
Figure 6: Location of the LVDTs underneath the test samples
Figure 7: (a) Comparison of the shear strength gained due to CFRP reinforcement and (b) increase in the maximum deflection at failure compared with the control sample.
Figure 8: Comparison of load-deflection of LWC and NWC samples
Figure 9: Failure mode of samples (a) BL, (b) BN, (c) BL-UST, (d) BN-UST, (e) BL-CST and (f) BN-CST
Figure 10: (a) Light micrograph of lightweight concrete sample, (b) SEM micrograph of lightweight aggregate, (c) SEM micrograph of reacted area of lightweight aggregate, (d) SEM micrograph of reacted area of lightweight aggregate and cement paste, (e) SEM micrograph of lightweight aggregate and (f) SEM micrograph of cement paste.
Figure 11: (a) Light micrograph of normal weight concrete sample, (b) SEM micrograph of normal weight aggregate and cement paste, (c) SEM micrograph of normal weight aggregate and cement paste (d) SEM micrograph of normal weight aggregate and cement paste.
Figure 12: Strain profile along longitudinal steel reinforcement of specimen (a) BL-CST and (b) BN-CST
Figure 13: Internal forces in a failed concrete strengthened beam strengthened with CFRP
Figure 14: Estimated shear contribution of (a) BL-UST, (b) BL-CST, (c) BN-USL and (d) BN-CST.