Unsteady MHD non-Newtonian (rheological) heat transfer nanofluids with entropy generation analysis

Shukla, N, Rana, P and Beg, OA

http://dx.doi.org/10.1515/nleng-2017-0177

<table>
<thead>
<tr>
<th>Title</th>
<th>Unsteady MHD non-Newtonian (rheological) heat transfer nanofluids with entropy generation analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Shukla, N, Rana, P and Beg, OA</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/47295/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2019</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Nisha Shukla, Puneet Rana*, and O. Anwar Bég

Unsteady MHD Non-Newtonian Heat Transfer Nanofluids with Entropy Generation Analysis

https://doi.org/10.1515/nleng-2017-0177
Received November 7, 2017; revised May 1, 2018; accepted June 7, 2018.

Abstract: A theoretical study of unsteady magnetohydrodynamic boundary layer stagnation point flow, heat and mass transfer of a second grade electrically-conducting nanofluid from a horizontal stretching sheet with thermal slip and second order slip velocity effects is presented. The Buongiorno formulation is employed for nanofluids and in addition the no-flux nanoparticle boundary condition is also considered. The appropriate similarity transformations are applied to convert the governing equations into the system of nonlinear partial differential equations, which is solved by using homotopy analysis method. Entropy generation and Bejan number have also been evaluated for the effects of magnetic parameter, Reynolds number and slip parameter in non-Newtonian (second-grade) time-dependent flow. The computations show that skin friction coefficient and entropy generation number increase with an increment in magnetic parameter whereas Bejan number decreases with it. Local Nusselt number decreases with an increase in the value of Eckert number (viscous dissipation) and thermal slip whereas the converse behaviour is captured for velocity parameter. The work is relevant to magnetohydrodynamic nanomaterials processing.

Keywords: Unsteady flow; Heat and mass transfer; Magnetohydrodynamics; Non-Newtonian nanofluid; Stretching sheet; HAM solutions; Entropy; Bejan number

1 Introduction

Non-Newtonian fluid flows feature in an extensive range of technological applications including polymer processing, wire coating, food manufacture, biological fluids movement, hot rolling, fibre technology, crystal growth and petroleum purification [1, 2]. Nanofluids [3–9] are fluids which contains suspended nanoparticles (for example Al₂O₃, CuO, SiC) in a base fluid (water, lubricants and organic liquids). Rana et al. [10] have examined the MHD slip flow of Al₂O₃–water nanofluid over a horizontal shrinking cylinder. Non-Newtonian fluids are characterized into some subclasses according to their diverse properties. Each class may be characterized by a constitutive equation. One such category is viscoelastic fluids which display both elastic and viscous properties over a wide range of shear rates. They may also exhibit normal stress differences, relaxation, retardation, memory effects and so on. A subclass of non-Newtonian viscoelastic fluids is the differential second grade Rivlin-Ericksen fluid which quite accurately simulates normal stress effects. This non-Newtonian model has therefore stimulated substantial interest in rheological fluid mechanics. The non-Newtonian properties of certain nanofluids also allow the second grade model to be utilized in describing their shear stress-strain characteristics. Erdogan and Imrak [11] presented an exact solution for steady incompressible second grade nanofluid flow which passage through a rotating porous cylinder. Zhang et al. [12] have applied an inverse method to obtain exact solutions for steady second grade fluid flow. Rana and Bhargava [13] have applied a variational finite element method to compute velocity and temperature field solutions for steady viscoelastic second grade nanofluid flow and heat transfer from a stretching surface. They observed that wall heat transfer rate increases with an increment in viscoelastic parameter. Khurana et al. [14] have investigated the influence of magnetic field on non-Newtonian nanofluid layer. Both linear and nonlinear analysis has been explored by considering stress free boundary conditions on the flow confined between parallel plates.

Magnetohydrodynamics (MHD) has emerged as a growing area in modern engineering sciences and involves...
the interaction between flowing electrically-conducting fluids and static or dynamic magnetic fields. It arises in the design of MHD accelerators and power generators [15, 16] electromagnetic blood flow meters, metallurgical (liquid metal) processing, nuclear cooling systems, magnetic materials synthesis and etc. Many complex phenomena are generated in MHD boundary layer flows including Lorentzian body force, Ohmic dissipation, Hall currents and magnetic induction. Magnetic nanofluids combine the responsiveness of electrically-conducting fluids to electromagnetic fields and the thermal enhancement properties of nanofluids. Many researchers have studied the boundary layer transport phenomena in such fluids. Recently, Dhanai et al. [17] derived dual solutions for MHD boundary layer flow of a power-law non-Newtonian nanofluid from a porous nonlinear shrinking sheet with heat source or sink effects. Rana et al. [18] have also captured the multiple solutions in the study of non-Newtonian nanofluid induced by shrinking sheet. Temporal stability analysis has been implemented to confirm the stability of the solutions.

A point in a fluid at which the local velocity of fluid becomes zero is termed a stagnation point. Historically Hiemenz [19] first investigated stagnation point flow for Newtonian viscous fluids. The presence of stagnation-point flows in coating flows and other materials manufacturing operations has stimulated considerable interest in this type of flow in recent years. Hayat et al. [20] investigated heat and mass transfer in MHD stagnation point flow of a second grade nanofluid over a permeable stretching cylinder. Reddy and Sankar [21] investigate numerically the effects of heat source suction and viscous dissipation on MHD stagnation point flow of a steady, viscous and incompressible nanofluid past an exponentially stretching sheet. Bachok et al. [22] and also Suali et al. [23] considered the unsteady stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Abbas et al. [24] computed multiple solutions for steady MHD boundary layer stagnation point nanofluid flow from a stretching sheet with homogeneous-heterogeneous chemical reactions. Rana et al. [25] have used the Lie group analysis to find similarity transformations for the study of stagnation point flow of nanofluid over a nonlinear shrinking surface.

The preceding studies have generally omitted consideration of second order velocity (hydrodynamic) wall slip and thermal slip effects. Partial slip conditions provide better results as compared to no-slip conditions, as elaborated by Yoshimura and Prudhomme [26] and Zhu and Granick [27] who have included non-zero first order derivatives of velocity at the boundary. However for the case of large Knudsen number, it is necessary to incorporate second order derivatives in order to improve the accuracy of computations and correlation with actual physical phenomena [28]. The second order slip condition has been shown to exert a significant effect in non-Newtonian nanofluid flows. Some authors [29, 30] have calculated dual or multiple solutions in such type of flow models.

In any thermodynamic process entropy can be generated due to heat transfer across finite temperature gradients, Joule heating (Ohmic dissipation), mass diffusion and viscous dissipation. Engineers may successfully optimize a thermal engineering system with higher energy efficiency by minimizing entropy generation in system [31]. Entropy generation analysis has a wide range of applications in different fields such as heat exchangers, porous media, combustion, high temperature gas turbine dynamics, gas turbine regenerators etc. [32–34]. Bejan [35] has introduced a general methodology for entropy generation analysis for forced convective heat transfer over a plate and circular cylinder. This entropy generation minimization approach has been applied by many authors [36–41] in a wide spectrum of thermofluid systems.

The main motivation of this article is to solve analytically the system of nonlinear partial differential equations arising in unsteady MHD boundary layer stagnation point flow of second grade nanofluid from a horizontal stretching sheet with second order slip velocity and thermal slip effects. An entropy generation analysis is also included. The transformed, two-dimensional nonlinear boundary value problem is solved with the powerful homotopy analysis method (HAM) [42, 43] which is a power-series based hybrid analytical/numerical technique for solving very efficiently systems of ordinary or nonlinear partial differential equations. Many researchers have employed HAM in simulating a range of complex, multi-physical transport problems [44–47]. Extensive graphical solutions are presented. Validation of HAM solutions with earlier studies is also included. The present work is relevant to providing a deeper insight into hydromagnetic thermal, momentum and species transfer characteristics in stagnation point flows of non-Newtonian electro-conductive nanopolymers and has not been investigated in the literature, thus far, to the authors’ knowledge.

2 Problem Formulation

The unsteady laminar two-dimensional MHD stagnation point boundary layer flow of an incompressible, electro-conductive, viscoelastic second grade nanofluid over a stretching sheet is considered. The stagnation point O is assumed to be fixed at $x = y = 0$. It is assumed that the
The flow regime is visualized with the associated coordinate system in Fig. 1. The governing equations are defined as follows:

Continuity Equation:

\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0, \tag{1}
\]

Momentum equation:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial u_{\infty}}{\partial t} + u_{\infty} \frac{\partial u_{\infty}}{\partial x} + v_{\infty} \frac{\partial^2 u}{\partial y^2} - \frac{\sigma_{nf} B^2}{\rho_{nf}} (u - u_{\infty}), \tag{2}
\]

Energy equation:

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k_{nf}}{(pc)_{nf}} \frac{\partial^2 T}{\partial y^2} + \frac{\mu_{nf}}{(pc)_{nf}} \left(\frac{\partial u}{\partial y} \right)^2 + \tau \left[D_B \frac{\partial C}{\partial y} \frac{\partial T}{\partial y} + \frac{D_T}{T_{\infty}} \left(\frac{\partial T}{\partial y} \right)^2 \right], \tag{3}
\]

Nanoparticle Concentration Equation:

\[
\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_{\infty}} \frac{\partial^2 T}{\partial y^2}, \tag{4}
\]

Here \(u \) and \(v \) are velocity components along \(x \)- and \(y \)-axis respectively. We further note that \(\tau_1 = \frac{(pc)_{nf}}{(pc)_{nf}} \), where \((pc)_{nf} \) and \((pc)_p \) are the heat capacities of nanofluid and nanoparticles respectively. The boundary conditions are defined following [49, 50] as:

\[
\text{as } y \to \infty, u \to u_{\infty}, T = T_{\infty} = C = C_{\infty}, \tag{5}
\]

where velocity slip \(u_{\text{slip}} \) is defined by [51]:

\[
u_{\text{slip}} = 2 \left(\frac{3 - a_m l^3}{a_m} - \frac{3}{2} \right) \frac{\lambda}{K_n} \frac{\partial u}{\partial y} + \frac{1}{4} \left(l^2 + \frac{2}{K_n^2} (1 - l^2) \right) \frac{\partial^2 u}{\partial y^2} = \frac{\lambda}{K_n} \frac{\partial u}{\partial y} + b \frac{\partial^2 u}{\partial y^2}, \tag{6}
\]

where \(a_m \) represents momentum accommodation coefficient, \(l = \min \left(\frac{1}{x_m}, 1 \right) \), \(K_n \) is the Knudsen number and \(\lambda \) is mean free path. The values of \(a_m \) and \(l \) fall between 0 and 1.

To facilitate HAM solutions, it is pertinent to render the governing eqns. (2)–(4) and boundary conditions (5) into non-dimensional form. We invoke therefore the following similarity transformations [52]:

\[
\eta = \sqrt{\frac{x}{u_{\infty} T}}, \psi = \sqrt{\frac{\nu_{\text{slip}}}{\xi f}} \xi f(\eta, \xi), \quad u = ax f'(\eta, \xi), \quad v = -\sqrt{\frac{\nu_{\text{slip}} \xi f}{\xi f}}, \tag{7}
\]

where \(\eta \) is similarity variable (transformed transverse coordinate), \(\psi \) is stream function defined by the Cauchy-Riemann equations, \(u = \frac{\partial \psi}{\partial \eta} \) and \(v = -\frac{\partial \psi}{\partial \xi} \), which satisfies the continuity eq. (1). Prime denotes the differentiation with respect to \(\eta \). Applying transformations (7) to the governing eqns. (2)–(4) and boundary conditions (5), it may be shown that the following system of coupled, nonlinear dimensionless partial differential equations emerges:

\[
[\xi - \alpha(1 - \xi)]f''' + \xi^2 (f'' - f''') - \xi^2 (1 - \xi) f'' + \frac{\eta}{2} (1 - \xi) f'' + a \left[\xi f' (1 - \xi) \frac{d f'''}{d \xi} + 2 f' f''' - \frac{\eta}{2} (1 - \xi) f'' \right] - a \xi (f' f'' + f' f''' + f'' f') + M^2 \xi^2 (1 - f') + \xi^2 = 0, \tag{8}
\]
After applying the similarity transformations on \(\tau_w \) we have

\[
Cf_r = \sqrt{\text{Re}_\tau \text{C}_{nf}} = f''(0, \xi) + a \left[3f'(0, \xi)f''(0, \xi) + (1 - \xi) \left(\frac{\partial f''(0, \xi)}{\partial \xi} - \frac{\eta}{2\xi} f''(0, \xi) \right) \right],
\]

where \(\text{Re} \) is the Reynolds number.

2.1.2 Local Nusselt number:

The local Nusselt number \(Nu \) which evaluates the rate of heat transfer at the wall is given by the following expression:

\[
Nu = \frac{xq_w}{k_{nf}(T_w - T_\infty)}. \quad (16)
\]

Here \(q_w \) is wall heat flux defined as:

\[
q_w = -k_{nf} \frac{\partial T}{\partial y} \bigg|_{y=0} - h_p \rho_p \left(\frac{\partial C}{\partial y} + \frac{D_T}{T} \frac{\partial T}{\partial y} \right) \bigg|_{y=0}. \quad (17)
\]

After applying similarity transformation and using the expressions of \(Nb \) and \(Nt \), we obtain:

\[
\text{Nur} = \sqrt{\frac{\xi}{\text{Re}}} \text{Nu} = - \left[\theta'(0, \xi) + (Nb\phi'(0, \xi) + Nt\theta'(0, \xi)) \right] = \theta'(0, \xi). \quad (18)
\]

The simplification follows since \(Nb\phi'(0, \xi) + Nt\theta'(0, \xi) = 0 \).

3 Entropy Generation Analysis

Entropy generation analysis is the analysis of physical parameters on entropy generation number. We can control the wastage of useful energy with the help of this analysis. The local volumetric rate of entropy generation number for viscoelastic nanofluid in the presence of magnetic field is defined as [36, 53]:

\[
S_G = \frac{k_{nf}}{T_{\infty}} \left(\frac{\partial T}{\partial y} \right)^2 \left[1 + \frac{1}{C_{nf}} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{1}{C_{nf}} \left(\frac{\partial v}{\partial y} \right)^2 + \frac{1}{C_{nf}} \left(\frac{\partial w}{\partial y} \right)^2 \right] \quad (19)
\]

\[
+ \frac{RD_B}{C_{nf}} \left(\frac{\partial C}{\partial y} \right)^2 \left[\frac{RD_B}{T_{\infty}} \left(\frac{\partial T}{\partial y} \right)^2 + \frac{RD_B}{T_{\infty}} \left(\frac{\partial C}{\partial y} \right)^2 + \frac{\sigma_{nf} B_0^2}{T_{\infty}} \left(u_\infty - u \right)^2 \right] \quad (19)
\]

\[
= N_1 + N_2 + N_3 + N_4, \quad (19)
\]
eq. (19) indicates the contribution of four sources of entropy generation. The first source of entropy generation, N_1, is the transfer of heat across a finite temperature difference and is embodied in the first term in eq. (19). The second term (N_2) is the source of entropy generation due to viscous dissipation. The third term (N_3) represents the source of entropy generation due to diffusion. Finally, the fourth term (N_4) is entropy generation due to the effect of magnetic field. The dimensionless generation, eq. (19) indicates the contribution of two number is utilized in this regard and is defined as:

$$N_S = \frac{S_G}{S_c}$$

(20)

where S_c is the characteristic entropy generation rate which for boundary condition (5), is defined as:

$$S_c = \frac{k_{nf}(\Delta T)^2}{\chi^2 T_\infty}.$$

(21)

Applying similarity transformations (7) on eq. (13) yields:

$$N_S = \frac{Re}{\xi} \left[\theta'' + \frac{Pr.Ec}{\Omega} \left(f'' + \xi M^2 (1-f')^2 \right) + a \left(1 - \xi \right) \left(f'' \frac{\partial^2 f'}{\partial \xi^2} - \frac{\eta}{2\xi} f''' f'' - \frac{f'''}{2\xi} \right) + f' f'' f''' \right]$$

$$+ \frac{Re \chi}{\Omega} \left(\frac{1}{\chi} \phi'^2 + \theta^2 \phi' \right),$$

(22)

where Re is Reynolds number, Ω is dimensionless temperature difference and χ is diffusive constant, which are defined, respectively, as:

$$Re = \frac{ax^2}{V_{nf}}, \quad \Omega = \frac{T_w - T_\infty}{T_\infty}, \quad \chi = \frac{RD_B c_w}{k_{nf}}.$$

(23)

Bejan number [31] provides a way to determine whether the entropy generation due to heat transfer is dominant over total entropy generation or not. The Bejan number is utilized in this regard and is defined as:

$$Bejan \ number \ Be = \frac{\text{Entropy \ generation \ due \ to \ heat \ transfer}}{\text{Total \ entropy \ generation}} = \frac{N_1}{N_S}.$$

(24)

The range of Bejan number lies between 0 and 1. When Be is close to 1, then entropy generation due to heat transfer dominates.

4 Homotopy Analysis Method (HAM) Solutions

We solve eqns. (8)–(11) analytically with the help of the homotopy analysis method (HAM). In this method, a set of base functions is selected which provides the base of a power series solution. On the basis of boundary conditions (11), we select the following set of base functions [43]:

$$\eta \left[\psi''(\eta, \xi, q) + \psi''(\eta, \xi, q) \right] = \left[N_t \left(C_1 + C_2 \eta + C_3 e^{-\eta} \right) \right]$$

(25)

According to (25), we choose the following initial guesses, linear operators and auxiliary functions:

$$f_0(\eta, \xi, q) = \frac{\beta - 1}{1 + \lambda_1 - \lambda_2} (1 - \exp(-\eta)) + \eta,$$

$$\theta_0(\eta, \xi, q) = \frac{1}{1 + \delta} \exp(-\eta), \quad \phi_0(\eta, \xi, q) = -\frac{Nt}{Nd} \exp(-\eta),$$

$$L_f(f) = \frac{\partial^2 f}{\partial \eta^2} + \frac{\partial^2 f}{\partial \xi^2}, \quad L_\theta(\theta) = \frac{\partial^2 \theta}{\partial \eta^2} + \frac{\partial \theta}{\partial \eta}, \quad L_\phi(\phi) = \frac{\partial^2 \phi}{\partial \eta^2} + \frac{\partial \phi}{\partial \eta},$$

(26)

where L_f, L_θ and L_ϕ satisfy the following conditions:

$$L_f(C_1 + C_2 \eta + C_3 e^{-\eta}) = 0,$$

$$L_\theta(C_4 + C_5 e^{-\eta}) = 0,$$

$$L_\phi(C_6 + C_7 e^{-\eta}) = 0,$$

(27)

here C_1 to C_7 are constants. From eqns. (8)–(10), the nonlinear operators are defined as:

$$N_f[\psi''(\eta, \xi, q), \psi''(\eta, \xi, q), \psi''(\eta, \xi, q)] = [\xi - \alpha(1 - \xi)] \psi''(\eta, \xi, q) + \xi^2 \psi''(\eta, \xi, q) \psi''(\eta, \xi, q) - \xi^2 \psi''(\eta, \xi, q)^2$$

$$+ \xi(1 - \xi) \left(\frac{\eta}{2} \psi''(\eta, \xi, q) - \xi \frac{\partial \psi''(\eta, \xi, q)}{\partial \xi} \right)$$

$$+ \frac{\xi^2}{2} M^2 (1 - \xi)^2 \left(\xi^2 \frac{\partial \psi''(\eta, \xi, q)}{\partial \xi} - \frac{\eta}{2} \psi''(\eta, \xi, q) \right)$$

$$+ 2 \xi \psi''(\eta, \xi, q) \psi''(\eta, \xi, q) - \xi \psi''(\eta, \xi, q) \psi''(\eta, \xi, q) \psi''(\eta, \xi, q)$$

$$- \alpha \xi \left[\psi''^2(\eta, \xi, q) \right],$$

(28)

$$N_\theta[\psi''(\eta, \xi, q), \psi''(\eta, \xi, q), \psi''(\eta, \xi, q)] = \frac{1}{Pr} \left(\psi''(\eta, \xi, q) + Nb \psi''(\eta, \xi, q) \psi''(\eta, \xi, q) \right)$$

$$+ N_t \psi''^2(\eta, \xi, q) + \xi \psi''(\eta, \xi, q) \psi''(\eta, \xi, q)$$

$$+ (1 - \xi) \left(\frac{\eta}{2} \psi''(\eta, \xi, q) - \xi \frac{\partial \psi''(\eta, \xi, q)}{\partial \xi} \right)$$

$$+ \alpha Ec \left[(1 - \xi) \psi''(\eta, \xi, q) \psi''(\eta, \xi, q) \right]$$

$$\frac{\xi}{2} \psi''(\eta, \xi, q) \psi''(\eta, \xi, q)$$

$$- \psi''(\eta, \xi, q) \psi''(\eta, \xi, q) \left(\psi''(\eta, \xi, q) + \eta(1 - \xi) \right)$$

$$+ Ec \psi''^2(\eta, \xi, q),$$

(29)
\[N_\phi[\psi_f(\eta, \xi, q), \psi_\theta(\eta, \xi, q), \psi_\phi(\eta, \xi, q)] = \psi_\phi''(\eta, \xi, q) + \left(\frac{Nt}{Nb} \right) \psi_\phi''(\eta, \xi, q) + Sc \left[\xi \psi_f(\eta, \xi, q) \psi_\phi(\eta, \xi, q) \right] - Sc (1 - \xi) \left(\frac{\partial \psi_\phi(\eta, \xi, q)}{\partial \xi} - \frac{1}{2} \psi_\phi(\eta, \xi, q) \right). \] (30)

The zero-order deformation equations emerge as:

\[
(1 - q)L_f [\psi_f(\eta, \xi, q) - f_0(\eta, \xi)] = q h_f H_f(\eta, \xi) N_f[\psi_f(\eta, \xi, q), \psi_\theta(\eta, \xi, q), \psi_\phi(\eta, \xi, q)],
\]

(31)

\[
(1 - q) L_\theta[\psi_\theta(\eta, \xi, q) - \theta_0(\eta, \xi)] = q h_\theta H_\theta(\eta, \xi) N_\theta[\psi_\theta(\eta, \xi, q), \psi_\theta(\eta, \xi, q), \psi_\phi(\eta, \xi, q)],
\]

(32)

\[
(1 - q) L_\phi[\psi_\phi(\eta, \xi, q) - \phi_0(\eta, \xi)] = q h_\phi H_\phi(\eta, \xi) N_\phi[\psi_\phi(\eta, \xi, q), \psi_\theta(\eta, \xi, q), \psi_\phi(\eta, \xi, q)],
\]

(33)

with boundary conditions

\[
\psi_f(0, \xi, q) = 0,
\]

\[
\psi_f'(0, \xi, q) = \beta + \lambda_1 \psi_f''(0, \xi, q) + \lambda_2 \psi_f'''(0, \xi, q),
\]

\[
\psi_f(\infty, \xi, q) = 1,
\]

\[
\psi_\theta(0, \xi, q) = 1 + \delta \psi_\theta(0, \xi, q),
\]

\[
\psi_\phi(\infty, \xi, q) = 0,
\]

\[
N_b \psi_\phi'(0, \xi, q) + N_t \psi_\phi(0, \xi, q) = 0,
\]

\[
\psi_\phi'(\infty, \xi, q) = 0,
\]

(34)

where \(h_f, h_\theta, h_\phi \) are non-zero auxiliary parameters, \(H_f, H_\theta, H_\phi \) are non-zero auxiliary functions and \(q \) is an embedding parameter which lies between 0 and 1. It is clear from (31)-(33) that, when

\[
q = 0, \quad \psi_f(\eta, \xi, 0) = f_0(\eta, \xi), \quad \psi_\theta(\eta, \xi, 0) = \theta_0(\eta, \xi), \quad \psi_\phi(\eta, \xi, 0) = \phi_0(\eta, \xi),
\]

(35)

and when

\[
q = 1, \quad \psi_f(\eta, \xi, 1) = f(\eta, \xi), \quad \psi_\theta(\eta, \xi, 1) = \theta(\eta, \xi), \quad \psi_\phi(\eta, \xi, 1) = \phi(\eta, \xi).
\]

(36)

Expanding \(f(\eta, \xi, q), \theta(\eta, q) \) and \(\phi(\eta, q) \) via Taylor’s series expansions in powers of \(q \) then we obtain

\[
f(\eta, \xi, q) = f_0(\eta, \xi) + \sum_{m=1}^{\infty} f_m(\eta, \xi) q^m,
\]

(37)

\[
\theta(\eta, \xi, q) = \theta_0(\eta, \xi) + \sum_{m=1}^{\infty} \theta_m(\eta, \xi) q^m,
\]

(38)

\[
\phi(\eta, \xi, q) = \phi_0(\eta, \xi) + \sum_{m=1}^{\infty} \phi_m(\eta, \xi) q^m,
\]

(39)

where

\[
f_m = \frac{1}{m!} \left. \frac{\partial^m \psi_f(\eta, \xi, q)}{\partial q^m} \right|_{q=0}, \quad \theta_m = \frac{1}{m!} \left. \frac{\partial^m \psi_\theta(\eta, \xi, q)}{\partial q^m} \right|_{q=0},
\]

(40)

\[
\phi_m = \frac{1}{m!} \left. \frac{\partial^m \psi_\phi(\eta, \xi, q)}{\partial q^m} \right|_{q=0}.
\]

Differentiating eqns. (31)–(33) \(m \) times with respect to \(q \) and dividing these by \(m! \) and then substituting \(q = 0 \), we obtain:

\[
L_f(f_m(\eta, \xi) - \chi m - 1 f_m-1(\eta, \xi)) = h_f H_f R_{m-1}^{f}(\eta, \xi),
\]

(41)

\[
L_\theta(\theta_m(\eta, \xi) - \chi m - 1 \theta_m-1(\eta, \xi)) = h_\theta H_\theta R_{m-1}^{\theta}(\eta, \xi),
\]

(42)

\[
L_\phi(\phi_m(\eta, \xi) - \chi m - 1 \phi_m-1(\eta, \xi)) = h_\phi H_\phi R_{m-1}^{\phi}(\eta, \xi),
\]

(43)

\[
\begin{align*}
\sum_{m=1}^{\infty} f_m(0, \xi) &= 0, \quad \sum_{m=1}^{\infty} f'_m(0, \xi) - \lambda_1 \sum_{m=1}^{\infty} f''_m(0, \xi) - \lambda_2 \sum_{m=1}^{\infty} f'''_m(0, \xi) = 0, \\
\sum_{m=1}^{\infty} f'_m(\infty, \xi) &= 0, \\
\sum_{m=1}^{\infty} \theta_m(0, \xi) - \delta \sum_{m=1}^{\infty} \theta'_m(0, \xi) &= 0, \quad \sum_{m=1}^{\infty} \theta'(\infty, \xi) = 0,
\end{align*}
\]

(44)

\[
\sum_{m=1}^{\infty} \phi_m(0, \xi) + N_t \sum_{m=1}^{\infty} \phi'_m(0, \xi) = 0, \quad \phi'_m(\infty, \xi) = 0.
\]

(45)

Eqs. (44)–(46) are called the \(m^{th} \) order deformation equations. In these equations the term \(R_{m}^{f}(\eta, \xi), R_{m}^{\theta}(\eta, \xi) \) and \(R_{m}^{\phi}(\eta, \xi) \) are defined as:

\[
R_{m}^{f}(\eta, \xi) = \frac{1}{m - 1!} \left. \frac{\partial^{m-1} N_f}{\partial q^{m-1}} \right|_{q=0} = \left[\xi - (1 - \xi) f''_m \right],
\]

(47)

\[
+ \chi (1 - \xi) \left(\eta \frac{f''_m - 1}{2 f''_m} - \xi \frac{f'''_m}{2} \right) + \xi^2 \sum_{i=0}^{m-1} f''_{m-1-i} f'_i,
\]

\[
- \xi^2 \sum_{i=0}^{m-1} f''_{m-1-i} f'_i + \alpha (1 - \xi) \left(\xi^2 \frac{f'''_m}{2} - \eta \frac{f''_m}{2} \right),
\]

\[
- \chi^2 \sum_{i=0}^{m-1} f''_{m-1-i} f'_i - 2 f''_{m-1} f''_i + \left(M^2 + 1 \right) \xi^2 (1 - \chi),
\]
\[
R_m^\phi(\eta, \xi) = \left. \frac{1}{m - 1!} \frac{\partial^{m-1} N_\theta}{\partial \xi^{m-1}} \right|_{q=0} = \left. \frac{1}{Pr} \left(\frac{\partial \phi_{m-1}'}{\partial \xi} \right) \right|_{q=0} + (1 - \xi) \left(\frac{\eta}{2} \frac{\partial \phi_{m-1}'}{\partial \xi} \right),
\]

\[+ Ec \sum_{i=0}^{\infty} f_i'' \phi_{m-1-i}' + \alpha Ec (1 - \xi) \sum_{i=0}^{\infty} f_i'' \theta_{m-1-i}' - \eta (1 - \xi) \sum_{i=0}^{\infty} f_i'' \phi_{m-1-i}' \]

\[+ \alpha Ec \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \left(f_{m-1-i-j}'' f_{j}'' - f_{m-1-i-j}'' f_{j}'' \right) \]

\[- \frac{\eta (1 - \xi)}{2} \sum_{i=0}^{\infty} f_i'' \theta_{m-1-i}' + \xi \sum_{i=0}^{\infty} f_i'' \phi_{m-1-i}' \],

(48)

and

\[\chi_m = \begin{cases} 0, & m \leq 1 \\ 1, & m > 1 \end{cases} \]

(50)

We choose the values of auxiliary parameters \(h_f, h_\theta, h_\phi \) such that the appropriate series (37–39) are convergent at \(q = 1 \). Thus, using (35) and (36), we obtain the following power series solutions:

\[f(\eta, \xi, q) = f_0(\eta, \xi) + \sum_{m=1}^{\infty} f_m(\eta, \xi),\]

(51)

\[\theta(\eta, \xi, q) = \theta_0(\eta, \xi) + \sum_{m=1}^{\infty} \theta_m(\eta, \xi),\]

(52)

\[\phi(\eta, \xi, q) = \phi_0(\eta, \xi) + \sum_{m=1}^{\infty} \phi_m(\eta, \xi).\]

(53)

We have used the symbolic software Maple 18 and obtain the \(m^{th} \) terms in the following form:

\[f_m(\eta, \xi) = F_m(\eta, \xi) + C_1 + C_2 \eta + C_3 e^{-\eta},\]

(54)

\[\theta_m(\eta, \xi) = \Theta_m(\eta, \xi) + C_4 + C_5 e^{-\eta},\]

(55)

\[\phi_m(\eta, \xi) = \Phi_m(\eta, \xi) + C_6 + C_7 e^{-\eta},\]

(56)

Table 1: The values of \(f'(0, \xi), \theta(0, \xi) \) and \(\phi'(0, \xi) \) for different order of approximations for the values of parameters \(\bar{N}_t = \bar{N}_b = 0.5 \), \(\bar{S}_c = 10, \bar{E} = 0.5, \bar{M} = 0.5, \bar{P}_r = 5, \alpha = 0.2, \delta = 0.3, \lambda_1 = \lambda_2 = 0.1, \beta = 0.2, \xi = 0.8, h_f = -0.04, h_\theta = -0.009, h_\phi = -0.009.\)

<table>
<thead>
<tr>
<th>Order</th>
<th>(f'(0, \xi))</th>
<th>(\theta(0, \xi))</th>
<th>(\phi'(0, \xi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.8630</td>
<td>0.7682</td>
<td>0.7723</td>
</tr>
<tr>
<td>10</td>
<td>0.8838</td>
<td>0.7677</td>
<td>0.7743</td>
</tr>
<tr>
<td>15</td>
<td>0.8901</td>
<td>0.7673</td>
<td>0.7755</td>
</tr>
<tr>
<td>20</td>
<td>0.8909</td>
<td>0.7672</td>
<td>0.7757</td>
</tr>
<tr>
<td>25</td>
<td>0.8909</td>
<td>0.7672</td>
<td>0.7757</td>
</tr>
</tbody>
</table>

4.1 Convergence of HAM Solutions

The convergence of HAM series solutions depends on the appropriate choice of initial guesses, linear operators, auxiliary functions and auxiliary parameters. We have already selected the initial guesses, linear operators and auxiliary functions. Liao [43] suggested that one can plot the \(h \)-curves to establish the appropriate value of auxiliary parameter \(h \). For the present study, we have plotted the \(h \)-curves with \(f'(0, \xi), \theta'(0, \xi) \) and \(\phi'(0, \xi) \) for different orders of approximations, which are displayed in Figs. 2(a) – 2(c). To check the behavior of \(\xi \) on the admissible range of the value of \(h_f \), we have also plotted the \(h \)-curve with \(f'(0, \xi) \) for different values of \(\xi \) which are displayed in Fig. 2(d). These figures illustrate that the adequate ranges for \(h_f, h_\theta \) and \(h_\phi \) are \([-0.09, -0.028], [-0.022, 0] \) and \([0.022, 0]\) respectively. The order of convergence of series of solution is represented in Table 1 for the values of auxiliary parameters \(h_f = -0.04, h_\theta = h_\phi = -0.009 \). This table shows that series of solutions are convergent up to the 20\(^{th} \) order of approximations.

5 Results and Discussion

Extensive computations have been performed with the homotopy analysis method (HAM). The influence of governing parameters such as magnetic parameter \((M) \), second grade viscoelastic parameter \((\alpha) \), first and second order slip velocity parameter \((\lambda_1 \text{ and } \lambda_2) \), thermal slip parameter \((\delta) \) and stagnation parameter \((\beta) \) (values lie between 0 to 1) on skin friction coefficient, rate of heat transfer, entropy generation number and Bejan number is visualized graphically in Figs. 3–8. To validate the HAM solutions, Table 2 provides a comparison of present HAM results with previous published results of Wang [54] in the limiting case of non-magnetic, steady, Newtonian, no-slip flow, and generally very good correlation is achieved between both results. HAM results for rate of heat transfer...
\(-\theta'(0, \xi)\) up to the 15th order of approximation is presented in Table 3 for different values of \(M, Pr, \alpha\) and \(\lambda\), with the following default values for other parameters: \(Nt = 0.5, Nb = 0.5, Ec = 0.5, Sc = 10, \beta = 0.2, \xi = 0.8\) and \(\lambda_1 = 0.1, \delta = 0.3\). It is evident from Table 3 that \(-\theta'(0, \xi)\) increases with an increasing the values of Prandtl number \(Pr\) but decreases with an increment in second grade viscoelastic parameter \(\alpha\), second order slip parameter \(\lambda_2\) and magnetic parameter \(M\).

Table 2: Comparison between the present analytical results and published results of \(f''(0, \xi)\) for \(M = 0, \xi = 1\) (steady state), \(\alpha = \lambda_1 = \lambda_2 = 0\).

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>Present values</th>
<th>Wang [54]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.23279</td>
<td>1.232588</td>
</tr>
<tr>
<td>0.1</td>
<td>1.14679</td>
<td>1.14656</td>
</tr>
<tr>
<td>0.3</td>
<td>1.05160</td>
<td>1.05113</td>
</tr>
<tr>
<td>0.5</td>
<td>0.71361</td>
<td>0.71330</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3 displays the effects of second grade (viscoelastic) parameter, \(\alpha\), on Nusselt number and skin friction coefficient. Fig. 3(a) shows that skin friction coefficient decreases with an increment in the value of \(\alpha\) for \(\tau < 1\) but it shows an opposite behavior with \(\alpha\) for \(\tau > 1\). The influence of viscoelasticity parameter is therefore also dependent on the magnitude of time \(\tau\). Viscoelasticity parameter, \(\alpha = \frac{\dot{\alpha}B_0}{\rho u_{\infty}}\), arises in many terms in the dimensionless momentum eq. (8) and also the viscous heating terms in the energy conservation eq. (9). It embodies the relative effects of fluid elasticity to viscosity in the nanofluid. As this parameter increases the contribution of elastic effects is increased which serves to decelerate the boundary layer flow and increase momentum boundary layer thickness, at lower times. The contrary response is computed at higher values of time. Elastic-viscous materials such as the second grade nanofluid exhibit normal stresses which modifies their response with time progression and indeed this is the case. Viscoelastic materials also generally possess a relaxation time. With lower viscoelastic parameter values, the viscous effects dominate rather than the elastic effects. The case of \(\alpha = 0\) corresponds to purely viscous flow (vanishing elastic effect).

Fig. 3(b) shows that Nusselt number consistently decreases with an increment in viscoelasticity parameter \(\alpha\). Greater elastic effect therefore decreases the rate of heat transfer to the wall at all time instants and a corresponding increase in the temperatures within the nanofluid boundary layer. This manifests in an increase in thermal boundary layer thickness.

Table 3: HAM values of Nusselt number \(-\theta'(0, \xi)\) for different values of magnetic parameter \(M\), second grade viscoelastic parameter \(\alpha\) and second order slip parameter \(\lambda_2\), with all other parameters fixed and with order of approximations of fifteen.

<table>
<thead>
<tr>
<th>(M)</th>
<th>(Pr)</th>
<th>(\alpha, \lambda_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.7768</td>
<td>(0.1, 0.1)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.7701</td>
<td>(0.1, 0.2)</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7692</td>
<td>(0.2, 0.2)</td>
</tr>
<tr>
<td>7</td>
<td>0.7812</td>
<td>(0.1, 0.1)</td>
</tr>
<tr>
<td>10</td>
<td>0.7744</td>
<td>(0.1, 0.2)</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7736</td>
<td>(0.2, 0.2)</td>
</tr>
<tr>
<td>5</td>
<td>0.7845</td>
<td>(0.1, 0.1)</td>
</tr>
<tr>
<td>7</td>
<td>0.7733</td>
<td>(0.1, 0.2)</td>
</tr>
<tr>
<td>10</td>
<td>0.7852</td>
<td>(0.2, 0.2)</td>
</tr>
<tr>
<td>0.7689</td>
<td>(0.1, 0.1)</td>
<td></td>
</tr>
<tr>
<td>0.7766</td>
<td>(0.1, 0.2)</td>
<td></td>
</tr>
<tr>
<td>0.7843</td>
<td>(0.2, 0.2)</td>
<td></td>
</tr>
</tbody>
</table>

Figs. 4(a)–4(d) illustrate the effects of the parameters \(M, \beta, \lambda_1\) and \(\lambda_2\) against dimensionless time \(\tau\) on skin friction coefficient. Increasing magnetic parameter \(M\) as observed in Fig. 4a, clearly enhances skin friction. Even though the transverse magnetic field generates a Lorentzian body force, owing to the fact that the magnetic field is moving with the free stream velocity, the overall contribution is assistive to the velocity field. This accelerates the boundary layer flow and enhances skin friction values at all times. This effect has been observed by several researchers in magnetohydrodynamics including Zueco et al. [55]. We can further understand the effect of magnetic field on velocity from the term \(\frac{\sigma_B B_0 \lambda}{\rho u_{\infty}} (u - u_{\infty})\) in the eq. (2). It contains two terms, the first term \(\frac{\sigma_B B_0 \lambda}{\rho u_{\infty}} u\) represents the Lorentz force (retarding force) and the second term \(\frac{\sigma_B B_0 \lambda}{\rho u_{\infty}} u_{\infty}\) represents the imposed pressure force from the outer region of boundary layer. In our analysis, we consider the outer flow velocity as higher than boundary layer velocity \((u_{\infty} > u)\), the term \(\frac{\sigma_B B_0 \lambda}{\rho u_{\infty}} (u - u_{\infty})\) will become negative, thus the magnetic field increases the velocity in the boundary region and effectively the skin-friction at the surface (which is a function of velocity gradient) increases with magnetic field. Fig. 4b shows that skin friction coefficient decreases with an increasing in the value of stagnation parameter \(\beta\) i.e. momentum boundary layer thickness is increased owing to flow deceleration. Fig. 4c indicates that skin friction coefficient is also decreased with greater first order velocity slip parameter \(\lambda_1\). However in Fig. 4d it is apparent that flow acceleration accompanies an increase in second order velocity slip parameter \(\lambda_2\) and therefore that momentum boundary layer thickness in the nanofluid is reduced.
Fig. 2: Validation of h-values of $f''(0)$, $\theta'(0)$ and $\phi'(0)$ for different values of ζ (order = 10).

Fig. 3: Effect of second grade parameter on skin friction coefficient and Nusselt number.

Figs. 5(a)–5(c) depict the effects of the dissipation parameter, Eckert number (Ec), stagnation parameter (β) and thermal slip parameter (δ) on rate of heat transfer $\{-\theta'(0, \xi)\}$ with dimensionless time (τ). These figures illustrate that the increment in the value of Ec and δ lead to a depression in heat transfer $\{-\theta'(0, \xi)\}$ whereas the velocity parameter β favors the heat transfer $\{-\theta'(0, \xi)\}$. Increasing Eckert number implies a greater conversion in mechanical energy to thermal energy (i.e. dissipation of heat). This energizes the boundary layer and elevates temperatures, also increasing thermal boundary layer thickness. Heat is therefore drawn away from the wall into the boundary layer which manifests in a reduction in Nusselt number as shown in Fig. 5a. Greater stagnation parameter implies larger velocity ratio i.e. greater stretching sheet velocity to ambient nanofluid velocity ($\beta = b/a = u_w/u_\infty$, as discussed earlier). This enhances momentum diffusion and accelerates the boundary layer flow which boosts the skin friction values (Fig. 5b) i.e. the nanofluid shears faster along the wall. Greater thermal slip will enhance temperatures within the boundary layer (increase thermal boundary layer thickness) which will decrease the rate of heat transfer to the wall i.e. reduce Nusselt number as seen in Fig. 5c.

Figs. 6(a)–6(d) depict the influence of Reynolds number Re, magnetic parameter M, second grade viscoelastic parameter α and thermal slip parameter δ on entropy generation number N_S against η. These figures demonstrate that N_S decreases near the surface of sheet whereas with greater η the distributions plateau i.e. they remain invariant with transverse coordinate after a critical value. Fig. 6(a) indicates that entropy generation number N_S increases with an increment in Reynolds number Re. With greater Reynolds number, the inertial (momentum) force in the regime exceeds the viscous force, which serves to increases the disorderliness in movement of fluid and encourages an entropy increase. The steep decrement in the entropy has been noticed as move away from the wall within the boundary layer regime, then after minimum stable value is achieved far from the boundaries.

Fig. 6(b) shows that with greater magnetic parameter M there is a notable enhancement in N_S. With greater magnetic parameter, the effect of the Lorentz magnetohydrodynamic body forces increase and this elevates the rate of heat transfer (temperature gradient) at the wall. Since N_S is a function of gradient of temperature effectively stronger magnetic field effect elevates N_S values. The effect of second grade viscoelastic parameter α on N_S is presented in Fig. 6(c) from which it is apparent that N_S is an increasing function of α i.e. greater elastic effects encourage entropy generation. Fig. 6(d) however shows that N_S is a decreasing function of thermal slip parameter δ since this parame-
Figs. 7(a)–7(c) depict the influence of M, α and δ on Bejan number, Be. Bejan number Be is a dimensionless number signifying the ratio of entropy generation due to heat transfer to the total entropy generation. Typically Bejan numbers assume values between 0 and 1. If Be is very close to 1, this physically implies that entropy generation due to heat transfer dominates. Inspection of the figures reveals that Be generally decreases with an increasing values of M and δ and α. In the vicinity of sheet surface Bejan number increases for a short distance into the boundary layer, with an increasing the value of α. However very quickly the dominant influence as with magnetic parameter M, and thermal slip parameter δ, is a strong reduction in Bejan number. Generally in all the plots the free stream i.e. far from the stretching sheet the Bejan number plummets to zero, whereas the maximum Bejan number arises closer to the wall.

Figs. 8(a)–8(c) represent the combined effects of governing parameters (Re, χ), (M, α) and (Nt, Nb)on entropy generation parameter (Ns). The combined effects of Reynolds number Re and diffusive constant parameter χ are shown in Fig. 8(a), and it is apparent that entropy is the increasing function of these parameters. The combined effects of magnetic parameter M and viscoelastic parameter α on entropy generation are shown in Fig. 8(b) and again entropy is found to be enhanced by both parameters, in consistency with the results computed in Fig. 6(b) and 6(c). Fig. 8(c) shows the behavior of Nt and Nb on entropy which indicates that Ns is increased with an increment in the value of thermophoresis parameter (Nt) with the converse trend computed with increasing Brownian motion parameter Nb. Increasing Brownian motion parameter physically implies smaller nanoparticles which enhances temperatures but reduces wall temperature gradient (heat transfer rate at the wall). This serves to decrease entropy generation parameter (Ns). On the other hand the temperature gradient increases with thermophoresis pa-
Fig. 5: Influence of Eckert number, stagnation parameter and thermal slip parameter on Nusselt number.

Fig. 6: Influence of Reynolds number, magnetic parameter, second grade parameter and thermal slip parameter on entropy generation number.
Fig. 7: Influence of magnetic parameter, second grade parameter and thermal slip on Bejan number Be.

Fig. 8: Combined effects of physical parameters on entropy generation parameter.

rameter Nt and this favors entropy generation leading to an elevation in Ns values.

6 Concluding Remarks

The present study has developed a mathematical model for time-dependent MHD boundary layer stagnation point heat and mass transfer in second grade nanofluid flow over a horizontal stretching sheet. At the boundary, second order slip velocity and thermal slip effects have been considered with no-flux nanoparticles condition. Homotopy analysis method (HAM) solutions have been derived for the transformed, dimensionless two-point nonlinear boundary value problem. The effects of governing parameters such as magnetic parameter M, Eckert number Ec, second grade viscoelastic parameter α, first and second order slip velocity parameter λ_1 and λ_2, thermal slip parameter δ and velocity ratio (stagnation) parameter β on skin friction coefficient, Nusselt number, entropy generation number and Bejan number have been visualized and interpreted in detail. The present computations have shown that:

- Skin friction coefficient increases with M and λ_2, but decreases with an increase in the value of β and λ_1.
- Nusselt number decreases with an increase in the value of thermal slip and Eckert number whereas it increases with an increment in β.
- Entropy generation number is enhanced with an increase in Reynolds number Re, magnetic parameter M, and second grade viscoelastic parameter α whereas it is decreased with an increment in δ.
- Bejan number which represents the ratio entropy due to heat transfer to total entropy, reduces with M and δ. It increases with an increase in viscoelastic parameter α.
- Entropy generation parameter is increased with Reynolds number Re, diffusive constant parameter, χ, magnetic parameter M, viscoelastic parameter α and Brownian motion parameter, Nb, whereas it is increased with thermophoresis parameter, Nt.

The present work has confirmed the adaptability of HAM for solving nonlinear non-Newtonian magnetic nanofluid transport problems with entropy generation and alternative rheological models (e.g. micropolar) will be examined in the future [56].
Nomenclature

<table>
<thead>
<tr>
<th>Greek symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>Similarity variables (–)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Dynamic viscosity (Ns/m²)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Dimensionless nanoparticle concentration (–)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Dimensionless temperature (–)</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Kinematic viscosity (m²/s)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Second grade viscoelastic parameter (–)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Molecular mean free path (m)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Stagnation parameter</td>
</tr>
<tr>
<td>(\lambda_1, \lambda_2)</td>
<td>First and second order velocity slip parameters (–)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Thermal slip parameter (–)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>Ambient condition</td>
</tr>
<tr>
<td>(w)</td>
<td>Condition on surface</td>
</tr>
</tbody>
</table>

References

[45] F. Mabood, W.A. Khan, Homotopy analysis method for boundary layer flow and heat transfer over a permeable flat plate in a Darcian porous medium with radiation effects, Journal of the Taiwan Institute of Chemical Engineers. 2014, 45, 1217–1224.

