Effect of temperature-dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate

Janardhana Reddy, G, Kumar, M and Beg, OA

http://dx.doi.org/10.1016/j.physa.2018.06.065

<table>
<thead>
<tr>
<th>Title</th>
<th>Effect of temperature-dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Janardhana Reddy, G, Kumar, M and Beg, OA</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/47420/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2018</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
EFFECT OF TEMPERATURE DEPENDENT VISCOSITY ON ENTROPY GENERATION IN TRANSIENT VISCOELASTIC POLYMERIC FLUID FLOW FROM AN ISOTHERMAL VERTICAL PLATE

G. Janardhana Reddy¹, *, Mahesh Kumar¹ and O. Anwar Beg²

¹Department of Mathematics, Central University of Karnataka, Kalaburagi, India. ²Fluid Mechanics, Aeronautical and Mechanical Engineering Department, School of Computing, Science and Engineering, University of Salford, Manchester M54WT, UK

*Corresponding author- Email: gjr@cuk.ac.in Tel number: +91 9491472461, Kalaburagi, India

ABSTRACT: A numerical investigation of the viscosity variation effect upon entropy generation in time-dependent viscoelastic polymeric fluid flow and natural convection from a semi-infinite vertical plate is described. The Reiner-Rivlin second order differential model is utilized which can predict normal stress differences in dilute polymers. The conservation equations for heat, momentum and mass are normalized with appropriate transformations and the resulting unsteady nonlinear coupled partial differential equations are elucidated with the well-organized unconditionally stable implicit Crank-Nicolson finite difference method subject to suitable initial and boundary conditions. Average values of wall shear stress and Nusselt number, second-grade fluid flow variables conferred for distinct values of physical parameters. Numerical solutions are presented to examine the entropy generation and Bejan number along with their contours. The outcomes show that entropy generation parameter and Bejan number both increase with increasing values of group parameter and Grashof number. The present study finds applications in geothermal engineering, petroleum recovery, oil extraction and thermal insulation, etc.

KEYWORDS: Second-grade fluid; entropy generation; free convection; Bejan number; vertical flat plate; implicit method; thermal polymer processing.

NOMENCLATURE

Be Bejan number
\(Br \) Brinkman number
\(c_p \) specific heat at constant pressure (J kg\(^{-1} \) K\(^{-1} \))
\(\bar{C}_f \) average dimensionless wall shear stress
\(k \) thermal conductivity (W m\(^{-1} \) K\(^{-1} \))
\(g \) acceleration due to gravity (m s\(^{-2} \))
\(Ns \) dimensionless entropy heat generation number
\(\bar{Nu} \) average Nusselt number
\(Pr \) Prandtl number
\(Gr \) Grashof number
\(t' \) time (s)
\(t \) dimensionless time
\(T' \) temperature (K)
\(T \) dimensionless temperature
\(u, v \) velocity components in \((x, y)\) coordinate system (m s\(^{-1} \))
\(U, V \) dimensionless velocity components in \(X, Y\) directions, respectively
\(X \) dimensionless axial coordinate
\(x \) axial coordinate
\(y \) transverse coordinate
\(Y \) dimensionless transverse coordinate

Greek letters
\(\alpha \) thermal diffusivity (m\(^2\) s\(^{-1} \))
\(\lambda \) dimensional viscosity variation parameter (K\(^{-1} \))
\(\beta \) second-grade fluid (viscoelasticity) parameter
\(\gamma \) dimensionless viscosity variation parameter
\(\beta_T \) volumetric coefficient of thermal expansion (K\(^{-1} \))
\(\Phi \) viscous dissipation
\(\rho \) density (kg m\(^{-3} \))
\(\bar{\mu} \) viscosity of the fluid (kg m\(^{-1} \) s\(^{-1} \))
\(\nu \) kinematic viscosity (m\(^2\) s\(^{-1} \))
\(\Omega \) dimensionless temperature difference
\(Br\Omega^{-1} \) dimensionless group parameter

Subscripts
The buoyancy-induced flow [1-3] over a surface/plate and its associated fluid dynamic characteristics is of substantial interest in several industrial and engineering applications, for example, combustion flames and solar collectors, electronic equipment, building energy conservation, cooling systems, etc. Hydrodynamics and heat transfer in non-Newtonian fluids is also a fervent area of research due to extensive technological applications. Such fluids exhibit shear-stress-strain relationships which vary considerably from the standard Newtonian model. Many physical models have been presented to explain the diverse manner of non-Newtonian fluids. Non-Newtonian fluids include molten plastics, glues, coal in water, pulps, synthetic lubricants, polymers, ink, emulsions, etc., which feature in numerous industries, for instance, polymer processing, chemicals, pharmaceuticals, cosmetics, food stuff processing (toothpastes, jams, jellies and marmalades). Non-Newtonian fluid flow under natural convection has received significant attention by many researchers. A key early investigation of free convective heat transfer past a vertical plate for the flow of a non-Newtonian fluid was presented by Acrivos [4]. Some attempts have also been made to simulate the flow of non-Newtonian liquids with various multi-physics aspects and external to different geometrical configurations (see refs. [5-9]). Recently, Mythili et al. [10] analysed the non-Newtonian Casson fluid transport from a cone and plate in a porous medium. Among other non-Newtonian fluids, one theory that has gained prominence is the Rivlin-Ericksen theory of viscoelastic fluids. The fluids which fit this model in rheology are termed Rivlin-Ericksen viscoelastic fluids of differential type. This subclass of differential type fluids includes the second-grade fluid which was introduced originally by Coleman and Noll [11]. The second-grade fluid model can elegantly describe the consequences of normal stress (which may possibly lead to occurrences of ‘die-swell’ and ‘rod-climbing’, which are indexes of the stresses that develop orthogonal to planes
of shear) in polymeric flow-fields [12]. This viscoelastic fluid model shows normal stress variances in shear flow and is an approximation to simple fluids in the sense of retardation. Examples of second-grade fluid model includes, polymer melts (e.g., high-viscosity silicone oils, manufacturing oils), molten plastics (e.g. coatings), bio-technological polymers mixed in Newtonian solvents, dilute polymer solutions (e.g., polyisobutylene, polyethylene oxide in water, methyl-methacrylate in n butyl acetate, etc.). Various well-modelled multi-physical boundary value problems have been studied with second-grade viscoelastic fluid theory since the constitutive equations are slightly easier and also quite accurate estimations may be made of realistic velocity distributions. Significant modelling studies using second-grade fluid theory include thin film flow [13], magnetohydrodynamic (MHD) flows [14, 15], bio-fluid mechanics [16, 17], squeezing flow [18], and physiological hydrodynamics [19], etc. Second-grade fluid flow with heat transfer from a horizontal plate has been addressed by Kai-Long and Cheng-Hsing [20]. Pakdemirli et al. [21] studied the dynamics of non-Newtonian flow from a porous plate using a combination of the power law and second-grade fluids. Transient flow of second-grade fluid from an impulsive vertical plate was reported by Umamaheswar et al. [22]. Recently, Rahman et al. [23] investigated convective-radiative heat transfer in second-grade flow over a stretching surface.

Many of the fluids encountered in process industries, chemical and biochemical are extremely viscous in nature. The viscosity of these fluids is strongly sensitive to temperature; the thermal diffusivity, however, remains comparatively constant. Temperature-dependent fluid properties in heat transfer can significantly modify thermal/fluid characteristics [24-27]. Also, the fluid viscosity is a measure of its resistance to the flow and the temperature variation of this key hydrodynamic property should be considered. Hence robust thermo-fluid models consider the viscosity variation with thermal conditions. Some relevant studies on temperature-dependent viscosity are provided in [28-33]. Prasad et al. [34] explored the effect of temperature-dependent viscosity on magnetohydrodynamic (MHD) second-grade fluid flow with heat transfer. Thereafter, the influence of temperature dependent viscosity on viscoelastic fluid has been investigated by Faraz and Khan [35]. Second-grade fluid flow from a sheet under the effect of temperature-dependent viscosity and variable thermal conductivity was considered quite recently by Akinbobola and Samuel [36].

Thermodynamics laws are the essential principles on which all thermofluid systems are based. The first law of thermodynamics gives information regarding the energy of the system quantitatively. The second law of thermodynamics implies that entire natural processes are
irreversible and thus it is a useful approach to identify the irreversibility in any thermal system as well as to determine the optimum conditions under which the processes or devices are operated. The production of entropy measures the irreversibility in complex processes which are frequently encountered in industrial designs [37]. This methodology has therefore been successfully implemented in the various technological applications including rotating disk reactors, combustion, turbo-machinery, electronic cooling, solar energy collectors, porous media, electromagnetic materials processing and propulsion ducts. It has also been shown to achieve significant thermal efficiency improvements in power utilization, material processing, energy conservation, environmental effects, refrigeration system [38], fouling formation [39], nuclear swirl electromagnetic propulsion [40], pseudo-optimization design process modelling of solar heat exchangers [41], minimization of lost available work during process of heat transfer [42], multi-field flows [43], radiative channel flows of polar fluids for slurry systems [44] and carbon nanotube-doped cilia-assisted biomimetic propulsion [45]. Interesting recent works deploying a second law analysis include improving heat sinks in electric machines [46] and robust design in applied thermal engineering [47]. Mankind and Tsehla [48] analysed the entropy generation for nanofluid in a channel flow. Karim and John [49] studied the entropy generation for electrodialysis. Several researchers have computed the entropy heat generation for different non-Newtonian fluids and various geometries. Nagaraju et al. [50] analysed the entropy heat generation for couple stress fluid flow between two rotating cylinders. A detailed analysis of entropy generation for micropolar fluid flow through a vertical channel was conducted by Srinivas et al. [51]. Shahri and Sarhaddi [52] studied the entropy generation for two-immiscible fluids in a channel flow with nanoparticles. A number of models have also been communicated on entropy generation in the thermal transport of viscoelastic fluids. Chauhan and Kumar [53] elaborated on third-grade viscoelastic convection flow in an annulus with temperature-dependent viscosity and the second law of thermodynamics. The effect of second-grade fluid on entropy generation over a stretching plate in a porous medium was discussed by Butt et al. [54]. Recently, Rashidi et al. [55] analysed the entropy generation for third-grade fluid flow due to stretching sheet.

In light of the aforementioned studies, it is evident that rather limited work has been done with regard to entropy generation minimization in unsteady second-grade fluid flow over a vertical plate. Motivated by applications of this regime to thermal polymer processing optimization, in the present article, a computational study has been carried out for second-grade elastic-viscous natural convection flow over a semi-infinite vertical flat plate. A significant feature of
polymers is temperature-dependent viscosity. Research performed at Chevron, California in the 1960s confirmed the significant viscosity modification in many polymers with temperature [56]. Hence, temperature-dependent viscosity is taken in the current study. In this work the Crank-Nicolson implicit finite difference numerical scheme is employed to compute the non-dimensional, transient second-grade boundary layer flow problem and the solutions are validated with earlier available results from the scientific literature. The transient properties of the second-grade fluid flow with entropy heat generation are calculated for the momentum and heat transport coefficients via careful variations in a number of thermo-physical and rheological parameters (Grashof number, viscoelasticity parameter etc). Additionally, the results achieved for second-grade fluids are compared with the Newtonian fluid case. Furthermore, for the first time, an attempt is made to compute Bejan lines for the present investigated problem.

2. PROBLEM DESCRIPTION

Consider the transient two-dimensional, laminar, incompressible, buoyancy-driven flow of a second-grade viscoelastic fluid from a heated vertical plate. The plate is vertically aligned with length l and is visualized in Fig. 1. The chosen coordinate geometry is a rectangular shape, in which the x-axis and y-axis are directed vertically upward and normal to the plate, respectively. The neighbouring fluid temperature is static and analogous to that of free stream temperature T'_∞. In the beginning, i.e., $t' = 0$, the temperature T'_∞ is identical for the plate and the surrounding fluid. Later ($t' > 0$), the temperature of the vertical plate is amplified to $T_w' (> T'_\infty)$ and preserved uniformly there afterward.

The Cauchy stress tensor for a second-grade differential fluid [57-58] is given by:

$$\mathbf{T} = -p\mathbf{I} + \mathbf{S},$$ \hspace{1cm} (1)

where $\mathbf{S} = \mu \mathbf{B}_1 + \alpha_1 \mathbf{B}_2 + \alpha_2 \mathbf{B}_1^2$ is the extra stress tensor. Also, \mathbf{I}, μ, P, and α_is ($i = 1, 2$) represents the identity tensor, dynamic viscosity, pressure and material constants, respectively. Further, \mathbf{B}_1, \mathbf{B}_2 represent the Rivlin–Ericksen tensors and are defined respectively by:

$$\mathbf{B}_1 = (\nabla \mathbf{q}) + (\nabla \mathbf{q})^T,$$

$$\mathbf{B}_2 = \frac{d\mathbf{B}_1}{dt} + \mathbf{B}_1 (\nabla \mathbf{q}) + (\nabla \mathbf{q})^T \mathbf{B}_1$$
in which \(\frac{dB_1}{dt} \) is the material time derivative, \(q \) is the velocity and \(\nabla \) is the gradient operator.

2.1 Governing Flow-field Equations:
The mathematical model for the current problem, with the help of above definitions and assumptions, is given by the following differential equations:

(i) Law of conservation of mass:

\[
\nabla \cdot q = 0
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

(ii) Law of conservation of momentum:

\[
\rho \left[\frac{\partial q}{\partial t'} + (q \cdot \nabla) q \right] = \nabla \cdot T
\]

\[
\rho \left[\frac{\partial u}{\partial t'} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} (S_{xx}) + \frac{\partial}{\partial y} (S_{xy})
\]

\[
\rho \left[\frac{\partial v}{\partial t'} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right] = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} (S_{yx}) + \frac{\partial}{\partial y} (S_{yy})
\]

in which

\[
S_{yy} = \bar{\mu} \left(2 \frac{\partial v}{\partial y} \right) + \alpha_1 \left[\left(\frac{\partial}{\partial t'} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) \left(2 \frac{\partial v}{\partial y} \right) + 2 \left(\frac{\partial^2 v}{\partial y^2} \right) \right] + \alpha_2 \left\{ 4 \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 \right\}
\]

\[
S_{xx} = \bar{\mu} \left(2 \frac{\partial u}{\partial x} \right) + \alpha_1 \left[\left(\frac{\partial}{\partial t'} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) \left(2 \frac{\partial u}{\partial x} \right) + 2 \left(\frac{\partial^2 u}{\partial x^2} \right) \right] + \alpha_2 \left\{ 4 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 \right\}
\]

\[
S_{xy} = S_{yx} = \bar{\mu} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \alpha_1 \left[\left(\frac{\partial}{\partial t'} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + 2 \frac{\partial^2 u}{\partial y^2} \right] + \alpha_2 \left\{ 2 \left(\frac{\partial u}{\partial x} \right) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2} \right\}
\]
where \(u \) and \(v \) signify the velocity components along the axial (\(x \)) and transverse (\(y \)) directions, respectively, \(\rho \) is the density and \(S_{xx}, \ S_{xy}, \ S_{yx}, \ S_{yy} \) are the extra stress components.

The Clausius-Duhem inequality and the condition that the Helmholtz free energy is minimum at equilibrium hold provided the following conditions [59] are satisfied.

\[
\bar{\mu} \geq 0, \ \alpha_1 \geq 0, \ \alpha_1 + \alpha_2 = 0.
\]

(3)

The flow is presumed to be along the axial direction only and hence by ignoring the transverse direction, the governing unsteady boundary layer equations for momentum and heat conservation of the second-grade fluid with the above inequality and restrictions in Eqn. (3) and using Boussinesq’s approximation are as follows:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = g \beta T (T' - T'_\infty) + \frac{1}{\rho} \frac{\partial}{\partial y} \left(\bar{\mu} \frac{\partial u}{\partial y} \right)
\]

\[
+ \frac{\alpha_1}{\rho} \left(\frac{\partial^2 u}{\partial y^2} \frac{\partial T}{\partial y} + \frac{\partial u}{\partial x} \frac{\partial^2 T}{\partial y^2} + \frac{\partial^3 u}{\partial x \partial y^2} + v \frac{\partial^2 u}{\partial y^3} - \frac{\partial u}{\partial y} \frac{\partial^2 v}{\partial y^2} \right)
\]

(4)

(iii) Law of conservation of energy:

\[
\left[\frac{\partial T'}{\partial t} + (\mathbf{q} \cdot \nabla) T' \right] = \alpha (\nabla^2 T')
\]

\[
\Rightarrow \frac{\partial T'}{\partial t} + u \frac{\partial T'}{\partial x} + v \frac{\partial T'}{\partial y} = \alpha \frac{\partial^2 T'}{\partial y^2}
\]

(5)

The associated initial and boundary conditions are given by:

\(t' \leq 0 \): \(T' = T'_\infty, u = 0, v = 0 \) for all \(x \) and \(y \)

\(t' > 0 \): \(T' = T'_w \), \(u = 0, v = 0 \) at \(y = 0 \)

\(T' = T'_\infty \), \(u = 0, v = 0 \) at \(x = 0 \)

\(T' \rightarrow T'_\infty, u \rightarrow 0, \frac{\partial u}{\partial y} \rightarrow 0, v \rightarrow 0 \) as \(y \rightarrow \infty \)

We invoke the following non-dimensional quantities (for all symbols refer to the nomenclature):

\[
X = Gr^{-1} \frac{X}{l}, \ Y = \frac{Y}{l}, \ U = Gr^{-1} \frac{Ul}{v}, \ V = \frac{Vl}{v}, \ t = \frac{tl}{v}, \ T = \frac{T' - T'_\infty}{T'_w - T'_\infty}, \ Gr = \frac{g \beta T (T'_w - T'_\infty)}{v^2},
\]

\[
Pr = \frac{v}{\alpha}, \ \nu = \frac{\mu_0}{\rho}, \ Br = \frac{\mu v^2}{k(T'_w - T'_\infty)l^2}, \ \Omega = \frac{(T'_w - T'_\infty)}{T'_\infty}, \ \beta = \frac{\alpha_1}{\rho l^2}
\]
The viscosity variation with temperature is analysed by the robust models developed and applied by Ling and Dybbs [25] and Molla et al. [26]:

\[
\bar{\mu}(T') \approx \frac{\mu_{\infty}}{1 + b(T' - T'_{\infty})}
\]

where \(\bar{\mu} \) is the viscosity of the fluid depending on temperature \(T' \), \(b \) is a constant and \(\mu_{\infty} \) denotes fluid dynamic viscosity at the temperature \(T'_{\infty} \). Let \(\gamma \) signifies the dimensionless viscosity variation parameter and is given by \(\gamma = b(T'_{w} - T'_{\infty}) \). It follows that the fluid viscosity in non-dimensional temperature can be written as

\[
\bar{\mu}(T) = \frac{\mu_{\infty}}{1 + \gamma T}
\]

(7)

Incorporating the above cited dimensionless numbers in Eqns. (2), (4), (5) and also in Eqn. (6), the conservation equations contract to the following:

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0
\]

(8)

\[
\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} = T + \frac{1}{(1 + \gamma T)} \frac{\partial^2 U}{\partial Y^2} - \frac{\gamma}{(1 + \gamma T)^2} \frac{\partial T}{\partial Y} \frac{\partial U}{\partial Y} + \beta \left(\frac{\partial^3 T}{\partial Y^2 \partial t} + \frac{\partial U}{\partial X} \frac{\partial^2 T}{\partial Y^2} + U \frac{\partial^3 U}{\partial X \partial Y^2} + V \frac{\partial^3 U}{\partial Y^3} - \frac{\partial U}{\partial Y} \frac{\partial^2 V}{\partial Y^2} \right)
\]

(9)

\[
\frac{\partial T}{\partial t} + U \frac{\partial T}{\partial X} + V \frac{\partial T}{\partial Y} = \frac{1}{Pr} \frac{\partial^2 T}{\partial Y^2}
\]

(10)

\[
t \leq 0: \quad T = 0, \quad U = 0, \quad V = 0 \quad \text{for all } X \text{ and } Y
\]

\[
t > 0: \quad T = 1, \quad U = 0, \quad V = 0 \quad \text{at } Y = 0
\]

\[
T = 0, \quad U = 0, \quad V = 0 \quad \text{at } X = 0
\]

\[
T \to 0, \quad U \to 0, \quad \frac{\partial U}{\partial Y} \to 0, \quad V \to 0 \quad \text{as } Y \to \infty
\]

(11)

3. FINITE DIFFERENCE NUMERICAL SOLUTION

To solve the nonlinear time-dependent governing Eqns. (8) - (10) together with initial and boundary conditions (11), a stable (unconditionally) implicit scheme “Crank-Nicolson method” is applied. This implicit scheme remains very versatile in unsteady heat transfer and fluid dynamics. It has been employed in viscoelastic flows by Prasad et al. [60] for unsteady flat plate free convection flows. An excellent description of the Crank-Nicolson method in the
context of natural convection flows is provided in Cebeci [61]. Let \(A = \frac{1}{1 + \lambda \left(\frac{\tau^2 + \tau^1}{\tau^2} \right)} \), then the finite difference equations corresponding to the above Eqns. (8)-(10) take the form:

\[
\frac{u_{l,m+1}^{n} - u_{l,m+1}^n + u_{l,m-1}^n - u_{l,m}^n}{2\Delta X} + \frac{v_{l,m}^{n+1} - v_{l,m}^{n+1} + v_{l+1,m}^{n+1} - v_{l+1,m}^n}{2\Delta Y} = 0 \tag{12}
\]

\[
\frac{u_{l,m+1}^{n+1} - u_{l,m+1}^n}{\Delta t} = T_{l,m+1}^{n+1} + T_{l,m}^{n+1} + A \left(\frac{u_{l,m+1}^{n+1} + u_{l,m+1}^{n+1} + u_{l,m}^{n+1} + u_{l,m}^{n+1}}{2(\Delta Y)^2} \right)
- \lambda A^2 \left(\frac{u_{l,m+1}^{n+1} + u_{l,m+1}^{n+1} + u_{l,m}^{n+1} + u_{l,m}^{n+1}}{4(\Delta Y)} \right) + \beta \left[u_{l,m+1}^{n+1} + u_{l,m}^{n+1} - 2u_{l,m}^{n+1} + 2u_{l,m}^{n+1} \right]
+ \beta \left[u_{l,m+1}^{n+1} + u_{l,m}^{n+1} - 2u_{l,m}^{n+1} + 2u_{l,m}^{n+1} \right]
+ \beta \left[u_{l,m+1}^{n+1} + u_{l,m}^{n+1} - 2u_{l,m}^{n+1} + 2u_{l,m}^{n+1} \right] \tag{13}
\]

In the above equations (12), (13) and (14), \(l \) and \(m \) are the subscripts which represent the mesh points along the \(X \) and \(Y \) coordinates, respectively, where \(X = l\Delta X \) and \(Y = m\Delta Y \) and the superscript \(n \) describes a value of the time \(t(= n\Delta t) \) with \(\Delta X \), \(\Delta Y \) and \(\Delta t \) the grid sizes in the \(X \), \(Y \) and \(t \) axes, respectively. The numerical equations are solved on the rectangular grid with \(X_{\text{max}} = 1 \), \(X_{\text{min}} = 0 \), \(Y_{\text{max}} = 20 \) and \(Y_{\text{min}} = 0 \), where \(Y_{\text{max}} \) relates to \(Y = \infty \) which lies far away from the heat and momentum transport boundary layers.
4. GRID (MESH) INDEPENDENCE STUDY

To obtain an efficient consistent grid (mesh) system for the numerical simulations, a grid independence test is performed for different mesh sizes of 25 X 125, 50 X 250, 100 X 500 and 200 X 1000 and the values of the \overline{Nu} on the boundary $Y = 0$ corresponding to each of these grids are documented in Table 1. It is noticed from Table 1 that 100 X 500 (grid size) compared with 50 X 250 and 200 X 1000 (grid sizes) does not incur any significant modification on the results of average heat transport coefficient. Thus, 100 X 500 (grid size) is demonstrably adequate for this problem with the step sizes of 0.01 and 0.04 in axial and transverse directions, respectively. Similarly, in order to produce reliable results with respect to time, a grid-independence test has been performed for different time step sizes, as shown in Table 2. The effective selected time step size $\Delta t (t = n\Delta t, n = 0, 1, 2, ...)$ is fixed as 0.01.

The finite difference technique starts by computing the solution for the thermal boundary layer Eqn. (14), which provides the temperature field. Next solving the conservation of momentum and mass Eqns. (13) and (12) provides the solution for the velocity field. Eqns. (13) - (14) at the $(n+1)^{th}$ stage are stated in the following tri-diagonal and penta-diagonal forms:

$$a_{l,m} \Omega_{l,m}^{n+1} + b_{l,m} \Omega_{l,m}^{n+1} + c_{l,m} \Omega_{l,m+1}^{n+1} = d_{l,m}^n,$$

$$A_{l,m} \omega_{l,m-2}^{n+1} + B_{l,m} \omega_{l,m-1}^{n+1} + C_{l,m} \omega_{l,m}^{n+1} + D_{l,m} \omega_{l,m+1}^{n+1} + E_{l,m} \omega_{l,m+2}^{n+1} = F_{l,m}^n. \quad (15)$$

Here Ω and ω indicates the transient flow-field variables T and U. Thus, Eqns. (13) -(14) at each interior grid point on a precise l-level comprise a system of tri-diagonal and penta-diagonal equations. Further detailed descriptions of this finite difference method can be found in the available literature [62].

5. RESULTS AND DISCUSSION

To analyse the transient nature of the flow-field profiles, such as velocity and temperature, their values are shown at various locations which are adjacent to the vertical plate.

The computed flow-field variables for the case of Newtonian fluids ($\beta = 0.0$) are related with those of Takhar et al. [63] for $Pr = 0.7$, $\gamma = 0$, and are shown in Fig. 2. The numerical
values are found to be in good agreement. This confirms the accuracy and validity of the existing numerical scheme. Variation of simulated flow-field variables is plotted with different control parameter values such as second-grade fluid parameter (β), viscosity variation parameter (γ), Grashof number (Gr), group parameter ($Br\Omega^{-1}$) and Prandtl number (Pr) in subsequent Figures.

The result of choosing viscosity variation parameter (γ) given in the Eqn. (7). If $\gamma < 0$, then $\bar{\mu}(T)$ is large, the influence of variable viscosity can be neglected. If $\gamma \geq 0$, then $\bar{\mu}(T)$ is small, and the effect of variable viscosity is taken into consideration.

The range of second grade fluid parameter β is chosen from the following definition ($\beta = \alpha_1/\rho l^2$) (Dunn and Rajagopal [59]), in which α_1 is the normal stress moduli. If α_1 is positive, the model has a good behaviour in the sense that stability and unboundedness may be achieved, whereas if α_1 is taken to be negative, then in quite arbitrary flows, instability and boundedness are unavoidable. Therefore, they have concluded that the only second grade fluid to be found in nature is one with $\beta \geq 0$.

The Grashof number states the ratio between the buoyancy force and the viscous force. When Gr is high, the viscous force is negligible as compared to the buoyancy and inertial forces. When buoyant forces overcome the viscous forces, the flow starts a transition to the turbulent regime. Furthermore, at smaller values of Grashof number the induced flow moves upward making a smooth turn around the hot vertical plate.

5.1 Velocity and Temperature Variables

In this sub-section, the effects of dimensionless physical parameters on the velocity components are analysed, based on Figs. 3-4. Figure 3 depicts the variation of simulated transient velocity (U) versus time (t) at the position (0, 1.56) for distinct values of viscosity variation parameter (γ) and viscoelastic parameter (β). At all locations, the velocity curve augments with time, attain the temporal maxima, then slightly decrease, and finally, they turn out to be independent of time. The non-linear characteristics of the unsteady momentum equation in consistency with certain values of non-dimensional viscosity $1/(1 + \gamma T)$ and non-dimensional thermal diffusivity $1/Pr$ are probably the cause of the velocity overshoot. The time-dependent U profile initially upturns with increasing γ. With increasing γ the size of the velocity term reduced (refer to Eq. (9)) which produces less resistance to the fluid flow in the region of the temporal peak velocities. Also, fluid viscosity is decreased with greater γ and this reduces viscous forces in the boundary layer which accelerates the flow. With rising values of
viscoelasticity parameter, β the flow is decelerated since greater elastic effects are induced as per the definition of this parameter ($= \frac{\alpha_s}{\rho l^2}$). This energizes the flow and assists momentum development.

Figure 4 illustrates the time-independent state velocity curves for different control parameters (β and γ) against Y coordinate. It is perceived that the U curves in this figure begin with the no-slip boundary condition, attains its peak and then drops to zero along the Y coordinate satisfying the outlying boundary conditions. In the environs of the hot vertical plate, the magnitude of dimensionless axial velocity (U) is amplified with greater Y values, attaining a peak close to the wall into the boundary layer. Further, the time taken to reach the steady-state condition reduces as γ increases while the reverse trend is seen for β. Additionally, it is apparent that in the vicinity of the hot wall the velocity magnitude is high for γ compared to β since viscosity decreasing with increasing γ, i.e. γ have a more profound accelerating influence on axial velocity.

Figure 5 describes the effect of γ and β on transient temperature profile (T) against time (t) at the spatial location (0, 0.68). From this graph, initially, temperature is accentuated with t, attains a maximum and thereafter is weakly decreased, finally attaining the time independent-state. Temperature is reduced with greater values of γ. This is due to the fact that as γ increases the viscosity of the fluid decreases [refer to Eqn. (7)] which allows leads to a decrease also in thermal diffusion and plummet in temperature profiles. Also, for escalating β, temperature is clearly increased. The upsurge in the temperature of the fluid is attributable to stronger elastic forces in the medium and also a modification in viscosity which enhances motion of the fluid. For all transient T profiles, asymptotically smooth declines are seen in the free stream confirming the imposition of an adequately large infinity boundary condition in the Crank-Nicolson numerical code.

Figure 6 depicts the time-independent T profiles versus transverse coordinate (Y) for different values of γ and β. These outlines originate with the boundary value of $T = 1$ and then decrease to zero. It is well-known that, as γ increases, the temperature decreases. Also enhancing β eventually results in a boost in temperature as revealed in Fig. 6. Also, it is noted that the time-independent state T profiles have coincided with each other for various values of γ and β as Y increases from 0 to 3. Hence, the influence of γ or β on T profiles have less impact related to the U profiles as revealed in Fig. 4. This is logical since the physical parameters γ
and β appear only in the momentum equation (9) and therefore the dominant influence is on velocity.

5.2 Friction and Heat Transport Coefficients

From the thermal engineering viewpoint the wall shear-stress and heat transfer rate quantities are significant design parameters. This is also the case for a non-Newtonian fluid (second-grade fluid), since these design quantities are substantially influenced by the natural convection process. For the current second-grade fluid flow problem, the dimensionless average momentum and heat transfer coefficients are defined as:

$$C_f = \frac{1}{(1+\gamma)} \int_0^1 \left(\frac{\partial U}{\partial Y} \right)_{Y=0} dX$$

$$Nu = -\int_0^1 \left(\frac{\partial \tau}{\partial Y} \right)_{Y=0} dX$$

The above coefficients are evaluated using 5-point approximation and Newton–Cotes quadrature formulae.

Figures 7-8 illustrate transient C_f and Nu profiles against time (t) of second-grade fluid flow for a variation in the parameters, γ and β. Figure 7 shows that, in the beginning, C_f upsurges with time t and later a certain interval of time it achieves the steady-state magnitude. There is a significant decrease in C_f with viscosity parameter (γ) owing to the deceleration in the flow with greater viscosity effects. This trend is similar to that of the time-dependent velocity profile computed in Fig. 3. Also, rising values of β manifest in a marked reduction in C_f i.e. a strong deceleration at the wall is induced with stronger viscoelastic effects.

Figure 8 demonstrates that initially, Nu declines significantly, a trend which is followed by a slight increase in magnitudes and subsequent attainment of the steady-state. Moreover, it is observed that initially, the Nu curves of second-grade fluid coincide with each other and they deviate after some time interval. These figures designate that at the initiation of the buoyancy-driven flow, thermal conduction heat transfer dominates over convection; only with progression in time are the free convection currents mobilized. Also, it is also evident that Nu upsurges with increasing values of γ which are physically reliable with an upsurge in
temperatures in the boundary layer (computed earlier). Whereas for enhancing β, the \overline{Nu} shows decreasing trend.

5.3 Entropy Heat Generation Analysis and Bejan Number Computation

The entropy generation for a second-grade fluid per unit volume with constant density is given by the following expression:

$$S_{gen} = \frac{k}{T^{2}_o} (\nabla T')^2 + \frac{1}{T^{2}_o} \Phi$$

$$\Rightarrow S_{gen} = \frac{k}{T^{2}_o} \left(\frac{\partial T'}{\partial y} \right)^2 + \left\{ \frac{\mu}{T^{2}_o} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\alpha_1}{T^{2}_o} \left[\frac{\partial^2 u}{\partial y^2} \frac{\partial u}{\partial y} + v \frac{\partial u}{\partial y^2} + u \frac{\partial^2 u}{\partial y \partial x} \right] \right\} \tag{18}$$

The equation (18) can be rewritten as

$$S_{gen} = S_1 + S_2$$

where

$$S_1 = \frac{k}{T^{2}_o} \left(\frac{\partial T'}{\partial y} \right)^2,$$

$$S_2 = \frac{\mu}{T^{2}_o} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\alpha_1}{T^{2}_o} \left[\frac{\partial^2 u}{\partial y^2} \frac{\partial u}{\partial y} + v \frac{\partial u}{\partial y^2} + u \frac{\partial^2 u}{\partial y \partial x} \right].$$

Here S_1 indicates the entropy generation due to heat flow, S_2 represents the entropy generation due to viscous dissipation.

The dimensionless entropy heat generation parameter Ns is defined as the ratio of the volumetric entropy heat generation rate to the characteristic entropy heat generation rate [64].

Thus, the entropy generation number for the current problem can be written as:

$$N_s = \left(\frac{\partial T'}{\partial y} \right)^2 + \frac{Br(Gr)^2}{\Omega} \left\{ \frac{1}{(1+y')} \left(\frac{\partial u}{\partial y} \right)^2 + \beta \left(\frac{\partial^2 u}{\partial y^2} \frac{\partial u}{\partial y} + V \frac{\partial u}{\partial y^2} + U \frac{\partial^2 u}{\partial y \partial x} \right) \right\} \tag{19}$$

where

$$\Omega = \left(\frac{T^{2}_w - T^{2}_o}{T^{2}_o} \right)$$

is the dimensionless temperature difference, and the characteristic entropy heat generation is $\frac{k(T^{2}_w - T^{2}_o)^2}{T^{4}_o}$. Eqn. (19) can be rewritten in the following compact form

$$N_s = N_1 + N_2 \tag{20}$$

Here the following definitions apply:

$$N_1 = \left(\frac{\partial T'}{\partial y} \right)^2 \text{ and } N_2 = \frac{Br(Gr)^2}{\Omega} \left\{ \frac{1}{(1+y')} \left(\frac{\partial u}{\partial y} \right)^2 + \beta \left(\frac{\partial^2 u}{\partial y^2} \frac{\partial u}{\partial y} + V \frac{\partial u}{\partial y^2} + U \frac{\partial^2 u}{\partial y \partial x} \right) \right\} \tag{21}$$

N_1 and N_2 describe the irreversibility due to heat transfer and fluid friction (viscous dissipation), respectively.
To evaluate the irreversibility distribution, the parameter Be (Bejan number) is utilized and this is defined as the ratio of entropy heat generation due to heat transfer to the overall entropy heat production and is given by

$$Be = \frac{N_1}{N_1 + N_2} \tag{22}$$

From the Eq. (22), it is clear that the range of Bejan number is from 0 to 1 i.e. $0 \leq Be \leq 1$. Subsequently, $Be = 0$ reveals that the N_2 parameter dominates the N_1 parameter, whereas $Be = 1$ designates that the N_1 parameter dominates the N_2 parameter. It is observable that at $Be = 0.5$, the contribution of fluid friction in the entropy generation production is the same as heat transfer irreversibility, i.e. $N_2 = N_1$.

The effect of the various physical parameters on entropy heat generation (Ns) distribution against time (t) at the spatial location (0, 0.76) is depicted in Fig. 9. The influence of viscosity variation parameter (γ), the second-grade fluid parameter (β), group parameter ($Br\Omega^{-1}$) and Grashof number (Gr) on the unsteady distribution of Ns are shown in Figs. 9(a) – 9(b), respectively. From all these graphs, it is found out that, in the beginning, the Ns curves upsurges drastically, then decreases, again upsurges, attains the temporal peak, and towards the end it emerges that it is independent of time. The significant observation to be made from these transient graphs is that, in the initial time stage, all Ns curves are combined and split later for all values of physical parameters. This specifies that at preliminary time levels (i.e., $t < 6$) thermal conduction is dominant over the thermal convection heat transfer. Later, after a certain lapse of time, the rate of heat-transfer is dominated by the influence of free convection with escalating entropy production. Before attainment of the steady-state, overshoots of the entropy generation profile occur. From Fig. 9(a), it is seen that the Ns increase with increasing γ. Whereas reverse trend is observed for the viscoelastic parameter. In the Fig. 9(b), the Ns curves follow the similar transient tendency as described in the Fig. 9(a). Thus, from the Fig. 9(b) it is noted that intensifying the values of flow-field parameter results in high entropy production, especially with increasing group parameter, $Br\Omega^{-1}$. With greater values of this composite parameter, entropy generation due to the fluid friction is boosted in the regime.

The computer-generated steady-state entropy curves for various control parameters γ, β, $Br\Omega^{-1}$ and Gr against Y at $X = 1.0$ are shown in Figures 10(a)-10(b), respectively. Here, it is
seen that as the transverse coordinate rises, the Ns magnitudes noticeably increase and achieve their maximum magnitudes, then decrease swiftly and decay to zero. Also, it is apparent that the entropy production acquires thinner boundary layer for all values of physical parameters. This is as a consequence of greater production of entropy which is generated in close proximity to the plate which produces a thinner boundary layer. Figure 10(a) depicts the variation of γ and β on Ns. From this graph, it is apparent that in the neighbourhood of the hot plate (i.e., in the interval $Y \in [0, 1.2]$) the steady-state Ns curves increases for augmenting values of γ and decreases for rising values of β. Whereas the trend is reversed when $Y > 1.2$. Figure 10(b) signifies that the entropy rises in the vicinity of the hot plate then drops and approaches to zero along the Y coordinate. Also, it is noted that with greater values of $Br \Omega^{-1}$ and Gr, the Ns curves upsurge considerably, since for higher values of the group parameter or Grashof number, the entropy production owing to the fluid friction is enhanced.

Figures 11(a) – 11(b) illustrate the evolution of Bejan number (Be) with time (t) at $Y = 0.76$ and $X = 1.0$, for various values of physical parameters. The patterns indicate that at commencement of the flow, Be has zero value, upsurges slightly with t, then decreases negatively in the interval of time $t \in (2.4, 4.6)$, rises drastically and reaches the maximum value, then falls marginally, and lastly exhibits no tangible dependence on time. At the initiation of the thermal convection flow, the irreversibility caused by heat transfer regulates the entropy and when $t > 5$, the fluid friction dominates. From Fig. 11(a) in the main, it is apparent that as γ increases the Bejan number reduces. Also, it is evident that increasing β causes an enhancing value in Be. From the Fig. 11(b) it is clear that as $Br \Omega^{-1}$ or Gr increases, the Bejan number increases i.e. *viscous heating and thermal buoyancy both enhance Bejan number*.

Lastly, Fig. 12 shows the steady-state Be against the transverse coordinate (Y) for different parameter values. The influence of γ, β, $Br \Omega^{-1}$ and Gr on Be are revealed in Figs. 12(a)-12(b), respectively. From all these plots, it is observed that the time-independent state features of Bejan number are quite different from that of steady state entropy generation (Ns) which is revealed in the Figs. 10(a) – 10(b). In particular, it may be deduced that, irreversibility owing to heat transfer arises in the transverse coordinate interval, i.e., $Y \in (1.2, 1.8)$ which accounts for the negative values in Be. Generally, it is noted from Fig. 12(a), that the steady-state Be upsurges for an increase in the values of all physical parameters. Also, inspection of Fig. 12(b) reveals that Be is boosted with greater values of $Br \Omega^{-1}$ and Gr. The significant implication
from these graphs is that the steady-state entropy production exceeds the Bejan number adjacent to the wall. This verifies that smaller Be produces an escalation in N_2, i.e., $N_1 < N_2$ (Refer Eq. 22) and thus irreversibility due to heat transfer is dominated by fluid friction which manifests in intensified entropy production in the neighbourhood of the hot wall.

Figures 13(a)-13(d) present the entropy lines for various parameter values (γ, β, $Br\Omega^{-1}$ and Gr). In all these graphs, it is seen that the entropy lines rise in the vicinity of the hot plate for all values of physical parameters. From Figs. 13(a)-13(b) it is also noticed that at any point of position (X, Y) the entropy contour value upsurges for augmenting values of γ and decreases for augmenting values of β. A similar tendency is observed for values of $Br\Omega^{-1}$ and Gr which is shown in Figs.13(c)-13(d). It is perceived that in the two-dimensional rectangular coordinate system i.e. $0 < X \leq 1, 0 < Y \leq 0.5$, the entropy lines fluctuate with a change in the values of $Br\Omega^{-1}$ and Gr as compared to γ and β. Also, nearby the forefront of the vertical plate the entropy contours show higher values for γ, $Br\Omega^{-1}$ and Gr as compared to β. This is attributable to the fact that the entropy production is high for γ, $Br\Omega^{-1}$ and Gr near to the boundary layer leading edge of the plate as compared to β.

Figures 14(a)-14(d) visualize the Bejan lines for various values of γ, β, $Br\Omega^{-1}$ and Gr, respectively. In all these graphs, the Bejan lines show a unique trend for all physical parameters as compared to entropy lines which are shown in Figs. 13(a) -13(d). Further, in the proximity of the hot plate it is well-known that Bejan lines are inclined to move away from the plate with increase in the physical parameters γ and β as Y increases, whereas these lines tend to adhere to the plate with modification in the values of $Br\Omega^{-1}$ and Gr. Also, it is noteworthy that the Bejan lines occur only in the region close to the hot vertical plate.

5.4 Comparison between Second-grade Viscoelastic and Newtonian Fluid Flows

Figure 15 reveals the flow-field variable contours for the second-grade and Newtonian fluid flows. Fig. 15(a) represents the Newtonian fluid case and Fig. 15(b) corresponds to the second-grade fluid. The velocity of the second-grade fluid flow is found to be lower compared to that of the Newtonian fluid flow; however, with regard to the temperature distribution, the reverse trend is noticed. Furthermore, the steady-state temperature contours for the second-grade fluid are somewhat different and a thicker thermal boundary layer is achieved compared with the Newtonian fluid.
6. CONCLUDING REMARKS

In the present research article, the heat transfer and entropy generation distributions for time-dependent second-grade fluid from a semi-infinite vertical plate with viscosity variation have been studied numerically. A Crank-Nicolson finite difference method is applied to solve the normalized mass, momentum, and energy conservation boundary layer equations under appropriate initial and boundary conditions with the help of Thomas and penta-diagonal algorithms. The entropy generation and Bejan numbers are derived and evaluated with the help of flow variables. Velocity, temperature, average momentum (skin friction) and heat transport (Nusselt number) coefficients are computed and displayed graphically. The effects of viscosity variation parameter, viscoelastic parameter, Brinkman combined parameter and Grashof number on these thermal/flow characteristics in addition to entropy generation number and Bejan number are evaluated. The salient conclusions from the current study may be summarized as follows:

1. The velocity is enhanced whereas the temperature decreases with rising values of γ and the converse response are observed with an increase β.
2. The time taken to attain the time-independent state decreases as temperature-dependent viscosity (γ) is increased, and the opposite behaviour is induced with increasing viscoelastic parameter (β).
3. Average wall shear stress ($\overline{C_f}$) and wall heat transfer rate (\overline{Nu}) are reduced with augmenting values of viscoelastic parameter (β).
4. Entropy heat generation number is reduced with greater values of viscoelastic parameter (β). The reverse trend is induced by increasing viscosity variation parameter, Brinkman combined group parameter and Grashof number (thermal buoyancy parameter).
5. Bejan number is elevated with a rise in the values of all the thermophysical or rheological parameters except the viscosity variation parameter, γ.

ACKNOWLEDGEMENTS

The second author Mahesh Kumar wishes to thank DST-INSPIRE (Code No. IF160028) for the grant of research fellowship and to Central University of Karnataka for providing the research facilities. The authors wish to express their gratitude to the reviewers who highlighted
important areas for improvement in this article. Their suggestions have served in particular, to enhance the clarity and depth of the interpretation.

REFERENCES

TABLES

<table>
<thead>
<tr>
<th>Grid size</th>
<th>Average \overline{Nu} for $Pr = 0.71, \gamma = 0.3, \beta = 0.2$</th>
<th>Average $(-\overline{C_f})$ for $Pr = 0.71, \gamma = 0.3, \beta = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 X 125</td>
<td>0.85652520</td>
<td>0.36779620</td>
</tr>
<tr>
<td>50 X 250</td>
<td>0.91484030</td>
<td>0.29038550</td>
</tr>
<tr>
<td>100 X 500</td>
<td>0.92885720</td>
<td>0.18117390</td>
</tr>
<tr>
<td>200 X 1000</td>
<td>0.92997830</td>
<td>0.18070360</td>
</tr>
</tbody>
</table>

Table 1. Grid independence test for selecting mesh size.

<table>
<thead>
<tr>
<th>Time step size (Δt)</th>
<th>Average \overline{Nu} for $Pr = 0.71, \gamma = 0.3, \beta = 0.2$</th>
<th>Average $(-\overline{C_f})$ for $Pr = 0.71, \gamma = 0.3, \beta = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.99753640</td>
<td>2.19088000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.98363640</td>
<td>1.59130600</td>
</tr>
<tr>
<td>0.08</td>
<td>0.97937370</td>
<td>1.44454600</td>
</tr>
<tr>
<td>0.05</td>
<td>0.96879970</td>
<td>1.08572900</td>
</tr>
<tr>
<td>0.02</td>
<td>0.92986860</td>
<td>0.18888760</td>
</tr>
<tr>
<td>0.01</td>
<td>0.92885720</td>
<td>0.18117390</td>
</tr>
</tbody>
</table>

Table 2. Grid independence test for selecting time step size.
Fig. 1: Flow geometry and coordinate system.
Fig. 2. Comparison of the flow-field variables.
Fig. 3. Time-dependent velocity profile (U) versus time (t) for various values of γ and β at the location (0, 1.56).
Fig. 4. Simulated time-independent state velocity profile \((U)\) versus \(Y\) at \(X = 1.0\) for various values of \(\gamma\) and \(\beta\).

Fig. 5. Simulated time-dependent temperature profile \((T)\) versus time \((t)\) for various values of \(\gamma\) and \(\beta\) at the location \((0, 0.68)\).
Fig. 6. Simulated time-independent state temperature profile \((T) \) versus \(Y \) at \(X = 1.0 \) for various values of \(\gamma \) and \(\beta \).

Fig. 7. Average momentum transport coefficient \((C_f) \) for various values of \(\gamma \) and \(\beta \).
Fig. 8. Average heat transport coefficient (\(\overline{Nu} \)) for distinct values of \(\gamma \) and \(\beta \).
Fig. 9. The transient entropy generation number \((N_s)\) against time \((t)\) for different values of (a) \(\gamma\) and \(\beta\); & (b) \(Br\Omega^{-1}\) and \(Gr\).
Fig. 10. The steady-state entropy generation number (N_s) against Y at $X = 1.0$ for different values of (a) γ and β; & (b) $Br\Omega^{-1}$ and Gr.

$Pr = 7.1, Gr = 2.0, Br\Omega^{-1} = 0.1$

$Pr = 7.1, \gamma = 0.3, \beta = 0.2$
Fig. 11. The transient Bejan number (Be) against time (t) for different values of (a) γ and β; & (b) $Br\Omega^{-1}$ and Gr.

$Pr = 7.1$, $Gr = 2.0$, $Br\Omega^{-1} = 0.1$
Fig. 12. The steady-state entropy Bejan number \((Be) \) versus \(Y \) at \(X = 1.0 \) for various values of (a) \(\gamma \) and \(\beta \); & (b) \(Br\Omega^{-1} \) and \(Gr \).
Fig. 13a,b. The steady-state entropy contours \((N_s)\) for different values of (a) \(\gamma\) and \(\beta\); & (b) \(Br\Omega^{-1}\) and \(Gr\).
Fig. 14a,b. The steady-state Bejan contours (Be) for different values of (a) γ and β; & (b) $Br\Omega^{-1}$ and Gr.
Fig. 15. The steady-state velocity (U) and temperature (T) contours for (a) Newtonian fluid ($\beta = 0.0$); and (b) second-grade fluid ($\beta = 0.2$).