Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids

Authors
Ramesh, K, Tripathi, D and Beg, OA

URL
http://dx.doi.org/10.1016/j.jpfr.2018.06.002

<table>
<thead>
<tr>
<th>Title</th>
<th>Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Ramesh, K, Tripathi, D and Beg, OA</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/47421/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2019</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids

K. Ramesh, D. Tripathi, O. Anwar Bég

Department of Mathematics, Symbiosis Institute of Technology, Symbiosis International University, Pune, 412115, India
Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan, 303007, India
Fluid Mechanics/Propulsion, Aeronautical/Mechanical Engineering Department, Salford University, Manchester, UK

Received 19 December 2017; accepted 17 June 2018
Available online XXXX

KEYWORDS
Magneto hydrodynamics; Metachronal waves; Cilia; Synchronous beating; Polar couple stress fluid; Physiological transport; Magnetic blood pumps

Abstract A theoretical study is conducted for magnetohydrodynamic pumping of electro-conductive couple stress physiological liquids (e.g. blood) through a two-dimensional ciliated channel. A geometric model is employed for the cilia which are distributed at equal intervals and produce a whip-like motion under fluid interaction which obeys an elliptic trajectory. A metachronal wave is mobilized by the synchronous beating of cilia and the direction of wave propagation is parallel to the direction of fluid flow. A transverse static magnetic field is imposed transverse to the channel length. The Stokes’ couple stress (polar) rheological model is utilized to characterize the liquid. The normalized two-dimensional conservation equations for mass, longitudinal and transverse momentum are reduced with lubrication approximations (long wavelength and low Reynolds number assumptions) and feature a fourth order linear derivative in axial velocity representing couple stress contribution. A coordinate transformation is employed to map the unsteady problem from the wave laboratory frame to a steady problem in the wave frame. No slip conditions are imposed at the channel walls. The emerging linearized boundary value problem is solved analytically and expressions presented for axial (longitudinal) velocity, volumetric flow rate, shear stress function and pressure rise. The flow is effectively controlled by three geometric parameters, viz cilia eccentricity parameter, wave
1. Introduction

Ciliated propulsion arises in numerous physiological and biological systems. Cilia constitute small but intricate appendage structures which protrude from vessel walls. Cilia which average 10 μm in length can flex easily and assist therefore in many sophisticated transport mechanisms. They usually occur in high density arrays unlike flagella which usually appear in nature as single structures or pairs. Cilia beating mechanisms, which control the direction of induced thrust, therefore differ significantly from flagellar beating. They exhibit whip-like motions and appear on cells, plants, physiological organs, marine organisms. They exert a substantial role across the biological spectrum and feature in for example physiology [1], respiration [2], embryonic mecano-transduction processes [3], coral reef systems [4], ventricular cerebrospinal fluid dynamics [5]. The beating mechanisms of cilia tend to be dominated by metachronal waves (these also dictate oscillations of flagella). The highly efficient energy usage of cilia has been documented in several studies including Gueron and Levit-Gurevich [6], Gui Rao and Joanny [7] and Vilfan and Julicher [8] in the latter, it has been shown that optimized performance is achieved by hydrodynamic interactions which result in synchronization of the cilia as nonlinear oscillators.

The importance of cilia in sensory reception, mucociliary clearance and renal physiology disease has been addressed by Inés Ibañez-Tallon [9]. Brueckner [10] has examined the function of cilia in embryonic navigation.

The ciliated propulsion problem is attractive to fluid dynamics researchers since it is characterized by many geometric and viscous hydrodynamic features which are amenable to mathematical modelling. Historically the field of biological propulsion, specifically the fluid dynamics of a beating flagellum, was initiated in the early 1950s by Taylor (as lucidly reviewed in Lighthill [11]) who approximated the locomotion induced on a body by a tail beating in a regular manner in a Newtonian viscous medium. He derived an approximate relation connecting the organism velocity to the tail wave propagation speed. More recently there has been a considerable resurgence in interest in ciliated hydrodynamics, largely motivated by the emerging areas of biomimetics and bio-inspired engineering systems. Generally the approaches for simulating ciliated flows fall into two broad categories. The first has become known as the envelope model (followed in the current article) and the second is the sub-layer model. In the envelope model the cilia are densely packed and the engulfing fluid medium interacts with a waving material surface enveloping the top of the layer. Further sub-categories of the envelop approach feature models of an actively driven semi-flexible filament (this...
aims to recreate actual cilia beat mechanisms) and beat shapes optimized based on pumping efficiency. A good perspective of many different approaches to ciliated hydrodynamics has been provided by Elgeti and Gompper [12]. Modern efforts have included both theoretical and computational analyses. Dauptain et al. [13] presented two-dimensional direct numerical simulation (DNS) results for hydrodynamics of regular oscillating flexible cilia arrays (cnidophore Pleurobrachia pilateus), noting that power utilized is enhanced with cilia beating frequency, in consistency with actual behaviour reported in laboratory testing. Vilfan and Jülicher [14] presented computational simulations of flow fields produced by single and dual beating cilia configurations, studying carefully the development of synchronized states occur as a function of distance of cilia and relative beat orientation. Yang et al. [15] presented a numerical analysis of an unsteady viscous hydrodynamics for an individual elastic cilium by linking the internal force and centre of pressure and noting that greater couple stress effect enhances load capacity but decreases shear stress (wall frictional coefficient) i.e. induces deceleration. A number of biological couple stress flow models have also been communicated. These studies have considered peristaltic pumping in porous media [25], pulsatile blood flows [26], synovial tribology [27], stenotic hemodynamics with catheter and wall slip [28], micro-organism swimming dynamics [29], capillary transport with wall permeability [30,31] and mildly stenosed bifurcated arterial blood flow [32]. Excellent details of polar fluid dynamics are provided in Cowin [33] and more recently by Eringen [34].

Many physiological liquids are electrically-conducting owing to the presence of ions and iron content (e.g. haemoglobin in red blood cells). Such fluids are responsive to electrical and magnetic fields. Magnetohydrodynamic (MHD) pumping [35] has emerged as a robust mechanism for transporting such fluids in clinical applications (extracorporeal surgical blood flow control). MHD pumps utilize the Lorentz effect which involves the injection of an electric current into two electrodes positioned at sidewalls facing each other in a micro-channel. This charge injection generates a transversal ionic current in the micro-channel which can be regulated by applied magnetic fields. The Lorentz force acting on the ionic current in the solution mobilizes a fluid flow in the micro-channel direction. Bi-directional pumping is also possible since flow reversal is induced by a reversal of the electric current or the magnetic field vector. Gastric flows may also be doped with magnetic particles to enable MHD endoscopy treatments. Several excellent studies of MHD pumping in medical engineering have been made which have included both theoretical and fabrication aspects. These include Zhong et al. [36] and Lin and Choo [37]. Recently Ponalagusamy and Selvi [38] simulated the magnetohydrodynamic blood flow in stenotic arterial flow with viscosity and peripheral plasma layer effects. Couple stress magnetohydrodynamic pumping flows have also received some attention. Tripathi and Bég [39] derived approximate solutions for velocity, pressure gradient, local wall shear stress and volumetric flow rate in hydromagnetic peristaltic pumping of couple stress fluids, considering both non-integral and integral numbers of waves. They highlighted the retarding effects of both couple stresses and magnetic field. Srinivasacharya and Rao [40] used a finite difference numerical method to compute the magnetized pulsating arterial couple stress blood flow, presenting extensive solutions for shear stress, flow rate and impedance near the apex, noting the significant deceleration by couple stresses in streaming blood flow near the lateral junction and

Q6 Biorheological couple stress fluids
secondary flow damping by magnetic field near the apex in the daughter artery. Magnetic polar physiological hydrodynamic include periodic spinning blood magnetohydrodynamic separation device modelling was studied by Bég et al. [41]. Slip hydromagnetic couple stress flow in distensible channels was analyzed by El Shennawy and Elkhair [42]. Couple stress magnetic biological bearing tribology was simulated by Naduvinnamani et al. [43] in which a Reynolds polar lubrication equation and the Christensen stochastic theory for roughness were used. Further studies include biothermodynamics of two-fluid couple stress liquids with thermal radiation for ablation therapy as examined by Murthy et al. [44] and thermo-magnetic Hall couple stress peristaltic pumping as reported by Hayat et al. [45]. Several researchers have also attempted to simulate ciliated magnetohydrodynamic flows. Siddiqui et al. [46] considered Newtonian channel flows and derived analytically the velocities, stream function and axial pressure gradient as a function of the cilia and metachronal wave velocity and also computed numerically the pressure rise per wavelength. They showed that trapping is reduced substantially with stronger magnetic field. Akbar et al. [47] used a viscoplastic fluid model to investigate hydromagnetic metachronal ciliated flow and heat transfer under an inclined magnetic field with wall slip and thermal jump effects. Akbar et al. [48] further investigated the ciliated propulsion of magnetized nanofluids using an elliptic beating cilia model. Bhatti et al. [49] have presented a theoretical study on the effects of magnetohydrodynamics on the peristaltic flow of Jeffrey fluid in a rectangular duct. Hayat et al. [50] have discussed the magnetohydrodynamic peristaltic motion based on the constitutive equations of a Carreau fluid in a channel. Saleem et al. [51] have constructed a mathematical model for MHD blood flow through an artery with mild stenosis. Saleem and Munawar [52] have studied the flow of blood through a stenotic artery in the presence of a uniform magnetic field. Ellahi et al. [53] have studied the peristaltic flow of a viscous fluid in a non-uniform rectangular duct. Bhatti et al. [54] have discussed the simultaneous effects of coagulation (blood clot) and variable magnetic field on peristaltically induced motion of non-Newtonian Jeffrey nanofluid containing gyrotactic microorganisms through an annulus. Bhatti et al. [55] have investigated the effects of variable magnetic field on peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls.

In the current work a mathematical model is developed for hydromagnetic pumping of electrically-conducting couple stress physiological liquids (e.g. blood) through a two-dimensional ciliated channel under with metachronal waves generated by beating of the cilia. The Stokes’ couple stress (polar) rheological model is employed. Closed-form solutions are developed for the problem under lubrication approximations and extensive computations are presented using MATLAB symbolic software for axial pressure gradient, axial (longitudinal) velocity, volumetric flow rate, wall shear stress function and pressure rise. Streamline visualization is also included to scrutinize bolus (trapping) phenomena. The study is relevant to MHD biomimetic blood pumps [36] and also may be of interest in simulating the hydrodynamics of micro-/nano-scale robots in biomedical devices [56].

2. Mathematical model

Consider the flow of an incompressible electrically-conducting couple stress non-Newtonian fluid through a symmetric channel with inner surfaces that are ciliated. We select Cartesian co-ordinates \((X, Y)\), where the \(X\)-axis lies along the centre of the body and \(Y\)-axis is transverse to the fluid flow. The flow is generated due to a metachronal wave propagation which is produced by the collective, rhythmic beating of the cilia with constant wave speed \(c\), along the channel walls. The schematic structure of the problem under consideration is depicted in Fig. 1. The geometry of the metachronal wave form proposes that the whip-like dynamics of the cilia may be simulated according to:

\[
Y = f(X, t) = \pm \left[a + ae \cos \left(\frac{2\pi}{\lambda} (X - ct) \right) \right] = \pm H \tag{1}
\]

The experimental studies of Sleigh [57] confirm that the whip-like dynamics of the cilia may be simulated according to:

\[
X = g(X, t) = X_0 + ae \sin \left(\frac{2\pi}{\lambda} (X - ct) \right) \tag{2}
\]

Here \(a\) is the mean width, \(H\) is the semi-width of the channel, \(\lambda\) is the wavelength, \(t\) is time, \(\alpha\) is the measure of the eccentricity, \(\varepsilon\) is the cilia length parameter and \(X_0\) is indicated position of the particle. If the no slip hydrodynamic condition is imposed at the channel walls, then the velocities of the transporting fluid are merely those produced by the cilia tips, which can be given as:

\[
U = \frac{\partial X}{\partial t} = \frac{\partial g}{\partial t} + \frac{\partial g}{\partial X} \frac{\partial X}{\partial t} + \frac{\partial g}{\partial X} U \tag{3}
\]

\[
V = \frac{\partial Y}{\partial t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial X} \frac{\partial X}{\partial t} + \frac{\partial f}{\partial X} U \tag{4}
\]

Invoking Eqs. (1) and (2) in Eqs. (3) and (4), readily yields the following expressions for the longitudinal velocity \((U)\) and transverse velocity \((V)\) components at the boundaries:

\[
U = \frac{-\left(\frac{\pi}{\lambda}\right)ae\epsilon \cos \left(\frac{2\pi}{\lambda} (X - ct) \right)}{1 - \left(\frac{\pi}{\lambda}\right)ae\epsilon \cos \left(\frac{2\pi}{\lambda} (X - ct) \right)} \tag{5}
\]

\[
V = \frac{\left(\frac{\pi}{\lambda}\right)ae\epsilon \sin \left(\frac{2\pi}{\lambda} (X - ct) \right)}{1 - \left(\frac{\pi}{\lambda}\right)ae\epsilon \cos \left(\frac{2\pi}{\lambda} (X - ct) \right)} \tag{6}
\]
In view of this formulation of the boundary conditions we are able to distinguish between the effective stroke of the cilia and the effective recovery stroke by approximately accounting for the shortening of the cilia. The governing equations for two-dimensional unsteady flow of an incompressible electrically-conducting couple stress (polar) fluids under the effect of a magnetic field applied transverse to the X−Y plane (which generates two Lorentzian drag components in the X and Y directions respectively, viz. $-\sigma B_0^2 U$ and $-\sigma B_0^2 V$) may be written as follows:

$$\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0$$ \hspace{1cm} (7)

$$\rho \left(\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} \right) = - \frac{\partial P}{\partial X} + \mu \left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right)$$

$$- \eta \left(\frac{\partial^2 U}{\partial X^2} + 2 \frac{\partial^2 U}{\partial X \partial Y} + \frac{\partial^2 U}{\partial Y^2} \right) - \sigma B_0^2 U$$ \hspace{1cm} (8)

$$\rho \left(\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial X} + V \frac{\partial V}{\partial Y} \right) = - \frac{\partial P}{\partial Y} + \mu \left(\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right)$$

$$- \eta \left(\frac{\partial^2 V}{\partial X^2} + 2 \frac{\partial^2 V}{\partial X \partial Y} + \frac{\partial^2 V}{\partial Y^2} \right) - \sigma B_0^2 U$$ \hspace{1cm} (9)

Here $\frac{\partial P}{\partial X}$ is axial pressure gradient and $\frac{\partial P}{\partial Y}$ is transverse pressure gradient. To determine analytical solutions, it is advantageous to define the transformation between the laboratory (unsteady) frame and wave (steady) frame, for the present moving boundary value problem. The appropriate coordinate transformations are defined as:

$$x = X - ct, y = Y, u(x,y) = U(X,Y,t) - c$$

$$v(x,y) = V(X,Y,t), p(x,y) = p(X,Y,t)$$

(10)

Furthermore, we introduce the following non-dimensional parameters and hydrodynamic parameters:

$$\tilde{x} = \frac{x}{\lambda}, \tilde{y} = \frac{y}{\lambda}, \tilde{u} = \frac{U}{c}, \tilde{v} = \frac{V}{c}, \tilde{H} = \frac{H}{c}, \tilde{t} = \frac{ct}{\lambda}$$

$$\tilde{p} = \frac{\rho c^2}{\lambda \mu}, \tilde{\alpha} = \frac{a}{\lambda}, \tilde{\beta} = \frac{\alpha}{\lambda}, \tilde{Re} = \frac{\rho c a}{\mu}$$

$$\gamma = \sqrt{\frac{\mu}{\eta}}, \tilde{M} = \sqrt{\frac{\sigma B_0}{\mu}}$$

(11)

Where $\tilde{x}, \tilde{y}, \tilde{u}, \tilde{v}, \tilde{H}, \tilde{t}, \tilde{p}, \tilde{\alpha}, \tilde{\beta}, \tilde{Re}, \gamma, \tilde{M}$ denote non-dimensional axial coordinate, dimensionless transverse coordinate, non-dimensional axial velocity, dimensionless transverse velocity, dimensionless channel semi-width, dimensionless time, dimensionless pressure, wave number, Reynolds number, couple stress (polar) fluid parameter and Hartmann magnetic number, respectively. In the limit $\gamma \rightarrow \infty$, polar effects are neglected and the governing equations reduce to the classical Navier-Stokes equations for magnetohydrodynamic ciliated propulsion of a Newtonian fluid. Applying lubrication theory approximations i.e. long wavelength ($\beta << 1$) and low Reynolds number ($Re \rightarrow 0$) (i.e. Stokes flow) assumptions, implementing Eqs. (10) and (11) in Eqs. (1)−(9), after dropping the bars, the following linearized equations are generated:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{\gamma^2} \frac{\partial^2 u}{\partial y^2} - M^2 (u + 1)$$

(12)

$$\frac{\partial u}{\partial y} = 0$$

(13)

$$\frac{\partial u}{\partial y} = 0, \frac{\partial^3 u}{\partial y^3} = 0 \text{ at } y = 0$$

(14)

The non-dimensional forms of the physical boundary conditions emerge as:

Fig. 1 Symmetric MHD metachronal wave propagation in a channel with ciliated walls.
\[u = -1 - \frac{2\alpha\beta \cos(2\pi x)}{1 - 2\alpha\beta \cos(2\pi x)} \]
(15)

\[\frac{\partial^2 u}{\partial x^2} = 0 \quad \text{at} \quad y = h + 1 + \varepsilon \cos(2\pi x). \]

It is important to note here that couple stress fluids are much simpler than another group of microstructural non-Newtonian fluids i.e. micropolar fluids [58], since they possess no microstructure at the kinematic level and therefore the kinematics of such fluids is totally described using the velocity field i.e. angular velocity (micro-rotation) field is not required. The higher order gradient boundary conditions for axial velocity in Eqs. (14) and (15) are the so-called “stress-free conditions” which physically imply that couple stresses vanish at the channel wall inner surfaces.

The instantaneous volume flow rate in the fixed frame is given by

\[\Theta = \int_0^h U(X, Y, t)dY \]
(16)

The above expression in the wave frame becomes

\[q = \int_0^h u(x, y)dy \]
(17)

From Eqs. (10), (16) and (17), the expression for the volume flow rate can be written as

\[\Theta = q + ch \]
(18)

The time-mean flow over time period \(T \) at fixed position \(X \) is defined as

\[\overline{\Theta} = \frac{1}{T} \int_0^T \Theta dt \]
(19)

Using Eq. (18) into Eq. (19) and then integrating, yields

\[\overline{\Theta} = q + ac \]
(20)

Defining the dimensionless time-mean flows, \(Q \) and \(F \), in the laboratory and wave frame, respectively, as

\[Q = \frac{\overline{\Theta}}{ac} \quad \text{and} \quad F = \frac{q}{ac} \]
(21)

From Eq. (20), the flow rate in the non-dimensional form can be written as follows:

\[Q = F + 1 \]
(22)

where, \(F = \int_0^h u dy \)

3. Analytical solutions

The normalized boundary value problem is well-posed and admits exact solutions. The closed-form solutions of Eqs. (12) and (13) subject to the dimensionless boundary conditions Eqs. (14) and (15) are obtained as:

\[u = \frac{1}{(m_2^2 - m_1^2)} \left(\frac{1}{1 - 2\alpha\beta \cos(2\pi x)} - \frac{1}{M^2 dx} + \frac{1}{\gamma^2} \right) \]

\[\left(m_1 \sinh(m_2h) - m_2 \sinh(m_1h) \right) \left(\frac{m_2 \sinh(m_2h)}{m_1 \cosh(m_1h)} - \frac{m_2 \sinh(m_1h)}{m_1 \cosh(m_1h)} \right) \]
(23)

\[dp = A_1 \left(\frac{F - A_1}{A_2} \right) \]
(24)

where,

\[m_1 = \sqrt{\frac{\gamma^2 + \gamma \sqrt{\gamma^2 - 4M^2}}{2}} \]
(25a)

\[m_2 = \sqrt{\frac{\gamma^2 - \gamma \sqrt{\gamma^2 - 4M^2}}{2}} \]
(25b)

\[A_1 = \frac{1}{(m_2^2 - m_1^2)} \left(\frac{1}{1 - 2\alpha\beta \cos(2\pi x)} + \frac{1}{\gamma^2} \right) \]

\[\left(m_1 \sinh(m_2h) - m_2 \sinh(m_1h) \right) \left(\frac{m_2 \sinh(m_2h)}{m_1 \cosh(m_1h)} - \frac{m_2 \sinh(m_1h)}{m_1 \cosh(m_1h)} \right) + \frac{1}{\gamma^2} \]
(25c)

\[A_2 = -\frac{1}{M^2} \left(h + \frac{1}{(m_2^2 - m_1^2)} \left(\frac{m_2 \sinh(m_2h)}{m_1 \cosh(m_1h)} - \frac{m_2 \sinh(m_1h)}{m_1 \cosh(m_1h)} \right) \right) \]
(25d)

The dimensionless wall shear stress distribution for the present problem is given by

\[S_f = \frac{\partial u}{\partial y} - \frac{1}{\gamma^2} \frac{\partial^2 u}{\partial y^2} \]
(26)

\[\left(m_1 \sinh(m_2h) - m_2 \sinh(m_1h) \right) \left(\frac{m_2 \sinh(m_2h)}{m_1 \cosh(m_1h)} - \frac{m_2 \sinh(m_1h)}{m_1 \cosh(m_1h)} \right) \]
(27)
Upon substituting the Eq. (18) into Eq. (20), we obtain the solution for shear stress distribution as follows:

The non-dimensional pressure rise (Δp) is computed by the following expression:

$$\Delta p = \int_0^1 \left(\frac{dp}{dx} \right) \, dx \quad (28)$$

The stream function in the wave frame obeying the Cauchy-Riemann equations \(\left(u = \frac{\partial \psi}{\partial y} \right) \) and \(v = -\frac{\partial \psi}{\partial x} \) may be computed by using Eq. (23). Numerical evaluation of the exact solutions is executed in MATLAB which permits a parametric assessment of the flow characteristics. Also visualization of streamlines is achieved with MATLAB software which allows an examination of bolus formation and trapping.

4. Computational results and interpretation

Selected computations for velocity, axial pressure gradient, shear stress and pressure rise characteristics, and also streamline distributions are illustrated in Figs. 2–7. Generally flow rate (Q) is prescribed as 2 and a relatively strong magnetic field is imposed (M is at least set to 2 in all the graphs, unless otherwise indicated, in consistency with actual MHD blood pump devices — see Zhong et al. [36] and Lim and Choi [37] wherein generally double the magnetic Lorentz force relative to the viscous hydrodynamic force is recommended). All data is provided in the captions.

Table 1 gives the comparison of velocity distribution for the present and earlier literature (Newtonian fluid). In the benchmark study of Ramesh [59], cilia effects were not considered, therefore in our model we have set ϵ (cilia length parameter) = 0, α (measure of the eccentricity) = 0, β (wave number) = 0, Q (dimensionless time-mean flow in the laboratory frame) = 1, γ (couple stress (polar) fluid parameter) $\rightarrow \infty$ (i.e. Newtonian case) and M (Hartmann magnetic number) $\rightarrow 0$ (electrically non-conducting case i.e. vanishing magnetic field). Furthermore, porous medium and slip effects do not appear in our model and therefore data from Ramesh [59] which corresponds to the simplest case in that study (i.e. where the porous medium vanishes [infinite permeability] and there is no channel wall slip) is selected to ensure that the exact same conditions are enforced in both models. The legend used in Table 1 therefore is $\epsilon = 0.5$, $\alpha = 0$, $\beta = 0$, $Q = 1$, $\gamma \rightarrow \infty$, $M \rightarrow 0$. It is evident that our results are in close agreement with that of Ramesh [59]. Confidence in the present analysis is therefore justifiably high.

Fig. 2(a)–(d) illustrate the evolution in axial velocity across the entire channel span ($-1.5 \leq y \leq +1.5$) for respectively a variation in metachronal wave number (β), cilia length (ϵ), couple stress parameter (γ) and magnetic field parameter (M). Generally with the exception of Fig. 2(c), different responses are induced in the core zone and the edge zones (near the ciliated walls). Increasing wave number (Fig. 2(a)) is found to accelerate the axial
flow in the core zone but to decelerate it in the end zones. Peak axial velocity is computed logically at the channel centre line.

Fig. 3 Pressure gradient profiles for different flow parameters for fixed values of: (a) $\alpha=0.5$, $\beta=0.1$, $y=0$, $Q=1$, $\gamma=7$, $M=7$, (b) $\alpha=0.1$, $\beta=0.1$, $y=0$, $Q=1$, $\gamma=7$, $M=7$, (c) $\alpha=0.5$, $\beta=0.1$, $y=0$, $Q=1$, $\gamma=7$. (d) $\epsilon=0.5$, $\alpha=0.1$, $\beta=0.1$, $y=0$, $Q=1$, $\gamma=7$.

flow in the core zone but to decelerate it in the end zones. Peak axial velocity is computed logically at the channel centre line.

Fig. 4 Pressure rise profiles for different flow parameters for fixed values of: (a) $\alpha=0.5$, $\beta=0.1$, $y=0$, $\gamma=7$, $M=7$, (b) $\alpha=0.1$, $\beta=0.1$, $y=0$, $\gamma=7$, $M=7$, (c) $\alpha=0.5$, $\beta=0.1$, $y=0$, $Q=1$, $\gamma=7$. (d) $\epsilon=0.5$, $\alpha=0.1$, $\beta=0.1$, $y=0$, $\gamma=7$.

The parameter $\beta = \frac{a}{\lambda}$, where a is the mean width and λ is the wavelength of the metachronal wave. Clearly greater wavelengths reduce the wave number and vice versa for shorter wavelengths. In the channel core region, shorter
wavelengths therefore result in acceleration whereas they induce deceleration in the proximity of the ciliated walls. The converse response is associated with larger wavelengths (smaller wave numbers). A similar observation for power-

Fig. 5 Shear stress distribution for different flow parameters for fixed values of (a) $\varepsilon = 0.5$, $\beta = 0.1$, $Q = 2$, $\gamma = 7$, $M = 7$, (b) $\alpha = 0.1$, $\beta = 0.1$, $Q = 2$, $\gamma = 3$, $M = 3$, (c) $\varepsilon = 0.5$, $\alpha = 0.1$, $\beta = 0.1$, $Q = 2$, $M = 3$, (d) $\varepsilon = 0.5$, $\alpha = 0.1$, $\beta = 0.1$, $Q = 2$, $\gamma = 5$.

Fig. 6 Streamline patterns for different values of wave number for fixed values of $\varepsilon = 0.5$, $\alpha = 0.1$, $Q = 1$, $\gamma = 2$, $M = 2.5$.

Biorheological couple stress fluids
acceleration in the end zones (near wall regions). Clearly greater cilia length will offer more resistance to the axial flow which will impede pumping in the core region. The impact of cilia length is minimal at the walls since the protuberances exert a greater effect deeper into the channel. This manifests in a boost in axial velocity at the boundaries. Several studies have highlighted this including Sleigh [61] and more recently Khaderi et al. [62]. Elasticity of the cilia will also inevitably influence axial flow although this aspect has not been considered in the present work. It could be simulated in future by using a ratio between the viscous force and the elastic force in the cilia [62]. An increase in couple stress (polar) parameter, γ, as depicted in Fig. 2(c), is found to consistently decrease the axial velocity. The rise in γ, clearly leads to a reduction in the couple stress term in Eq. (12) − 1/2 γv v. The retarding nature of couple stresses as demonstrated in many other investigations [18–25] is confirmed by the present computations. Symmetry is sustained across the channel span in consistency with the wall boundary conditions. However very little flow reversal is induced compared with the near-wall axial flow field response in Fig. 2(a) and (b). Fig. 2(d) shows that an increase in magnetic body force parameter, M, stifles the bulk axial flow in the core zone but accelerates it towards the wall zones. This is a classical result from magnetohydrodynamics, confirmed in many standard works including Sutton and Sherman [63]. Significant backflow is induced close to both the lower and upper channel walls (approximately one third of the plots are below the zero line). Magnetic field is generally found to inhibit bulk flow of the couple stress fluid which is desirable in MHD pumping operations for enhanced flow control [36].

Fig. 3(a)–(d) present the response in axial pressure gradient (dp/dx) to alteration in cilia eccentricity parameter (α), cilia length (ε), couple stress parameter (γ) and magnetic field parameter (M) plotted against axial coordinate (channel length coordinate). An increase in eccentricity of the beating cilia induces a weak deceleration in the core flow and a corresponding acceleration in the edge flow, as illustrated in Fig. 3(a). The modifications in pressure gradient are more pronounced at the walls than in the core region. An increase in cilia length has a much more significant impact than cilia eccentricity, as plotted in Fig. 3(b). Considerable elevation is produced in the axial pressure gradient in the core zone with even greater depletion in axial pressure gradient in the end zones. Clearly the presence of longer elastic appendages (cilia) emanating from the walls interacts more intensively with the flow field than shorter cilia. There is never any skewness in the profiles which are all perfectly symmetric about the channel centre line. An increase in axial pressure gradient is generated with greater couple stress parameter (Fig. 3(c)) and once again this trend is enforced across the entire channel span. This enhancement in pressure gradient is physically consistent with the deceleration in axial flow computed earlier. Increasing magnetic field is also observed to diminish the axial pressure gradient, a characteristic feature of MHD pumps.
This reduction is sustained across the entire channel i.e. there is no switch-over in profiles at the walls.

Fig. 4(a)–(d) illustrate the evolution of pressure rise (Δp) with volumetric flow rate (Q) with variation in respectively metachronal wave number (β), cilia length (ε), couple stress parameter (γ) and magnetic field parameter (M). The classical inverse relationship between pressure rise and volumetric flow rate (known for Newtonian fluids—see e.g. Wu [1]) is also obtained for couple stress (polynomial) fluids for all plots. With increasing wave number (Fig. 4(a)), pressure rise is consistently decreased for all flow rates. However, with increasing cilia length (Fig. 4(b)), pressure rise is elevated in the augmented pumping region whereas it reduces in the pumping region whereas it reduces in the augmented pumping region, as shown in Fig. 4(c). An increase in magnetic field parameter is conversely found to enhance pressure rise in the pumping region whereas it reduces pressure rise in the augmented pumping region, as shown in Fig. 4(d). In all the plots there exist also free pumping zones (Δp = 0) although this is essentially a cross-over point in Fig. 4(b)–(d). The impact of wave number on pressure difference is generally weak at all flow rates; however the cilia length, couple stress parameter and magnetic field impart a tangible modification to the pressure difference in the channel.

Fig. 5(a)–(d) present the shear stress distributions for various values of cilia eccentricity (α), cilia length (ε), couple stress parameter (γ) and magnetic field parameter (M). The oscillatory nature of shear (frictional wall force) is clearly captured and this is in synchrony with the metachronal beating of the cilia. Peaks and troughs are observed alternately in each of the plots. Increasing eccentricity ratio is found in Fig. 5(a) to considerably elevate the peak magnitudes of shearing stress but only weakly decrease the minimum values. More oblate topologies are also observed at the peaks compared with the troughs which are sharper. The shear stress direction is however never changed with a variation in eccentricity ratio (values are invariably negative) i.e. there is no flow reversal in the MHD pump channel. Fig. 5(b) indicates that peak shear stress values are mildly elevated with increasing cilia length whereas the troughs are very sharply decreased. The influence of cilia length is markedly greater than cilia eccentricity. Fig. 5(c) shows that with increasing couple stress parameter both the peaks and troughs are strongly reduced which is consistent with flow deceleration in polar fluids. In this plot there is also a weak flow reversal computed at low values of couple stress parameter, although this is quickly eliminated with higher values. Fig. 5(d) illustrates that increasing magnetic field similarly damps the shear stress strongly. The greater Lorentzian magnetic drag generated with higher M values retards the ciliated propulsion and the couple stress fluid shears therefore more slowly against the inner surfaces of the walls.

Finally in Fig. 6(a)–(d) and 7(a)–(d), MATLAB software has been used to plot streamline visualizations for the influence of two parameters, namely metachronal wave number (β) and magnetic field parameter (M), respectively. In both sets of plots the doubly symmetric dual bolus structure patterns are captured. With increasing metachronal wave number (β) i.e. decreasing wave length the central streamlines become increasingly distorted generating new bolus structures which grow symmetrically outwards into the channel space. Conversely with increasing magnetic parameter the newly
emerging bolus structures are contracted and vortex intensity is decreased in the channel. Trapping phenomena are therefore non-trivially influenced by both the metachronal wave length and applied magnetic field.

5. Conclusions

A theoretical investigation is presented for metachronal-wave generated propulsion of electro-conductive couple stress fluids in a channel with inner ciliated walls, motivated by simulating bio-inspired MHD pumps. The metachronal wave is aligned to the axial pumping direction and is simulated via an elliptical geometric model. Closed-form solutions for the transformed linearized boundary value problem are derived. Visualization of the analytical solutions is evaluated with symbolic software, MATLAB. The present computations have shown that:

- There is an inverse relationship between pressure rise and flow rate for variation in all geometric, material and magnetic control parameters.
- Increasing metachronal wave number elevates axial velocity in the core zone (whereas it induces axial flow retardation at the channel walls), generates decreasing pressure difference in the pumping and augmented pumping regions and encourages the growth of new secondary bolus structures in the channel.
- Increasing cilia eccentricity generates decreases axial pressure gradient in the core region (and increases it in the near-wall zones),
- Increasing cilia length decelerates the axial flow, increases the axial pressure gradient (in the core region), boosts pressure difference in the pumping region (positive pressures) and reduces it in the augmented pumping region (negative pressures) and furthermore weakly increases peak shear stresses and strongly reduces trough magnitudes.
- Increasing couple stress parameter retards the axial flow, elevates the axial pressure gradient across the full span of the channel, reduces pressure difference in the pumping zone, increases pressure difference in the augmented zone and enhances both peak and trough shear stress values.
- Increasing magnetic body force parameter decelerates the axial flow, reduces axial pressure gradient across the entire channel span, enhances pressure difference in the pumping zone, suppresses pressure difference in the augmented pumping zone, depresses both peak and trough shear stress values and mitigates the development of new bolus structures in the channel space.

The present study has presented a simple but interesting model for MHD physiological ciliated pumping systems. It has provided some useful benchmarks for further analysis which is presently being explored with ANSYS FLUENT computational fluid dynamics software. This will allow generalization to three-dimensional geometries and will also incorporation of elasticity of the ciliated structures. Efforts in this regard will be communicated in the near future.

References

Biorheological couple stress fluids