Stronger together: combining automated classifiers with manual post-validation optimizes the workload vs reliability trade-off of species identification in bat acoustic surveys

López-Baucells, A, Torrent, L, Rocha, R, Bobrowiec, PED, Palmeirim, JM and Meyer, CFJ

http://dx.doi.org/10.1016/j.ecoinf.2018.11.004

<table>
<thead>
<tr>
<th>Title</th>
<th>Stronger together : combining automated classifiers with manual post-validation optimizes the workload vs reliability trade-off of species identification in bat acoustic surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>López-Baucells, A, Torrent, L, Rocha, R, Bobrowiec, PED, Palmeirim, JM and Meyer, CFJ</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/49098/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2018</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.
For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Stronger together: Combining automated classifiers with manual post-validation optimizes the workload vs reliability trade-off of species identification in bat acoustic surveys

Adrià López-Baucells1,2,3*, Laura Torrent2, Ricardo Rocha1,3,4, Paulo E. D. Bobrowiec3, Jorge M. Palmeirim1, Christoph F. J. Meyer1,3,4

1 University of Lisbon, Centre for Ecology, Evolution and Environmental Changes (cE3c), Lisbon 1749-016 (Portugal).

2 Granollers Museum of Natural Sciences, Granollers 08402 Catalonia (Spain).

3 Biological Dynamics of Forest Fragments Project (BDFFP), National Institute for Amazonian Research, Manaus 69011-970 (Brazil).

4 University of Cambridge, Department of Zoology, Conservation Science Group, Cambridge CB23EJ (United Kingdom).

5 University of Salford, School of Environment and Life Sciences, Salford M54WT (United Kingdom).

* Corresponding author: Adrià López-Baucells (adria.baucells@gmail.com)
Abstract

Owing to major technological advances, bioacoustics has become a burgeoning field in ecological research worldwide. Autonomous passive acoustic recorders are becoming widely used to monitor aerial insectivorous bats, and automatic classifiers have emerged to aid researchers in the daunting task of analyzing the resulting massive acoustic datasets. However, the scarcity of comprehensive reference call libraries still hampers their wider application in highly diverse tropical assemblages. Capitalizing on a unique acoustic dataset of more than 650,000 bat call sequences collected over a 3-year period in the Brazilian Amazon, the aims of this study were (a) to assess how pre-identified recordings of free-flying and hand-released bats could be used to train an automatic classification algorithm (random forest), and (b) to optimize acoustic analysis protocols by combining automatic classification with visual post-validation, whereby we evaluated the proportion of sound files to be post-validated for different thresholds of classification accuracy. Classifiers were trained at species or sonotype (group of species with similar calls) level. Random forest models confirmed the reliability of using calls of both free-flying and hand-released bats to train custom-built automatic classifiers. To achieve a general classification accuracy of ~85%, random forest had to be trained with at least 500 pulses per species/sonotype. For seven out of 20 sonotypes, the most abundant in our dataset, we obtained high classification accuracy (>90%). Adopting a desired accuracy probability threshold of 95% for the random forest classifier, we found that the percentage of sound files required for manual post-validation could be reduced by up to 75%, a significant saving in terms of workload. Combining automatic classification with manual ID through fully customizable classifiers implemented in open-source software as demonstrated here shows great potential to help overcome the acknowledged risks and biases associated with the sole reliance on automatic classification.

Keywords: Amazon, Bioacoustics, Chiroptera, Echolocation, Machine-learning algorithms
1. Introduction

Bioacoustics is a rapidly expanding field and of increasing importance for informing conservation projects. This is largely due to recent technological advances and the rising number of long-term monitoring programs which are being established for a number of taxa (Dickinson et al. 2010; Kershenbaum et al. 2014), including birds (Gregory et al. 2005), reptiles (Sewell et al. 2012), arthropods (Penone et al. 2013) and bats (Barlow et al. 2015). Interest in bat monitoring has increased over the last decades since bats have been acknowledged to provide important ecosystem services such as pest control (Boyles et al. 2013; Puig-Montserrat et al. 2015) and have been identified as good bioindicators of ecosystem health (Jones et al. 2009; Cunto & Bernard 2012).

Autonomous ultrasound detectors have proven essential for optimizing surveys of aerial insectivorous bats worldwide (Murray et al. 1999; Law et al. 2015). In the Neotropics, in contrast to phyllostomid bats, aerial insectivores are rarely captured in mist-nets (MacSwiney et al. 2008) and therefore, although they represent a high proportion of Neotropical bat diversity (Jung & Kalko 2011), the ecology of many species remains elusive and their echolocation calls poorly described (e.g. López-Baucells et al. 2014; López-Baucells et al. 2017a). In fact, despite enormous recent advances in recording technology and equipment, comprehensive regional bat reference call libraries are currently lacking for much of the tropics (Walters et al. 2013; Madhukumar Menon et al. 2018).

Reference call libraries containing echolocation calls from a wide range of locations and habitats are crucial to reliably identify bat species acoustically. Although many species have distinctive echolocation calls, those of others can be very ambiguous due to producing very similar calls with overlapping characteristics (Russo & Voigt 2016). Moreover, weather conditions (e.g. Lawrence & Simmons 1982), geographical location (e.g. López-Baucells et al. 2017b), sex (e.g. Puechmaille et al. 2014), body condition (e.g. Puechmaille et al. 2014),
age (e.g. Jones & Kokurewicz 1994), reproductive status (e.g. Jones & Ransome 1993) or habitat structure (e.g. Pedro & Simonetti 2014) are all factors that contribute to substantial variation in call structure within species.

Different algorithms such as discriminant function analysis and random forest have already been used to automatically classify bat pulses (Russo & Jones 2002; MacSwiney et al. 2008; Armitage & Ober 2010; Walters et al. 2012; Zamora-Gutiérrez et al. 2016). However, substantial controversy still exists around the trade-off between the use of automatic classifiers versus manual species identification (Kershenbaum et al. 2014; Russo & Voigt 2016). While the former allows for the rapid analysis of a large number of recordings using an objective and repeatable protocol, manual identification provides more accurate, yet highly subjective and non-reproducible results, apart from being considerably more time-consuming (Kershenbaum et al. 2014). Unfortunately, even though considered a vital analysis step when relying on automated classifiers, posterior visual cross-checking by an expert is all too often neglected (Russo & Voigt 2016). Moreover, no study so far has quantified the potential time savings from using automatic classifiers as a function of the classification accuracy threshold adopted. Automatic classifiers have been criticised because of the inability to distinguish amongst species with similar calls, and because their algorithms are typically trained with calls from hand-released bats (Russo & Voigt 2016). It has been suggested that the use of hand-release calls can compromise the reliability of species identifications since these calls might be strongly affected by handling-related stress of the animal (Szewczak 2000).

Given that automatic classifiers are now widely available, there is a substantial risk that beginners solely rely on automated species identification without proper manual post-validation, which can result in incorrect identifications and thus wrong management decisions and negative conservation outcomes (Russo & Voigt 2016). Automatic classifiers were first applied to bat species identification in temperate areas as a direct consequence of the massive
acoustic datasets that are now typically accumulated using passive bat recorders (Russo & Voigt 2016). However, the scarcity of suitable reference call libraries and the controversy around automatic vs. manual classification still hamper their wider application, especially in mega-diverse tropical regions.

The present study is the first to attempt to test the suitability of combining automatic classifiers trained with pre-identified recordings of free-flying bats obtained in the study area (which are much easier to obtain than reference calls from hand-released bats) with posterior manual validation (Fig. 1). This approach addresses the aforementioned issues of geographic variability, only classifies calls to the taxonomic level that the researcher can visually confirm with certainty and gives the user full control and flexibility concerning implementation of the algorithm. Capitalizing on a unique acoustic dataset collected over a 3-year period in the Central Amazon, here we use random forest, a machine learning algorithm that has performed well in previous bat acoustic studies (Zamora-Gutiérrez et al. 2016; Bas et al. 2017), to automatically classify aerial insectivorous bats. We evaluated the discriminative ability of the classifier by training it with a) previously identified calls from free-flying bats and those of hand-released bats; and b) datasets of different sizes of reference echolocation calls. To effectively combine the advantages of an automatic classifier with those of manual identification requires establishing a “correct classification probability” threshold below which a recording will need to be visually post-validated. Thus, to evaluate how acoustic studies could be optimized in terms of time commitment for the analyses, we also calculated, for different thresholds, the percentage of sound files from the full dataset that would need to be visually post-validated.
2. Material and Methods

2.1 Study site

The study was conducted at the Biological Dynamics of Forest Fragments Project (BDFFP), a large-scale fragmentation experiment located ~80 km north of Manaus (Brazil) in the Central Amazon (2°20’S, 60°6’W), aimed at assessing the impacts of fragmentation on tropical forest communities (Laurance et al. 2011). Beginning in 1979, the BDFFP established 11 experimental forest fragments, which at the time of isolation were separated from continuous forest by distances of 80-650 m. Nowadays the fragments are surrounded by a matrix of secondary forest at varying successional stages (Laurance et al. 2017). The area is currently composed of a mosaic of unflooded lowland forest (80-160 m a.s.l.), pastures and secondary regrowth forest. Primary forest reaches 30-37 m in mean canopy height, with isolated trees up
to 55 m tall (Laurance et al. 2011). Annual rainfall varies between 1900 and 3500 mm per year, with a rainy season between November and June and a dry season from July to November (Ferreira et al. 2017), while mean annual temperature usually oscillates between 26-30 ºC (de Oliveira & Mori 1999).

2.2 Mist-netting and hand-release recordings

Intensive bat sampling was carried out in the context of a larger project assessing fragmentation effects on bats in the BDFFP landscape over a period of four years (2011-2014), using both ground- and canopy-level mist-netting. Sampling covered various types of rainforest habitats including continuous primary forest, forest fragments and secondary regrowth (Farneda et al. 2015; Rocha et al. 2017a; Rocha et al. 2017b). Sporadic sampling was also done over temporary lakes, small ponds and streams, as well as campsites, roads, and pastures (Torrent et al. 2018). Mist-netting was usually conducted from 18:00 to 00:00, except for some lakes where high capture rates sometimes required closing the nets earlier. Captured bats were identified using different keys (Lim & Engstrom 2001; Gardner 2007).

Echolocation call recordings of captured aerial insectivorous bats were made with a Pettersson D1000 bat detector (Pettersson Elektronik, Sweden), using 384 kHz sampling frequency in full spectrum (16-bit resolution) and no triggers or filters. Release calls were obtained after hand release of bats in either clearings or open areas within the forest (N=722 individuals). The detector was placed 5-10 m from the point of release (depending on the species) and once the individual was in flight, the microphone was pointed towards it to record as many search pulses as possible. For analysis, all pulses recorded immediately after release were discarded, as were overloaded calls, those too faint (for which it was impossible to distinct the shape from the background noise), social or stress calls, calls emitted in passive hunting mode and feeding buzzes.
2.3 Acoustic monitoring dataset

A total of 50 sites across the BDFFP landscape were acoustically surveyed 2012-2014, including the same sites used for mist-netting as described in Rocha et al (2017a,b). These comprised different-sized forest fragments (N=8), continuous forest (N=9), forest edges (N=11), secondary forest (N=11) and forest clearings (N=11). At each recording point, an automatic SM2Bat detector with an omnidirectional ultrasonic SMX-US microphone (Wildlife Acoustics, Inc., USA) was placed ca. 1.5 m above the ground. Acoustic surveys covered both dry and wet seasons and were conducted twice per season. Detectors were set to automatically record bats from 18:00 to 06:00 in real time with a full spectrum resolution of 16 bit, a high-pass filter set at fs/32 (12 kHz), an adaptive trigger level relative to noise floor of 18 SNR, and for periods of five consecutive nights per site. All recordings were split into five-second long sequences. Within such a five-second sound file, a bat pass was defined as a sequence with a minimum of two recognizable echolocation pulses per species (Millon et al. 2015; Appel et al. 2017; Torrent et al. 2018). This unit was used as a measure of activity levels. A total of 1,088,940 sound files were acquired during the study period in which ~650,000 bat passes were identified.

2.4 Echolocation call analysis

Kaleidoscope v.4.0.4 software (Wildlife Acoustics Inc., USA) was used to visualize and manually classify all bat passes from the acoustic monitoring dataset. Call sequences were manually identified to species/sonotype level as in previous studies (Silva & Bernard 2017; Torrent et al. 2018). For the purpose of this study, a sonotype was defined as a category that grouped species with similar calls when it was not possible to clearly assign a call to a particular species (Table S1). Call identification was based on a series of acoustic features and standard measurements - call shape (CS), frequency of maximum energy (FME), start (SF), end (EF), maximum (MaxF) and minimum (MinF) frequency and duration (Dur) - and
followed the echolocation key in López-Baucells et al. (2016). Moreover, recordings were also compared with a local reference call library compiled for the same study area over the course of the whole 3-year sampling period. Call sequences or pulses that were too faint for reliable identification (\(< 10\) dB difference in power between background noise and FME of the echolocation pulses) were discarded from the analysis.

In addition to this manual identification, the same recordings were also subjected to an automatic identification process whereby pulse measurements were automatically extracted (~4,788,000 pulses) using SCAN’R (Snapshot Characterization and Analysis Routine) v1.7.4. (Binary Acoustic Technology, USA). Settings were adjusted as specified in Table S2 to minimize the confusion between noise and bat calls. The following measurements were extracted for all pulses: Duration (Dur, ms), Maximum frequency (Fmax, kHz), Minimum frequency (Fmin, kHz), total bandwidth (BW, ms), Frequency at strongest sound pressure level (Fdom, kHz; equivalent to FME or Frequency of maximum energy), percentage in duration of Fdom (Ldom, %), High end of characteristic frequency (HiFc, kHz; equivalent of the knee frequency), Low end of characteristic frequency (LowFc, kHz), global slope of the call (Slope, kHz/ms), curvature (Curv) (SCAN’R 2009). After extraction, a Principal Component Analysis (PCA) was performed, separately for each bat family, in order to visualise how different species/sonotypes clustered based on the similarity of their acoustic parameters.

2.5 Supervised machine learning

Supervised classification based on a machine learning algorithm (random forest, RF) was conducted using the R package “caret” (Classification and Regression Training) (Kuhn 2008). Random forest has performed well in several bat studies and is currently the preferred machine learning algorithm for the classification of bat echolocation calls (e.g. Zamora-Gutiérrez et al. 2016; Bas et al. 2017). Random forest models are built by comparing and
averaging decision tree classifiers that are designed by bootstrapping random samples of the training dataset (Breiman 2001). Amongst its advantages, random forest is not affected by heteroscedasticity, is not strongly affected by outliers or low-informative variables, and is relatively easy to use computationally (Olden et al. 2008), which makes it the method of choice for large acoustic datasets. In our case we selected three separate 10-fold cross-validations to tune the training model, with a final value of $mtry$ of 2 (chosen for their highest accuracy) (Breiman 2001).

Data preparation. All pulse measurements were centred and scaled (Mukherjee & Manna 2006; Kuhn 2008) to make them comparable. The global dataset (~4,178,000 pulses) was split into different training and testing subsets. Training datasets were composed of 50, 100, 500, 1000 and 2000 reference pulses per species/sonotype, which were randomly selected from all recordings (except for *Rhynchonycteris naso* and *Furipterus horrens*, for which we only had data from 12 and 1,000 pulses respectively).

Data classification. Using the 1000-pulse training dataset, we evaluated classification accuracy and predictive power of the RF algorithm. Evaluation of performance of the training algorithm on the testing datasets was based on the performance metrics accuracy and kappa. Kappa measures inter-rater agreement for qualitative items (usually considered to be more robust than other measures as it also takes into account the agreement occurring by chance) (Viera & Garrett 2005). The same metrics were then additionally assessed for the different-sized training datasets, ranging from 50 to 2000 pulses/sonotype. Variable (feature) importance scores were also obtained using the R package caret (Kuhn 2008). The contribution of each variable is measured as follows: For each tree, the prediction accuracy is recorded removing each predictor variable. The average of the differences between all accuracies is normalized by the standard error.
Classification success for each species/sonotype was evaluated using 1) a RF model trained with the 2000-pulse dataset based on calls of free-flying bats and 2) a RF model trained with the complete reference call library based on hand-release calls compiled during the whole 3-year study period. The latter unfortunately included less than 2000 pulses for many species (Table S3) due to the inherent difficulty to capture enough individuals from which to obtain release calls. Both training datasets were classified using the same species/sonotype labels in order to make both classifications comparable. Amongst the whole set of metrics commonly used to evaluate classifiers, we selected sensitivity and positive predictive value (PPV) as the most conservative for evaluating the performance of the acoustic classification task because they highlight the true positives in the classification process (Jennings et al. 2008) (Fig. S1).

While sensitivity is the proportion of calls correctly identified as one species/sonotype out of the total number of calls, positive predictive value is the proportion of calls correctly identified as one species/sonotype out of the total number of calls identified as such. Other metrics such as specificity or negative predictive value highlight the certainty of true negatives, which is quite unreliable in multicategory classifications (Fig. S1).

The estimation of the percentage of recordings that would need to be manually checked depending on several classification accuracy thresholds was also based on the 2000-pulse training dataset. Classification accuracy thresholds considered in the analyses ranged from 60 to 95%, in 5% increments.

3. Results

3.1 Acoustic discrimination at family level

A total of 27 aerial insectivorous bat species from six different families were captured and recorded during the study period, representing 20 different species/sonotypes (Table S1). PCAs based on acoustic features showed that, for mormoopids, automatic parameter
extraction often resulted in measurement values coming from different harmonics (Fig. 2). *Pteronotus alitonus* and *P. rubiginosus* clearly separated as distinct clusters and, although less evident, *P. personatus* and *P. gymnonotus* were also quite distinctly separated. Similarly, species with modulated calls such as vesperilionid or furipterid bats were split in rather well-defined bands. In contrast, except for *Saccopteryx bilineata* and *S. leptura*, emballonurid and molossid bats showed less defined limits between groups.
Figure 2. Principal component analyses (PCA) based on measurements of a series of acoustic parameters (see Methods) that were automatically extracted with SCAN’R, and manually classified to species/sonotype level following López-Baucells et al. (2016).

3.2 Minimum training dataset size and variable importance

We found that, in order to achieve a minimum general accuracy of ~85%, a training dataset of more than 500 pulses per species/sonotype was required (Fig. 3A). Classifications undertaken with training datasets based on only 50 pulses showed large variation in accuracy, reaching values below 75%. Classification performance was consistent between accuracy and kappa metrics. “High end of characteristic frequency” (equivalent to the frequency of the knee) was the most important variable in the RF model, followed by “Maximum frequency” and “Dominant frequency” (equivalent to the frequency of maximum energy). However, except for “Length of the dominant frequency”, “Duration”, “Bandwidth” and “Curvature”, all the variables showed quite similar importance values (Fig. 3B)
Figure 3. A) Classifier performance, evaluated as general accuracy and kappa, for a random forest model built with different-sized training datasets (50 to 2000 pulses/sonotype). The x-axis has been scaled to allow better visualization. Dots are medians, boxes 25% and 75% quartiles and whiskers denote the range. B) Importance of each variable in the random forest model trained with 2000 reference pulses per species/sonotype.

3.3 Classifier performance at species/sonotype level

Algorithm performance varied substantially among species/sonotypes (Table S4). Seven had values above 90% for both sensitivity and PPV (*P. alitonus*, *P. rubiginosus*, Vespertilionidae 1, *Myotis nigricans*, *Centronycteris maximiliani*, *Myotis riparius* and *S. bilineata*), indicating
not only that most of the recordings were correctly assigned, but also that few other recordings were confused with these species (Table 1, Table S4). On the other hand, for other species such as *Furipterus horrens*, Emballonuridae 1, *P. gymnonotus*, Molossidae 3, *Promops* spp. and *P. personatus* there were considerable differences between metrics. For these, we found a low number of false negatives but a large number of false positives (low PPV). Molossidae 1 and 2 were the sonotypes with poorest levels of correct identifications, and *R. naso* (for which we had a very limited number of recordings) was the only species for which the classifier completely failed. Comparing the RF models trained with calls from free-flying vs. hand-released bats, the former nearly always outperformed the latter (Table 1). *Pteronotus alitonus* and *P. rubiginosus* obtained a similar proportion of correct identifications in both HR and FF algorithms, and Molossidae 3 was the only sonotype for which higher sensitivity scores were obtained using calls from hand-released bats, although it also had lower PPV.
Table 1. Performance of the random forest classifier for each species/sonotype based on calls from either free-flying (FF) or hand-released (HR) bats. Classification performance is ranked according to sensitivity and positive predictive value (see Methods for an explanation of the rationale underpinning this selection) as > 90% (dark green), 80 - 90% (olive green), and < 80% (light green).

<table>
<thead>
<tr>
<th>Species/sonotypes</th>
<th>Acronym</th>
<th>Sensitivity</th>
<th>Positive Predictive Value (PPV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FF</td>
<td>HR</td>
</tr>
<tr>
<td>Pteronotus alitonus</td>
<td>PA</td>
<td>0.96</td>
<td>0.92</td>
</tr>
<tr>
<td>Pteronotus rubiginosus</td>
<td>PR</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>Vespertilionidae 1</td>
<td>V1</td>
<td>0.95</td>
<td>0.76</td>
</tr>
<tr>
<td>Myotis nigricans</td>
<td>MN</td>
<td>0.93</td>
<td>0.32</td>
</tr>
<tr>
<td>Furipterous horrens</td>
<td>FH</td>
<td>0.93</td>
<td>0.88</td>
</tr>
<tr>
<td>Centronycteris maximiliani</td>
<td>CM</td>
<td>0.92</td>
<td>0.76</td>
</tr>
<tr>
<td>Myotis riparius</td>
<td>MR</td>
<td>0.91</td>
<td>0.83</td>
</tr>
<tr>
<td>Saccopteryx bilineata</td>
<td>SB</td>
<td>0.91</td>
<td>0.42</td>
</tr>
<tr>
<td>Emballonuridae 1</td>
<td>E1</td>
<td>0.90</td>
<td>0.00</td>
</tr>
<tr>
<td>Cormura brevirostris</td>
<td>CB</td>
<td>0.89</td>
<td>0.58</td>
</tr>
<tr>
<td>Peropteryx kappleri</td>
<td>PK</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Peropteryx macrotis</td>
<td>PM</td>
<td>0.88</td>
<td>0.27</td>
</tr>
<tr>
<td>Saccopteryx leptura</td>
<td>SL</td>
<td>0.88</td>
<td>0.76</td>
</tr>
<tr>
<td>Pteronotus gymnonotus</td>
<td>PG</td>
<td>0.86</td>
<td>0.17</td>
</tr>
<tr>
<td>Molossidae 3</td>
<td>M3</td>
<td>0.84</td>
<td>0.92</td>
</tr>
<tr>
<td>Promops sp.</td>
<td>P</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Combining automatic classification with manual post-validation

The total number of files to be visually confirmed after automatic classification ranged from ~20%, when the desired accuracy threshold was set to 60%, to ~30%, when it was set to 95% (Fig. 4). Following the same pattern found for species/sonotype-specific predictive performance (Table 1), for some categories the number of files to be post-validated did not differ substantially for the different accuracy thresholds mentioned previously, while for others, this percentage varied up to 30%. Only in few cases was there marked variation depending on the chosen accuracy threshold (from 40 to 90% for Emballonuridae 1 and *P. personatus*).
Figure 4. Percentage of files requiring visual post-validation as a function of the desired accuracy threshold for identification acceptance. Shaded area: Percentage of the whole dataset. Coloured lines: Percentage for each family; Species acronyms are as given in Table 1. Analysis was based on a random forest model, trained with 2000 pulses per species/sonotype (with the exception of *Rhynchonycteris naso* and *Furipterus horrens*, for which we had fewer recordings, see Methods).
4. Discussion

Our analyses suggest an inexpensive and relatively user-friendly approach (Fig. 1) to automatically classify large amounts of bat echolocation data, followed by visual post-validation of a reduced proportion of the original acoustic dataset. This approach overcomes the acknowledged risks and biases associated with the exclusive reliance on current automatic classifiers (Russo & Voigt 2016). Using recordings obtained under real field conditions from a 3-year-long study in the Central Amazon, we confirmed the reliability of using locally-recorded echolocation calls from free-flying bats to train a custom-built classifier that automatically identifies the calls of a large subset of the species/sonotypes in the local assemblage with high accuracy (>90%) and leaves the rest to be manually classified. This automatic pre-classification reduces the total number of recordings to be visually inspected, therefore optimizing the classification process. This equates to considerable time savings, especially in the case of projects that accumulate massive acoustic data. However, due to the customizable nature of this approach, the advantages of using recordings from free-flying bats hinge on manually pre-identifying a decent amount of calls from free-flying bats using release calls as references, literature and echolocation keys. This obviously entails the risk of including misidentified calls as a source for training the algorithm, a problem we overcame by restricting the classification of the recordings to easily distinguishable species/sonotypes, therefore avoiding misidentifications.

Being non-intrusive, automated recording systems and soundscape studies have recently become very popular, and have considerably improved our knowledge about the natural history of elusive bat species, anthropogenic impacts and wildlife conservation in habitats where sampling by traditional methods such as mist-netting would be inefficient or unfeasible (Kubista & Bruckner 2017). However, in developing countries where funding is particularly limited, the widespread use of bioacoustics is still severely hampered by its elevated costs and
cost-effective alternatives need to be found quickly. This has inspired a new trend towards developing user-friendly detectors and automatic classifiers which are fully customizable at reduced cost (Whytock et al. 2017; Hill et al. 2018). Reliance on self-built classification algorithms could greatly contribute to studies in regions for which no automatic classifier is available as part of commercially available software packages.

4.1 Minimum training dataset size and variable importance

We identified the minimum number of pulses that should be used in the training dataset in order to achieve general accuracy levels between 75 and 95%. Our results show that training the algorithm with 500 pulses per species/sonotype results in average classifier performance > 85%. However, this reference value should be interpreted carefully as it depends on whether the species that are most frequently detected in a region are also those whose echolocation call characteristics are more clearly distinct and thus the species more easily identifiable or not. In our case, the most common species (P. rubiginosus, Myotis nigricans and M. riparius), all easy to identify, might be positively biasing general accuracy, thus masking lower accuracies for the remaining categories (Biscardi et al. 2004).

The variables that contribute most to separating species may not be the same in all assemblages. For example, Monadjem et al. (2017) found that call duration represented one of the most relevant parameters to distinguish between species, while in our study, we obtained higher importance weights for several other variables. This probably reflects the diversity of pulse shapes and structures found in Neotropical aerial insectivorous bats. By including different variables in the algorithm, one can probably achieve better classification performance in such highly diverse areas (Walters et al. 2013).

4.2 Classifier performance at species/sonotype level
Random forest performed very well with our dataset, confirming its potential use for analysing bat acoustic datasets. Among the available machine learning algorithms, random forest has already been successfully used in automatic species classification for bats (Armitage & Ober 2010; Zamora-Gutiérrez et al. 2016) and other taxa such as birds (Briggs et al. 2009) and dolphins (Barkley et al. 2011). We obtained similar mean accuracies to those found in previous studies, although results varied among species and families (e.g. MacSwiney et al. 2008; Pio et al. 2010; Britzke et al. 2011; Zamora-Gutiérrez et al. 2016). For Neotropical bats, large variability in predictive power is found for Vespertilionidae and Molossidae, while Emballonuridae and Mormoopidae are usually more accurately identified (Zamora-Gutiérrez et al. 2016). Previous studies have evaluated the performance of automatic algorithms for classifying bat calls at species, genus, family or guild level (Zamora-Gutiérrez et al. 2016; Vassilos et al. 2017). However, it is now widely accepted in the scientific community that automatic classification must be used cautiously (Russo & Jones 2002; Russo & Voigt 2016; Monadjem et al. 2017). In this study, we aimed to optimize the classifiers not at species level but using sonotypes. Although classifying all calls to species level would be ideal, using sonotypes may be sufficient in most cases, obviously depending on a project’s specific aims (Redgwell et al. 2009; Armitage & Ober 2010).

For seven out of 20 species/sonotypes we obtained very high values (>90%) for both sensitivity and PPV, proving that our random forest algorithm could be used with great confidence to detect and automatically classify them in our recordings. Very few false positives and false negatives were found, indicating that our classifier neither gets them wrong, nor ignores them when they are present (see Table 1). These species are also the most predominant in our dataset, which turns our classifier into a great tool due to its potential to greatly reduce the number of files to be manually analysed (Andreassen et al. 2014). One of the main reasons to explain the classification failure of some categories is the limited capacity
of SCAN’R to detect and characterize pulses of different lengths (our SCAN’R pulse detection settings were more suitable for long pulses). This will certainly improve soon with new technological advances, or alternatively, could be better implemented through R sound packages. Previous studies have exclusively used accuracy as a means of evaluating algorithm performance and predictive capacity (i.e. Wordley et al. 2014; Zamora-Gutiérrez et al. 2016). However, other more conservative metrics such as positive predictive value and sensitivity are often neglected. We encourage developers of algorithms and researchers to better scrutinize classifier performance by focusing on these more reliable metrics.

4.3 Classifier trained with calls from free-flying versus hand-released bats

We compared the performance of the random forest classifier trained with calls from free-flying versus hand-released bats, using only data collected during the 3-year-period of the project. Classifier performance was substantially better using recordings from free-flying bats, probably due to the low number of recordings from hand-released bats for most of the species. In this regard it is important to mention that the effort required to compile complete reference call libraries of good quality using hand-released bats and which cover different environmental situations is titanic (O’Farrell et al. 1999). In fact, this has probably discouraged many researchers from developing their own classifiers so far.

Globally, echolocation call libraries are incomplete, especially in understudied regions such as most of the tropics (Aguilar 2017). Due to species elusiveness, whispering behaviour or rarity, call libraries are usually only built with calls from a few hand-released individuals (Gager et al. 2016; Zamora-Gutiérrez et al. 2016; Monadjem et al. 2017). Although some studies have not found marked differences in automatic classifiers trained with data from distant regions (e.g. Zamora-Gutiérrez et al. 2016), other authors highlight the importance of taking these differences into consideration (Thomas et al. 1987; Barclay et al. 1999; O’Farrell et al. 2000; López-Baucells et al. 2017b). Although we urge and support the compilation of
comprehensive reference call libraries, our study suggests that training automatic classifiers with manually identified free-flying bats is a very valid option if it is cautiously used in conjunction with conservative classification criteria. As stressed by Jakobsen et al. (2013), it is of vital importance to record calls from naturally behaving bats in the wild and use these recordings to improve classifier performances.

4.4 Combining automatic classifiers with manual post-validation

No classifier has proved to provide 100% accuracy so far (Russo & Voigt 2016). Therefore, some authors have recommended to manually validate all sound files (Kubista & Bruckner 2017), which inevitably annihilates or at least greatly reduces the advantages of having automatic algorithms. In other cases, posterior cross-validation is completely neglected, which greatly affects the reliability of the study. According to our findings, even when aiming for an accuracy threshold of 95%, the remaining amount of data to be visually validated could be reduced by up to 75%. This represents a substantial saving in terms of workload.

Different acoustic analysis software with automatic classifiers has been released on the market in the last decades: batIdent (ecoObs, GmbH, Nürnberg, Germany), Kaleidoscope (Wildlife Acoustics, USA), Sonochiro (Sonochiro, France), Sonobat (Sonobat, USA), SCAN’R (Binary Acoustic Technology, USA) and more recently Tadarida (Bas et al. 2017), multiplying the options available to researchers to use technological advances to aid acoustic species identification. The best option for analysing the massive amounts of acoustic data generated by the latest recording devices without compromising the reliability of results, inevitably, lies in finding the right balance between automatic classification and manual cross-validation. This is especially true for threatened or rare species for which false positives will have greater conservation impact (Clement et al. 2014).

4.5 Recommendations for effectively combining automatic and manual classification
Our approach, while highly versatile, requires that researchers must: A) have good knowledge about the bat fauna of the region (avoiding novice errors that result in misidentifications or passive acceptance of the results from any classifier and acknowledging regional and habitat variation), B) work together with experts on local call libraries and manual identifications, C) be skilled in programming in R or similar software packages, thus being able to adjust machine learning algorithms to particular situations, D) take into consideration both sensitivity and positive predictive values rather than global accuracies, E) define their own sonotypes conservatively (preventing classification to taxonomic levels that are not even visually distinguishable). We also recommend to base selection criteria on the PPV as the most conservative metric of performance (Armitage & Ober 2010) since false negatives are always better than false positives.

5. Conclusions

Further research should focus on isolating and analysing individual call sequences instead of pulses, and analyse the whole sonogram rather than the pulses one by one (Ren et al. 2009; Damoulas et al. 2010; Kershenbaum et al. 2014). Our study shows how open-source statistical tools and software can be used to develop algorithms attaining similar levels of accuracy as commercial classifiers. However, their potential for wider application should be further explored with echolocation datasets from other regions. We also demonstrated that training algorithms with recordings from free-flying bats is possible and advisable if designed to classify recordings at sonotype level. This approach is not conceived to replace the use of calls from hand-released bats, but to aid in data management and classification with massive datasets. Combined with the availability of new low-cost automatic detectors and powerful supervised machine-learning algorithms, our analysis approach opens new opportunities for long-term monitoring programs to be undertaken by researchers in megadiverse regions where echolocation libraries are still scarce. In fact, in these regions, extended acoustic bat
monitoring is urgently needed, and fortunately, the technical and analytical tools are now at hand to do so.
6. Acknowledgements

We would like to thank Oriol Massana, Diogo Ferreira, Marta Acácio, Fabio Farneda, Madalena Boto, Maria Mas, Gilberto Fernández and Eva Sánchez for fieldwork assistance and José Luís Camargo, Rosely Hipólito, Ary Jorge Ferreira, Luiz Quiroz, Leo and Josimar for logistical support. We thank two anonymous reviewers for helpful comments on an earlier version of the manuscript. Xavier Puig-Montserrat and Carles Flaquer also deserve special mention for their contribution to the discussion and continuous support. This work was supported by the Portuguese Foundation for Science and Technology under grants [PTDC/BIABIC/111184/2009] (CM), [SFRH/BD/80488/2011] (RR), [PD/BD/52597/2014] (ALB) and by the Foundation for Research Support of the State of Amazonas [FAPEAM 062.01173/2015] (PEDB). Additional funding was provided by a Bat Conservation International student research fellowship to ALB and RR. This is publication XXX in the BDFFP Technical Series.
References

