
The ER-alph a  m u t a tion  Y537S 
confe rs  Tamoxifen-r esis tance  via 

e n h a nce d  mi tochond rial 
m e t a bolism, glycolysis a n d  Rho-

GDI/PTEN sign aling  : implica ting 
TIGAR in som a tic r esis tance  to 

e n doc rine  the r a py
Fiorillo, M, Sa nch ez-Alvarez, R, Sotgia, F  a n d  Lisanti, MP

10.18632/aging.101690

Tit l e The  ER-alph a  m u t a tion  Y537S confers  Tamoxifen-
r esis tance  via en h anced  mi tochond rial m e t abolism, 
glycolysis a n d  Rho-GDI/PTEN sign aling  : implica ting  
TIGAR in so m atic  r esis t ance  to  en doc rine  t he r apy

Aut h ors Fio rillo, M, Sanch ez-Alvarez, R, So tgia,  F  a n d  Lisan ti, MP

Type Article

URL This ve rsion is available  a t :  
h t tp://usir.salford.ac.uk/id/ep rin t/49644/

P u b l i s h e d  D a t e 20 18

USIR is a  digi tal collec tion  of t h e  r ese a rch  ou tpu t  of t h e  Unive rsi ty of S alford.  
Whe r e  copyrigh t  p e r mi ts, full t ext  m a t e rial h eld  in t h e  r e posi to ry is m a d e  
freely available  online  a n d  can  b e  r ea d,  download ed  a n d  copied  for  non-
co m m e rcial p r iva te  s t udy or  r es ea rch  p u r poses. Please  check  th e  m a n u sc rip t  
for  a ny fur the r  copyrigh t  r es t r ic tions.



For  mo r e  infor m a tion, including  ou r  policy a n d  su b mission  p rocedu r e,  please
con t ac t  th e  Reposi to ry Team a t:  usi r@salford.ac.uk.

mailto:usir@salford.ac.uk


www.aging�rus.com�� 4000�� AGING 

 

INTRODUCTION 
 
In human breast cancer patients, the hormone estrogen 
and its main receptor (ESR1), are key drivers of tumor 
initiation, cancer progression and ultimately metastasis 
[1-4].   As  a  consequence,  targeted  therapies,  such  as 

 

Tamoxifen, were first developed to inhibit estrogen 
receptor signaling, in ER(+) breast cancer cells [5]. 
Historically, Tamoxifen represents one of the earliest 
forms of targeted therapy and was first clinically trialed 
in the 1970’s, at the Christie Hospital in Manchester, 
UK [6-8].  
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ABSTRACT 
 
Naturally�roccurring��somatic��mutations��in��the��estrogen��receptor��gene��(ESR1)��have��been��previously��implicated��in
the��clinical��development��of��resistance��to��hormonal��therapies,��such��as��Tamoxifen.� � � �For��example,��the��somatic
mutation��Y537S��has��been��specifically��associated��with��acquired��endocrine��resistance.��Briefly,��we��recombinantly�r
transduced��MCF7��cells��with��a��lentiviral��vector��encoding��ESR1��(Y537S).��As��a��first��step,��we��confirmed��that��MCF7�r
Y537S��cells�� are�� indeed�� functionally�� resistant�� to�� Tamoxifen,�� as�� compared��with�� vector�� alone��controls.
Importantly,��further��phenotypic��characterization��of��Y537S��cells��revealed��that��they��show��increased��resistance��to
Tamoxifen�rinduced��apoptosis,��allowing��them��to��form��mammospheres��with��higher��efficiency,��in��the��presence��of
Tamoxifen.��Similarly,��Y537S��cells��had��elevated��basal��levels��of��ALDH��activity,��a��marker��of��“stemness”,��which��was
also��Tamoxifen�rresistant.��Metabolic��flux��analysis��of��Y537S��cells��revealed��a��hyper�rmetabolic��phenotype,��with
significantly��increased��mitochondrial��respiration��and��high��ATP��production,��as��well��as��enhanced��aerobic
glycolysis.� � � �Finally,��to��understand��which��molecular��signaling��pathways��that��may��be��hyper�ractivated��in��Y537S
cells,��we��performed��unbiased��label�rfree��proteomics��analysis.��Our��results��indicate��that��TIGAR��over�rexpression
and�� the��Rho�rGDI/PTEN��signaling��pathway��appear�� to��be��selectively��activated��by�� the��Y537S��mutation.
Remarkably,��this��profile��is��nearly��identical��in��MCF7�rTAMR��cells;��these��cells��were��independently�rgenerated��in
vitro,��suggesting��a��highly��conserved��mechanism��underlying��Tamoxifen�rresistance.��Importantly,��we��show��that
the��Y537S��mutation��is��specifically��associated��with��the��over�rexpression��of��a��number��of��protein��markers��of��poor
clinical��outcome��(COL6A3,��ERBB2,��STAT3,��AFP,��TFF1,��CDK4��and��CD44).����In��summary,��we��have��uncovered��a��novel
metabolic��mechanism��leading��to��endocrine��resistance,��which��may��have��important��clinical��implications��for
improving��patient��outcomes.����
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Unfortunately, however, endocrine therapy ultimately 
fails in a significant number of patients on long-term 
anti-estrogen therapy, due to the acquired emergence of 
drug-resistance. The resulting treatment failure often 
has dire consequences for the patient, with the 
emergence of tumor recurrence and distant metastasis, 
resulting in poor clinical outcomes.  
 
If we are going to successfully prevent or reverse 
treatment failure, we need to know the underlying 
mechanism(s) by which ER(+) tumor cells can success-
fully escape the effects of hormonal therapy. Until 
recently, the prominent role of somatic mutations in the 
estrogen receptor, in conferring resistance to endocrine 
therapy, has remained largely unappreciated [4, 9]. 
 
These somatic mutations can significantly change the 
conformation and functional activity of the estrogen 
receptor, effectively locking it a constitutively-activated 
state [10]. Two of the most common mutations, namely 
Y537S and D538G, both allow the estrogen receptor to 
bind coactivators, in the absence of the estrogen ligand, 
resulting in a constitutively-active receptor [11-13]. 
 
Here, we mechanistically studied the phenotypic effects 
of the Y537S mutation on MCF7 cells in culture. For 
this purpose, we created a genetic model in MCF7 cells 
by stably over-expressing the ESR1 cDNA carrying the 
Y537S mutation. Importantly, we show that the Y537S 
mutation confers a hyper-active phenotype, due to the 
metabolic re-programming of mitochondrial function 
and the glycolytic pathway, resulting in increased ATP 
production and resistance to apoptosis, effectively 
protecting CSCs from the anti-mitochondrial effects of 
Tamoxifen.  
 
Interestingly, it is well-known that Tamoxifen also 
functions as an inhibitor of mitochondrial complex I 
activity [14, 15]. Therefore, it is perhaps not surprising 
that Tamoxifen resistance could be achieved, by the 
ability of the Y537S mutation to effectively augment 
mitochondrial “power”.  
 
In support of this hypothesis, high levels of key 
mitochondrial markers, including complex I proteins, 
are specifically-associated with Tamoxifen-resistance in 
human breast cancer patients [16]. 
 
RESULTS 
 
Generating a genetic model of Tamoxifen-resistance: 
MCF7-Y537S cells 
 
Somatic mutations of the human estrogen receptor alpha 
(ESR1) have been directly implicated in the patho-
genesis of hormonal therapy resistance in human breast 

cancer patients [1, 9]. However, the exact mecha-
nism(s) by which these ESR1 mutations induce 
Tamoxifen-resistance remains largely unknown. To 
begin to dissect how these mutations phenotypically 
confer drug resistance, we chose to construct an in vitro 
genetic model, using MCF7 cells, an ER(+) breast 
cancer cell line.  
 
Briefly, MCF7 cells were transduced with a lentiviral 
vector carrying the Y537S mutation of ESR1 and 
positive “pools” of cells were selected, using a puro-
mycin resistance cassette. Four other isogenic MCF7 
cells lines were also generated in parallel, which served 
as negative controls for these experiments: ESR1 (WT 
and Y537N), ErbB2 and empty-vector (EV).  
 
To directly determine the validity of our model system, 
MCF7-Y537S cells were cultured for 5 days in the 
presence of Tamoxifen (1 µM) to assess its affect on 
cell viability.  Importantly, Figure 1 shows that only 
MCF7-Y537S cells manifest a Tamoxifen-resistance 
phenotype, while all the other MCF7 cell lines tested 
remained completely Tamoxifen-sensitive.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure��1.��Lentiviral��transduction��with��the��ESR1��(Y537S)
mutation�� is�� sufficient�� to�� stably�� confer�� Tamoxifen�r
resistance�� in�� MCF7��cell��monolayers:�� Effects�� on�� cell
viability.��Briefly,��MCF7��cells��were��stably�rtransduced��with��either
ESR1��(WT,��Y537S,��or��Y537N)��or��ErbB2��(HER2),��to��genetically
create��a��clinically��relevant��model��of��hormone��therapy��resis�r
tance.��Vector��alone��control��MCF7��cells��were��generated�� in
parallel�� (empty�� vector;��EV;�� p�rEV�r105�rpuroR),�� as�� a�� negative
control.��Importantly,��note��that��MCF7�rY537S��cells��clearly��show
resistance��to��4�rOHT��(1��µM).��The��SRB��assay��was��performed��as��a
measure��of��cell��viability��and��the��experiment��was��carried��out��for
5��days.��In��contrast,��4�rOHT��has��significant��inhibitory��effects��on
the��viability��of��the��other��MCF7��cell��lines.��**��p<0.005.��
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These findings provide the necessary evidence for the 
use of MCF7-Y537S cells as a valid genetic model of 
Tamoxifen-resistance.  Since the Y537N mutation did 
not drive Tamoxifen resistance in this context, other 
micro-environmental factors may be needed to observe 
this phenotype.  
 
Y537S drives resistance to Tamoxifen-induced 
apoptosis, enhancing mammosphere formation 
 
An additional mechanism by which the Y537S mutation 
may contribute to Tamoxifen-resistance is its potential 
effect(s) on “stemness” and/or apoptosis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To test this hypothesis, we first assessed potential 
effects on CSC propagation, using the mammosphere 
assay. In the absence of Tamoxifen, the Y537S muta-
tion had no effect on mammosphere formation. 
However, in the presence of Tamoxifen, the Y537S 
mutation significantly promoted mammosphere forma-
tion, by nearly 2-fold. However, similar effects were 
also observed with the wild-type ESR1. Quantitation of 
these results is presented in Figure 2 and representative 
images are shown in Figure 3.  
 
One mechanism by which the Y537S mutation may 
promote  mammosphere  formation  in  the  presence  of  

Figure��2.��MCF7�rY537S��cells��are��resistant��to��the��inhibitory��effects��of��Tamoxifen��on��mammosphere��formation:
Quantitation.��Mammosphere��formation��assays��were��carried��out��for��5��days,��in��6��well�rplates,��under��low�rattachment
conditions.��All��the��transfected��MCF7��cell��lines��were��grown��as��mammospheres.��Note��that��72h��of��pre�rtreatment��with��4�rOHT
(1��µM)��inhibits��mammosphere��formation��efficiency��(MFE),��in��all��transfected��cell��lines,��with��the��exception��of��MCF7�rY537S
and��MCF7�rESRI��(WT)��cells.��In��contrast,��no��changes��in��mammosphere��formation��were��observed��in��the��absence��of��4�rOHT��(1
µM)��pre�rtreatment.��**��p<��0.005;��ns��=��not��significant��evaluated��by��Student’s��t��test.��(Panel��A)��Treated��(RED)��vs.��Untreated
(BLUE);��(Panel��B)��Untreated;��(Panel��C)��Treated��with��4�rOHT.��EV,��empty��vector��control;��+,��plus��Tamoxilen;���r,��no��Tamoxilen.��
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Tamoxifen is by conferring resistance to apoptosis. In 
direct support of this hypothesis, Figure 4 highlights 
that the Y537S mutation significantly reduces annexin-
V staining in the presence of Tamoxifen, as revealed by 
FACS analysis, consistent with apoptosis resistance.  
 
As a second independent marker of “stemness”, we next 
assessed the levels of ALDH activity, by using 
ALDEFLUOR as a fluorescent probe, during FACS 
analysis. Briefly, all the transfected MCF7 cell lines 
were first grown  as  mammospheres  and  then  used  to  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure��4.��MCF7�rY537S��cells��are��resistant��to��the��pro�rapoptotic��effects��of��4�rOHT.��Briefly,��the��transduced��MCF7��cell��lines
were��all��plated��in��6�rwell��plates.��On��the��next��day,��the��cells��were��treated��with��4�rOHT��(1��µM)��for��72��hours.��MCF7�rEV��cells��were
processed��in��parallel,��as��a��negative��control.��Bar�rgraphs��were��used��to��summarize��the��overall��results.��Note��that��annexin��V��levels
were��increased��in��all��transfected��cell��lines;��however,��MCF7�rY537S��cells��were��specifically��resistant��to��the��pro�rapoptotic��effects��of
4�rOHT.��* ��p<0.05.��In��contrast,��no��changes��in��Annexin��V��levels��were��observed��in��all��transfected��cells,��in��the��absence��of��4�rOHT��(1
µM);��ns��=��not��significant.��(Panel��A)��Treated��(RED)��vs.��Untreated��(BLUE);��(Panel��B)��Untreated;��(Panel��C)��Treated��with��4�rOHT.��

Figure��3.��MCF7�rY537S��cells��are��resistant��to��the��inhibitory
effects��of��Tamoxifen��during��mammosphere��formation:
Representative��images.��Note�� that��overall��4�rOHT�� (1��µM)
treatement��reduces��mammosphere��formation;��however,��MCF7�r
Y537S��cells��remain��largely��unaffected.��Representative��images
are��shown.��The��MCF7�rY537S��cells��show��an��obvious��resistance��to
4�rOHT.��The��images��were��obtained��with��an��Olympus��microscope
(4X��objective,��bright��field).��
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prepare a single-cell suspension. Importantly, only 
Y537S cells showed significant increases (>3-fold) in 
ALDH activity (Figure 5A).  Also, note that treatment 
with 4-OHT (1 µM) inhibits ALDH activity in empty 
vector (EV) control cells, but not in MCF7-Y537S cells 
(Figure 5B). This observation is consistent with the idea 
that increased “stemness”, driven by the Y537S 
mutation, helps to confer tamoxifen-resistance.  
 
Y537S confers a hyper-metabolic phenotype, with 
increased mitochondrial function and ATP 
production, elevated mitochondrial biogenesis and 
enhanced glycolysis 
 
We next hypothesized that one phenotypic mechanism 
by which the Y537S mutation may confer Tamoxifen-
resistance is via the process of metabolic reprogram-
ming.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As a consequence, we subjected Y537S cells to 
metabolic phenotyping with the Seahorse XFe96 
metabolic flux analyzer. Figures 6 and 7 show the 
results of these studies. Importantly, we observed that 
the Y537S mutation significantly increases the 
mitochondrial oxygen consumption rate (OCR) and 
ATP production, by >3-fold and ~2-fold, respectively. 
Similarly, the Y537S mutation also substantially 
elevated glycolysis and the glycolytic reserve capacity, 
by nearly 2-fold. Therefore, MCF7-Y537S cells are 
hyper-metabolic, with enhanced mitochondrial and 
glycolytic function.  
 
This elevated mitochondrial function may be due to 
increased mitochondrial biogenesis. Figure 8 illustrates 
that the Y537S mutation increases both mitochondrial 
mass and mitochondrial membrane potential, as 
observed by flow-cytometry with MitoTracker probes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure��5.����MCF7�rY537S��cells��show��increased��ALDH��activity,��which��is��resistant��to��Tamoxifen��treatment. ��All
the��transfected��MCF7��cell��lines��were��first��grown��as��mammospheres��and��then��used��to��prepare��a��single�rcell��suspension,
which��was��subjected��to��“stemness”��assays��with��ALDEFLOUR,��to��measure��ALDH��activity.� � � � Importantly,��only��Y537S��cells
show��significant��increases��(>3�rfold)��in��ALDH��activity.����Also,��note��that��treatment��with��4�rOHT��(1��µM)��inhibits��ALDH��activity
in��empty��vector��(EV)��control��cells,��but��not��in��MCF7�rY537S��cells.��* ��p<��0.05;��*** ��p<��0.0005;��ns��=��not��significant,��as
evaluated��by��Student’s��t��test.��(Panel��A)��ALDH��activity;��(Panel��B)��ALDH��activity,��with��and��without��treatment��with��4�rOHT.
This��observation��is��consistent��with��the��idea��that��increased��stemness��helps��to��confer��tamoxifen�rresistance.������
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This approach allowed us to calculate the activity/mass 
ratio, which was also increased in MCF7-Y537S 
cells.  
 
Remarkably, previous studies with TAMR cells showed 
similar metabolic re-programming, with increased OCR 
and ATP production, as well as elevated mitochondrial 
biogenesis [17]. TAMR cells are an MCF7-based model 
of Tamoxifen-resistance, generated via the long-term 
culture of MCF7 cells in the presence of increasing 
concentrations of Tamoxifen [17, 18].  
 
Proteomics analysis reveals that the Y537S mutation 
up-regulates key metabolic targets and hyper-
activates Rho-GDI/PTEN signalling in MCF7 cells.  
 
To further validate the hyper-metabolic phenotype that 
we observed via Seahorse analysis, we next subjected 
MCF7-Y537S cells to unbiased label-free proteomics 
analysis.  For example, MCF7-Y537S cells were 
compared to MCF7-ESR1(WT) and empty-vector alone 
control cells, all in the presence of Tamoxifen.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Relative to ESR1(WT), the ESR1(Y537S) mutant 
showed dramatic increases in 33 mitochondrial proteins, 
consistent with increased mitochondrial oxygen con-
sumption (OXPHOS) and elevated mitochondrial bio-
genesis (Supplementary Table S1).  Several key com-
ponents of Complex I were also up-regulated 
(NDUFB10, NDUFV1, NDUFA5). In addition, the 
ESR1(Y537S) mutant showed significant elevations in 
glycolytic and PPP enzymes (Supplementary Table S2), 
including TIGAR, which has been previously shown to 
be sufficient to confer Tamoxifen-resistance. In this 
context, TIGAR expression was infinitely up-regulated 
by the ESR1(Y537S) mutation. Interestingly, the 
ESR1(Y537S) mutant was specifically associated with 
high levels of seven markers of poor clinical outcome 
(COL6A3, ERBB2, STAT3, AFP, TFF1, CDK4, CD44) 
(Supplementary Table S3). Thus, a single point 
mutation in the estrogen receptor can drive extensive 
metabolic re-programming. 
 
We also compared the profile of MCF7-Y537S cells 
with   MCF7-TAMR   cells,   another   more  established 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure��6.��MCF7�rY537S��cells��show��a��significant��increase��in��mitochondrial��oxygen��consumption��rate��(OCR)
and��ATP��production.��The��Seahorse��XFe96��metabolic�rflux��analyzer��was��employed��to��determine��mitochondrial
function��in��all��of��the��MCF7��cell��transfectants,��after��48��hours��of��pre�rtreatment��with��4�rOHT��(1��µM).��(Panel��A)��A
representative��line��graph��of��3��independent��experiments��is��shown��(+/�r��SEM).��(Panels��B,��C��and��D)��Note��that��respiration
(basal��and��maximal),��as��well��as��ATP��levels,��were��significantly��increased��in��MCF7�rY537S��and��MCF7�rY537N��cells.
However,��MCF7�rY537S��cells��showed��that��largest��increases.��** ��p��<��0.001;��****�� p��<��0.00001;��ns��=��not��significant.��
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Tamoxifen-resistant cell line. TAMR cells were 
originally derived by chronically culturing MCF7 cells 
in low levels of Tamoxifen, and then increasing its 
concentration in a step-wise fashion over time. Remar-
kably, these extensive comparisons revealed that a Rho-
GDI/PTEN signaling pathway appears to be hyper-
activated in both of these Tamoxifen-resistant cell lines 
(Figure 9; see also Figures S1 to S4).  
 
Clinical relevance of metabolic marker proteins 
induced by the Y537S mutation: Predicting the 
response to endocrine therapy.  
 
To further validate the clinical relevance of our 
findings, we next assessed whether the “metabolic 
targets” that we identified in MCF7-Y537S cells were 
also transcriptionally upregulated in human breast 
cancer cells in vivo. For this purpose, we employed a 
published clinical data set of N=28 breast cancer 
patients in which their tumor samples were subjected  to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
laser-capture micro-dissection (25), to physically 
separate epithelial cancer cells from their adjacent 
tumor stroma. Supplementary Table S4 presents a 
summary of these findings.  Overall, many of the 
“metabolic targets” that we identified were also 
transcriptionally elevated in human breast cancer cells 
in vivo.  
 
Next, we determined if the metabolic proteins up-
regulated by the Y537S mutation in MCF7 cells have 
any clinical prognostic value, for predicting the onset of 
tamoxifen-resistance in breast cancer patients. For this 
purpose, we examined their mRNA expression levels in 
a cohort of ER(+)-patients. This population consisted of 
152 patients, with the most common sub-type of breast 
cancer (Luminal A), with local lymph-node (LN) 
metastasis at diagnosis, specifically undergoing endo-
crine therapy (mostly Tamoxifen), without any form of 
chemotherapy.   

Figure��7.��MCF7�rY537S��cells��show��a��significant��increase��in��extracellular��acidification��rate��(ECAR)��and
glycolysis��levels.��The��Seahorse��XFe96��metabolic�rflux��analyzer��was��employed��to��determine��the��metabolic��function
of��all��transfected��cells��after��48��hours��of��treatment��with��4�rOHT��(1��µM).����(Panel��A)��A��representative��line��graph��of��3
independent��experiments��is��shown��(+/�r��SEM).��(Panel��B)��Glycolysis��was��significantly��increased��only��in��MCF7�rY537S
cells��and��reduced��in��MCF7�rErbB2��and��MCF7�rESRI��cells.��(Panel��C)��Glycolytic��capacity��was��significantly��increased��only
in��MCF7�rY537S��and��reduced��in��MCF7�rErbB2��and��MCF7�rESRI��cells.��(Panel��D)��Glycolytic��reserve��capacity��was
significantly��increased��only��in��MCF7�rY537S��cells.��**��p��<��0.001;��***��p��0.0001;��**** ��p��<��0.00001;��ns��=��not��significant.��
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In this setting, Tamoxifen-resistance manifests itself 
clinically, as either i) tumor recurrence or ii) distant 
metastasis. As such, Kaplan-Meier (K-M) curves were 
constructed using recurrence-free survival (RFS) or 
distant-metastasis free survival (DMFS), over a period 
of 10 to 15 years of follow-up.   Hazard-ratios (HR) and 
p-values (log-rank test) were calculated and are as 
shown in Supplementary Tables S5 - S8.  
 
More specifically, Supplementary Tables S5 and S7 
highlight the mitochondrial mRNA transcripts associ-
ated with tumor recurrence and distant metastasis, 
respectively. Similarly, Supplementary Tables S6 and 
S8 show the glycolytic and PPP enzyme mRNA trans-
cripts associated with poor clinical outcomes.  
 
Note that the mRNA levels of key metabolic proteins in-
duced  by  the  Y537S  mutation  positively  predict  treat- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ment failure during endocrine therapy, highlighting their 
clinical relevance. These findings provide a direct functi-
onal link between the Y537S mutation, metabolic re-pro-
gramming and the clinical response to endocrine therapy.  
 
DISCUSSION 
 
Understanding how the Y537S mutation promotes 
Tamoxifen-resistance 
 
Somatic mutations in the estrogen receptor gene are 
specifically associated with the onset and development 
of hormone therapy resistance in human breast cancer 
patients [1, 3, 5]. In particular, the Y537S mutation 
drives endocrine resistance by maintaining the estrogen 
receptor in the constitutively activated state, resulting in 
an aggressive clinical phenotype, leading to tumor 
recurrence and distant metastasis [19, 20].  

Figure��8.��Mitochondrial��biogenesis��and��membrane��potential��are��increased��in��MCF7�rY537S��cells,��in��the��presence
of��4�rOHT.� � � �To��determine��the��possible��effects��of��the��Y537S��mutation��on��mitochondrial��biogenesis��and��membrane��potential,
MCF7�rY537S��cells��were��subjected��to��flow�rcytometry,��using��MitoTracker��probes.��FACS��analysis��was��carried��out��on��MCF7
transfected��cells��after��pre�rtreatment��with��4�rOHT.��(Panels��A��and��B)��Note��that��MCF7�rY537S��and��MCF7�rY537SN��cells��show��a
significant��increase��in��mitochondrial��mass��(MitoTracker��Deep�rRed),��but��an��increased��mitochondrial��membrane��potential
(MitoTracker��Orange)��was��observed��only��in��MCF7�rY537S��cells��in��growth��media��with��4�rOHT��(1��µM).��(Panel��C)��Finally,��the��ratio
(activity/mass)��of��mitochondrial��membrane��potential��(MitoTracker��Orange)��and��mitochondrial��mass��(MitoTracker��Deep�rRed)
was��increased��only��in��MCF7�rY537S��cells,��in��growth��media��containing��4�rOHT.��**��p��<��0.001;��***��p��0.0001;��ns��=��not��significant.��
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In this report, we generated a new cellular model of 
endocrine therapy resistance, by modeling the gain-of-
function effects afforded by the acquisition of the 
Y537S mutation. For this purpose, using a lentiviral 
vector, we inserted the cDNA encoding the mutated 
ESR1 (Y537S) gene into MCF7 human breast cancer 
cells. As negative controls, a series of other isogenic 
MCF7 cell lines, harboring the wild-type estrogen 
receptor and the empty-vector (EV), were also 
generated. Importantly, we first functionally validated 
that expression of the ESR1 (Y537S) mutant was indeed 
sufficient to experimentally confer Tamoxifen-
resistance, relative to other control cell lines, tested 
side-by-side.  Remarkably, the Y537S mutant conferred 
drug-resistance to Tamoxifen-induced cell apoptosis, 
allowing the efficient formation of 3D tumor spheroids, 
even in the presence of Tamoxifen.  
 
We also tested the hypothesis that the Y537S mutation 
confers an abnormal metabolic phenotype, reflecting a 
form of gene-induced metabolic re-programming. In 
particular, by using the Seahorse XFe96 metabolic flux 
analyser, we determined the effects of the Y537S 
mutation on the i) oxygen consumption rate (OCR) and 
ii) the extracellular acidification rate (ECAR), as well as 
ATP production. Interestingly, the Y537S mutation 
resulted in a hyper-metabolic state, accompanied by 
elevated rates of mitochondrial respiration, enhanced 
ATP levels and increased glycolysis. Consistent with 
these findings, the Y537S mutation  also increased mito- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chondrial mass and membrane potential, likely 
reflecting an increase in mitochondrial biogenesis.  
 
Unbiased proteomics analysis was carried out to 
identify the key metabolic targets that were increased by 
the Y537S mutation. Ultimately, over 30 nuclear-
encoded mitochondrial proteins were found to be over-
expressed, as well as greater than 9 enzymes linked to 
glycolysis and the pentose-phosphate pathway.  
 
Interestingly, the Y537S mutation was also linked to the 
over-expression of a number of protein markers of poor 
clinical outcome (TIGAR, COL6A3, ERBB2, STAT3, 
AFP, TFF1, CDK4, CD44).  Ingenuity Pathway 
Analysis (IPA) independently demonstrated that the 
proteomic profile of MCF7-Y537S cells is very similar 
to MCF7-TAMR cells, another Tamoxifen-resistant cell 
line created by chronic exposure to Tamoxifen [17]. 
Both cell lines show the hyper-activation of a Rho-
GDI/PTEN signaling pathway.  These novel mecha-
nism(s) driving Tamoxifen-resistance clearly have 
important implications for significantly improving 
clinical outcomes for breast cancer patients.   
 
Linking the Y537S mutation to TIGAR 
 
TIGAR (TP53-inducible glycolysis and apoptosis 
regulator) was originally discovered as a p53-regulated 
gene [21, 22]. However, TIGAR shows striking protein 
sequence similarity to the glycolytic enzyme that de-

Figure��9.��Ingenuity��Pathway��Analysis��(IPA)��of��proteomics��data��sets��obtained��from��two��distinct
Tamoxifen�rresistant��breast��cancer��cell��lines��(TAMR��vs.��MCF7�rY537S��cells).� � � �The��canonical��signaling
pathways��predicted��to��be��altered��are��shown.��Briefly,��both��4�rOHT��resistant��cell��lines��(TAMR��vs.��MCF7�rY537S)��were
compared��to��each��other,��as��well��as��with��MCF7��control��cells,��all��grown��as��monolayers.��HeatMaps��of��the��top��10
regulated��canonical��pathways��are��shown.��A��positive��z�rscore��(Orange)��points��towards��the��activation��of��a��signalling
pathway,��while��a��negative��z�rscore��(Blue)��indicates��the��inhibition��of��a��pathway��(p��<��0.05��and��cutoff��z�rscore��±��2).��
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grades fructose-2,6-bisphosphate, especially within its 
bisphosphate domain [23, 24]. Therefore, TIGAR likely 
functions as an inhibitor of glycolysis, but also 
stimulates the up-regulation of the pentose-phosphate 
pathway (PPP) and can confer protection against 
apoptosis [22, 23].  
 
Interestingly, we have previously shown that the 
expression of TIGAR is indeed sufficient to confer 
Tamoxifen-resistance [25]. Therefore, since the expres-
sion of TIGAR is infinitely up-regulated by expression 
of the Y537S mutation, this could also help explain the 
mechanism by which Y537S confers Tamoxifen-
resistance. 
 
Association of the Y537S mutation with COL6A3 
 
Collagen VI is an extracellular matrix protein that has 
been previously associated with tumor progression and 
distant metastasis [26].  Since the expression of 
COL6A3 is infinitely up-regulated by expression of the 
Y537S mutation, this could also explain how Y537S 
confers Tamoxifen-resistance. Tumor-specific isoforms 
of COL6A3 have been reported [27].  
 
Metabolic markers induced by the Y537S mutation 
determine the response to endocrine therapy 
 
Finally, we determined if the metabolic proteins up-
regulated by the Y537S mutation in MCF7 cells have 
any clinical prognostic value, for predicting the onset of 
tamoxifen-resistance   in  breast   cancer   patients   (i.e.,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tumor recurrence and/or distant metastasis). 
Importantly, our results indicate that the mRNA levels 
of key metabolic proteins induced by the Y537S muta-
tion positively predict treatment failure during endo-
crine therapy, highlighting their clinical relevance. 
These findings provide a direct functional link between 
the Y537S mutation, metabolic re-programming and the 
clinical response to endocrine therapy.  
 
Potential metabolic therapies for targeting 
Tamoxifen-resistance 
 
As our current results demonstrate that MCF7 cells 
harboring the Y537S mutation show characteristic 
features of metabolic re-programming and increased 
“stemness”, this suggests that patients harboring the 
Y537S mutation could ultimately benefit from treatment 
with metabolic therapeutics, specifically targeting i) 
mitochondrial metabolism, ii) glycolysis and iii) 
NAD(+) recycling (enumerated in Table 1). In previous 
studies, we have shown that several FDA-approved 
antibiotics (Doxycycline, Tigecycline, Azithromycin, 
Pyrvinium pamoate, Atovaquone and Bedaquiline) and 
natural products (Actinonin, CAPE, Berberine, 
Brutieridin and Melitidin) can all be used to effectively 
target mitochondria in ER(+) breast cancer stem cells 
(CSCs) [28-34]. Moreover, glycolysis inhibitors, such 
as Vitamin C (Ascorbic acid), 2-deoxy-glucose (2-DG), 
Silibinin, and Stiripentol, were also effective at 
targeting ER(+) breast CSCs [33, 34].  In addition, our 
clinical pilot study (Phase II) has already shown that 
Doxycycline pre-treatment is effective  in  ER(+)  breast  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table��1.����Potential��metabolic��therapies��for��targeting��Tamoxifen�rresistance.

1. Mitochondrial Inhibitors     References 
�x Doxycycline       [28,29,30] 
�x Tigecycline      [28,30] 
�x Azithromycin       [28,30] 
�x Pyrvinium pamoate      [28,30] 
�x Atovaquone         [30,31] 
�x Bedaquiline        [30,32] 
�x Actinonin       [30,33] 
�x CAPE (Caffeic Acid Phenyl Ester)    [30,33] 
�x Berberine       [30,34] 
�x Brutieridin & Melitidin (isolated from Bergamot)   [30,37] 

  
2. Glycolytic Inhibitors  

�x Vitamin C (Ascorbic acid)     [30,33,34] 
�x 2-Deoxy-Glucose (2-DG)      [30,33,34] 
�x Silibinin       [30,33] 
�x Stiripentol       [30,33,34] 

  
3. NAD(+) Inhibitors  

�x FK-866       [30,33] 
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cancer patients, for significantly reducing CSCs (by up 
to 66.67 %), with a response rate of nearly 90 % [35]. 
We anticipate that MCF7 cells recombinantly over-
expressing the ESR1-Y537S mutation will provide a 
new fruitful isogenic model for the metabolic screening 
of these and other candidate drugs, for combating 
Tamoxifen-resistance (Table 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSIONS 
 
In conclusion, here we have generated a genetic model 
of Tamoxifen-resistance in MCF7 cells, by over-
expressing a somatic mutation of the estrogen receptor, 
namely ESR1-Y537S.  Our results directly show that 
the Y537S mutation confers Tamoxifen-resistance by 
driving re-programming towards a hyper-active 
metabolic phenotype, characterized by high levels of 
OXPHOS and mitochondrial biogenesis, as well as 
elevated levels of glycolysis (Figure 10). This contention 
is supported by genetic evidence, quantitative metabolic 
flux analysis, flowcytometry, unbiased proteomics and 
computer-assisted bioinformatics analysis. These 
findings have important trans-lational implications for 
preventing treatment failure in ER(+) breast cancer 
patients currently taking hormonal therapies.  
 
MATERIALS AND METHODS 
 
Experimental model 
 
The human breast cancer cell line (MCF7) was obtained 
commercially from the ATCC.  The cell line  was  main- 

tained in Dulbecco’s Modified Eagle Medium 
(DMEM; GIBCO) supplemented with 10% HiFBS, 1% 
Glutamax and 1% Penicillin-Streptomycin, at 37°C in 
5% CO2.  
 
Lentiviral gene transduction 
 
Lentiviral vectors for our gene expression studies were 
all custom-built to our specifications by GeneCopoeia. 
The cDNA’s encoding ESR1 (catalogue number: 
A0322; NM_001122742.1) or ErbB2 (catalogue 
number: Z2866; NM_004448.2) were inserted into the 
expression vector Lv-105-puroR, containing a 
puromycin gene resistance cassette. Two vectors encod-
ing ESR1 mutants (Y537S and Y537N) were also 
generated by site-directed mutagenesis and were con-
firmed by DNA-sequencing. Packaging cells (293Ta) 
and all reagents were purchased from GeneCopoeia 
Inc., respectively. After 48 hours of seeding and culture, 
293Ta packaging cells were transfected with lentiviral 
vectors encoding ESR1, ESR1-Y537S, ESR1-Y537N, 
ErbB2 or empty vector EV (EX-NEG-Lv105), using 
Lenti-PacTM HIV Expression Packaging Kit, according 
to the manufacturer’s instructions. Two days post-
transfection, lentivirus-containing culture medium was 
passed through a 0.45 ��m filter and added to the target 
cells (MCF7 cells) in the presence of 5 ��g/ml 
Polybrene. Infected cells were selected with a 
concentration of 1.5 ��g/ml of puromycin [17]. These 
cell lines were generated, while working at the 
University of Manchester, at the Paterson Institute (MF, 
FS and MPL). Expression of exogenous ESR1 
constructs did not detectably alter the expression of 
endogenous ESR1, as assessed by Western blot 
analysis. 
 
Sulfo-rhodamine B (SRB) assay 
 
SRB measures total biomass by staining cellular 
proteins. After 5 days treatment with of 4-OH-
Tamoxifen (4-OHT, Sigma , cells were fixed in 10% 
trichloroacetic acid (T9159, Sigma) for 1h at 4°C, 
stained with SRB (S9012, Sigma) for 15 minutes, and 
washed 3 times with 1% acetic acid (27225, Sigma). 
The incorporated dye was solubilized with 10 mM Tris-
HCl, pH 8.8 (T1503, Sigma). Absorbance was spectro-
photometrically measured at 540 nm in a FluoStar 
Omega plate reader (BMG Labtech). Background 
measurements were subtracted from all values. 
 
MCF7 3D-mammosphere formation  
 
A single cell suspension was prepared using enzymatic 
(1x Trypsin-EDTA, Sigma Aldrich, #T3924), and 
manual disaggregation (25 gauge needle), to create a 
single cell suspension. Cells were plated at a density of 

Figure��10.��Schematic��diagram��summarizing��the��role��of
the�� ESR1�rY537S�� mutation�� in�� driving�� Tamoxifen�r
resistance.� � � �Note��that��the��Y537S��mutation��induces��metabolic
reprogramming,��with��the��hyper�ractivation��of��both��mitochondrial
and��glycolytic��energetic��pathways.����



www.aging�rus.com�� 4011�� AGING 

500 cells/cm2 in mammosphere medium (DMEM-F12 + 
B27 + 20 ng/ml EGF + PenStrep) under non-adherent 
conditions, in culture dishes pre-coated with (2-
hydroxyethylmethacrylate) (poly-HEMA, Sigma, 
#P3932), called “mammosphere plates” [36]. Then, the 
cells were pre-treated for 72 hours with 1µM of 4-OH-
Tamoxifen. Vehicle alone (DMSO) control cells were 
processed in parallel. Afterwards, they were trypsined 
and seeded in mammosphere plates. Cells were grown 
for 5 days and maintained in a humidified incubator at 
37°C. After 5 days of culture, 3D-spheres >50 ��m were 
counted using an eye piece (“graticule”), and the 
percentage of cells plated which formed spheres was 
calculated and is referred to as percent mammosphere 
formation, and was normalized to one (1 = 100% MSF) 
[37]. 
 
ALDEFLUOR assay  
 
ALDH activity was assessed in all the MCF7 stable cell 
lines generated. The ALDEFLUOR kit (StemCell 
technologies, Durham, NC, USA) was used to isolate 
the population with high ALDH enzymatic activity by 
FACS (Fortessa, BD Bioscence).  Briefly, after 5 days 
of culture, the mammospheres were harvested, tryp-
sinized and syringed to generate a single-cell sus-
pension.  Then, they were incubated in 1ml of 
ALDEFLUOR assay buffer containing ALDH substrate 
(5 ��l/ml) for 40 minutes at 37°C. In each experiment, a 
sample of cells was stained under identical conditions 
with 30 mM of diethylaminobenzaldehyde (DEAB), a 
specific ALDH inhibitor, as a negative control. The 
ALDH-positive population was established, according 
to the manufacturer’s instructions and was evaluated 
using 30.000 cells. An ALDEFLUOR-positive signal 
was detected in Y537S cells, as compared with control 
(EV).  
 
Annexin-V analysis 
 
Cell death was quantified by flow cytometry using 
propidium iodide (PI) and Annexin V-FITC [16]. 
Briefly, 1,5 x 105  all the transfected cells were plated in 
6 multiwell plate in complete media supplemented with 
10% HiFBS. Next day, cells were treated with 1µM of 
4-OH-Tamoxifen (4-OHT) for 48h and 72h. Vehicle 
alone (DMSO) for control cells were processed in 
parallel. After 48 hours, cells were harvested and 
washed in cold phosphate-buffered saline (PBS). Cells 
were recentrifuged and supernatants were discarded. 
Then, cells were re-suspended in 100 µl of annexin-
binding buffer. Then, the annexin–FITC conjugate (5 
��l) and PI (1 ��L) were added and incubated in the dark 
at room temperature for 15 min. After the incubation 
period, reaction was stopped by adding 400 ��L of 
annexin-binding buffer. Cells were then analyzed by 

flow cytometry using a PE Texas Red signal detector 
for PI staining and a FITC signal detector to detect 
Annexin V binding. 30,000 events were recorded by 
FACS using Fortessa BD. Results are the average of 
three experiments that were performed in triplicate, 
three times independently. 
 
Seahorse XFe96 metabolic flux analysis 
 
Real-time oxygen consumption rates (OCR) and 
extracellular acidification rates (ECAR) rates in all 
transfected cells treated with 1µM of 4-OHT for 48h 
were determined using the Seahorse Extracellular Flux 
(XFe96) analyzer (Seahorse Bioscience, USA) [38]. 
Briefly, 1,5 x 104 cells per well were seeded into XFe96 
well cell culture plates, and incubated overnight to 
allow cell attachment. Then, cells were treated with 
1µM of 4-OHT for 48h. Empty vector (EV) control 
cells were processed in parallel. After 48 hours of 
incubation, cells were washed in pre-warmed XF assay 
media (or for OCR measurement, XF assay media 
supplemented with 10mM glucose, 1mM Pyruvate, 
2mM L-glutamine and adjusted at 7.4 pH). Cells were 
then maintained in 175 µL/well of XF assay media at 
37°C, in a non-CO2 incubator for 1 hour. During the 
incubation time, we loaded 25 µL of 80mM glucose, 
9µM oligomycin, and 1M 2-deoxyglucose (for ECAR 
measurement) or 10µM oligomycin, 9µM FCCP, 10µM 
rotenone, 10µM antimycin A (for OCR measurement), 
in XF assay media into the injection ports in the XFe96 
sensor cartridge [31, 32]. Measurements were 
normalized by protein content (Bradford assay). Data 
sets were analyzed using XFe96 software and GraphPad 
Prism software, using one-way ANOVA and Student’s 
t-test calculations. All experiments were performed in 
quintuplicate, three times independently. 
 
Mitochondrial staining   
 
Mitochondrial activity was assessed with MitoTracker 
Orange (#M7510, Invitrogen), whose accumulation in 
mitochondria is dependent upon membrane potential. 
Mitochondrial mass was determined using MitoTracker 
Deep-Red (#M22426, Invitrogen), localizing to 
mitochondria regardless of mitochondrial membrane 
potential [39, 40]. MCF7 transfected cells were seeded 
for 48 hours. MCF7-EV control cells were processed in 
parallel. After 48 hours, cells were incubated with pre-
warmed MitoTracker staining solution (diluted in 
PBS/CM to a final concentration of 10 nM) for 30-60 
minutes at 37°C. All subsequent steps were performed 
in the dark. Cells were washed in PBS, harvested, and 
re-suspended in 300 ��L of PBS/CM. Cells were then 
analyzed by flow cytometry. Data analysis was 
performed using FlowJo software. 
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Label-free unbiased semi-quantitative proteomics 
analysis 
 
Cell lysates were prepared for trypsin digestion by 
sequential reduction of disulphide bonds with TCEP 
and alkylation with MMTS. Then, the peptides were 
extracted and prepared for LC-MS/MS. All LC-MS/MS 
analyses were performed on an LTQ Orbitrap XL mass 
spectrometer (Thermo Scientific, San Jose, CA) coupled 
to an Ultimate 3000 RSLCnano system (Thermo 
Scientific, formerly Dionex, The Netherlands) [41]. 
Xcalibur raw data files acquired on the LTQ-Orbitrap 
XL were directly imported into Progenesis LCMS 
software (Waters Corp., Milford, MA, formerly Non-
linear dynamics, Newcastle upon Tyne, UK) for peak 
detection and alignment. Data were analyzed using the 
Mascot search. Five technical replicates were analyzed 
for each sample type.  
 
Ingenuity pathway analysis (IPA) 
 
Unbiased interrogation and analysis of our proteomic 
data sets was carried out by employing a bioinformatics 
platform, known as Ingenuity Pathway Analysis (IPA) 
(Ingenuity systems, http://www.ingenuity.com). IPA 
assists with data interpretation, via the grouping of 
differentially expressed genes or proteins into known 
functions and pathways. Pathways with a z score of > 
+2 were considered as significantly activated, while 
pathways with a z score of < -2 were considered as 
significantly inhibited. 
 
Quantification and statistical analysis 
 
All analyses were performed with GraphPad Prism 6. 
Data were presented as mean ± SD (± SEM for OCR 
and ECAR profiles, see Figures 5 and 6). All 
experiments were conducted at least three times, with �• 
3 technical replicates per experiment, unless otherwise 
stated with representative data shown. Statistically 
significant differences were determined using the 
Student’s t test or the analysis of variance (ANOVA) 
test. For the comparison among multiple groups, one-
way ANOVA were used to determine statistical 
significance. P �” 0.05 was considered significant and all 
statistical tests were two-sided. 
 
Kaplan-Meier (K-M) analyses 
 
To perform K-M analysis on metabolic gene transcripts, 
we used an open-access online survival analysis tool to 
interrogate publically available microarray data from up 
to 3,455 breast cancer patients. This allowed us to 
determine their prognostic value. For this purpose, we 
primarily analyzed data from ER(+) patients that were 

LN(+) at diagnosis and were of the luminal A sub-type, 
that were primarily treated with tamoxifen and not other 
chemotherapy (N = 152 patients). In this group, 100% 
the patients received some form of hormonal therapy 
and ~95% of them received tamoxifen. Biased and 
outlier array data were excluded from the analysis. This 
allowed us to identify metabolic gene transcripts, with 
significant prognostic value. Hazard-ratios were calcu-
lated, at the best auto-selected cut-off, and p-values 
were calculated using the log-rank test and plotted in R.  
 
K-M curves were also generated online using the K-M-
plotter (as high-resolution TIFF files), using univariate 
analysis:  http://kmplot.com/analysis/index.php?p = 
service&cancer = breast. 
 
This allowed us to directly perform in silico validation 
of these metabolic biomarker candidates. The 2017 
version of the database was utilized for all these 
analyses, while virtually identical results were also 
obtained with the 2014 and 2012 versions. 
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Supplementary��Figure��S1.��Ingenuity��Pathway��Analysis��(IPA)��of��proteomics��data��sets��obtained��from��human��breast
cancer��MCF7�rY537S��cells.��(A)��Canonical��pathways��predicted��to��be��altered��in��MCF7�rY537S��Vs��MCF7�rEV�rLv105��are��shown.��As
expected,��certain��canonical��pathways��were��significantly��altered��by��the��differential��protein��expression��in��MCF7�rY537S��respect
MCF7�rEV�rLv105.��In��particular��in��absence��of��4�rOHT��(1��µM),��all��the��resulting��pathways��in��MCF7�rY537S��were��up�rregulated��compared
to��MCF7�rEV�rLv105,��except��for��RhoGDI��signaling��and��PTEN��signaling��pathways��that��were��down�rregulated.��(B)��In��presence��of��4�rOHT
(1��µM),��all��the��resulting��pathways��in��MCF7�rY537S��were��down�rregulated��compared��to��MCF7�rEV�rLv105,��except��for��RhoGDI��signaling
and��PTEN��signaling��pathways��that��were��up�rregulated.��The��pvalue��(p��<��0.05)��for��each��pathway��is��indicated��by��the��bar��and��is
expressed��as� � � >1��times��the��log��of��the��p�rvalue.��A��positive��z�rscore��(Orange��color;��z�rscore��>��2)��represents��the��upregulation��of��a
specific��pathway,��while��a��negative��z�rscore��(Blue��color;��z�rscore��<��2)��indicates��the��down�rregulation��of��a��pathway.��
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Supplementary��Figure��2.��Toxicity��effects��of��differentially��expressed��proteins��in��MCF7�r
Y537S��Vs��MCF7�rEV�rLv105.��Ingenuity��Pathway��Analysis��showed��that��certain��toxicity��functions��are
significantly��enriched��by��the��proteins��differentially��expressed��in��this��comparative��analysis��(p��<��0.05).
In��the��Stacked��Bar��chart,��the��p�rvalue��for��each��pathway��is��indicated��by��the��bar��and��is��expressed��as���>1
times��the��log��of��the��p�rvalue��(cutoff��z�rscore��±��2).In��red��color��the��amount��of��the��proteins��up�rregulated
and��in��green��color��the��amount��of��the��proteins��down�rregulated��in��each��patwhays.��
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Supplementary��Figure��3.��Toxicity��effects��of��differentially��expressed��proteins��in
MCF7�rY537S��Vs��MCF7�rEV�rLv105��in��presence��of��4�rOHT��(1��µM).��Ingenuity��Pathway
Analysis��showed��that��certain��toxicity��functions��are��significantly��enriched��by��the��proteins
differentially��expressed��in��this��comparative��analysis��(p��<��0.05).��In��the��Stacked��Bar��chart,
the��p�rvalue��for��each��pathway��is��indicated��by��the��bar��and��is��expressed��as���>1��times��the��log
of��the��p�rvalue��(cutoff��z�rscore��±��2).In��red��color��the��amount��of��the��proteins��up�rregulated
and��in��green��color��the��amount��of��the��proteins��down�rregulated��in��each��patwhays. 
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Supplementary��Figure��4.��Ingenuity��Pathway��Analysis��(IPA)��of��proteomics��data��sets
obtained��from��human��breast��cancer��MCF7�rY537S��cells��compared��to��MCF7�rESRI.
Canonical��pathways��predicted��to��be��altered��in��MCF7�rY537S��Vs��MCF7�rESRI��in��presence��of��4�r
OHT��(1��µM)��are��shown.��As��expected,��certain��canonical��pathways��were��significantly��altered��by
the��differential��protein��expression�� in��MCF7�rY537S��respect��MCF7�rESRI.�� In��particular,�� in
presence��of��4�rOHT��(1��µM),��all��the��resulting��pathways��in��MCF7�rY537S��were��down�rregulated
compared��to��MCF7�rESRI,��except��for��RhoGDI��signaling��pathway��that��was��down�rregulated. 
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Table��S1.��Mitochondrial�rrelated��proteins��induced��by��the��ESR1��(Y537S)��mutant,��as��compared��with��ESR1�rWT.

 
Symbol                Description         Fold-Change (Up-regulation) 
 
UQCRC2 Cytochrome b-c1 complex subunit 2, mitochondrial      110.11 
HIBADH  3-hydroxyisobutyrate dehydrogenase, mitochondrial                   54.89 
NDUFB10 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit    49.59 
PGAM5               Serine/threonine-protein phosphatase PGAM5, mitochondrial                  8.80 
MRPL47 39S ribosomal protein L47, mitochondrial       8.27 
ACSS1               Acetyl-coenzyme A synthetase 2-like, mitochondrial                   7.15 
FH   Fumarate hydratase, mitochondrial        6.68 
HSPD1               60 kDa heat shock protein, mitochondrial       6.02 
OGDH                2-oxoglutarate dehydrogenase E1 component, mitochondrial                  5.44 
MRPL4               39S ribosomal protein L4, mitochondrial       4.54 
GRPEL1 GrpE protein homolog 1, mitochondrial       4.48 
ISOC2  Isochorismatase domain-containing protein 2, mitochondrial                  3.80 
DUT   Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial   2.93 
SDHB   Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial   2.75 
NDUFV1 NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial    2.74 
ECSIT   Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial               2.70 
GATC   Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial   2.68 
PTRH2               Peptidyl-tRNA hydrolase 2, mitochondrial      2.35 
DNAJA3 DnaJ homolog subfamily A member 3, mitochondrial                  2.14 
AKAP1               A-kinase anchor protein 1, mitochondrial      2.07 
HSPA9                Stress-70 protein, mitochondrial        2.04 
FDXR  NADPH:adrenodoxin oxidoreductase, mitochondrial                   1.99 
TIMM23B  Putative mitochondrial import inner membrane translocase subunit Tim23B               1.95 
COX4I1 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial     1.94 
NDUFA5 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5   1.93 
CLUH    Clustered mitochondria protein homolog      1.88 
GLS   Glutaminase kidney isoform, mitochondrial      1.85 
ABCB6               ATP-binding cassette sub-family B member 6, mitochondrial                  1.85  
PPA2  Inorganic pyrophosphatase 2, mitochondrial      1.83 
MRPL43 39S ribosomal protein L43, mitochondrial       1.70 
MRPS16 28S ribosomal protein S16, mitochondrial       1.69 
MRPL15 39S ribosomal protein L15, mitochondrial       1.64 
MRPS18B  28S ribosomal protein S18B, mitochondrial       1.60 
 

Proteins��highlighted��in��BOLD��are��involved��in��mitochondrial��biogenesis.����
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Table��S3.��Key��signalling��molecules��induced��by��the��ESR1��(Y537S)��mutant,��as��compared��with��ESR1�rWT.��

Symbol                Description                       Fold-Change (Up-regulation) 
 
COL6A3 Collagen, type VI, alpha 3                     Infinity 
ERBB2                Erb-b2 avian erythroblastic leukemia viral oncoprotein 2                 14,233.50 
STAT3  Signal transducer and activator of transcription 3                  28.56 
AFP  Alpha-fetoprotein                     12.07 
TFF1   Trefoil factor 1                      3.92 
CDK4  Cyclin-dependent kinase 4, isoform                   2.82 
CD44  CD44 antigen                     1.98 

Table��S4.��Y537S��targets��are��transcriptionally��up�rregulated��in��breast��cancer��cells��in��vivo��(Epithelia��vs.��Tumor��Stroma).��

Symbol                Gene Description                     Up-regulation  P-value 
                                                                                                                                                                           (Fold-Change) 
Mitochondrial components 
 
FH   Fumarate hydratase, mitochondrial        5.42  7.06E-07 
UQCRC2 Cytochrome b-c1 complex subunit 2, mitochondrial      4.84  5.73E-0  
SDHB   Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial   4.25  4.24E-05 
HSPA9                Stress-70 protein, mitochondrial        3.69  2.64E-04 
MRPS18B  28S ribosomal protein S18B, mitochondrial       3.65  2.94E-04 
HSPD1               60 kDa heat shock protein, mitochondrial       3.42  5.93E-04 
COX4I1               Cytochrome c oxidase subunit 4 isoform 1, mitochondrial     3.39  6.61E-04 
AKAP1  A-kinase anchor protein 1, mitochondrial      3.33  7.75E-04 
PPA2  Inorganic pyrophosphatase 2, mitochondrial      3.19  1.17E-03 
DNAJA3 DnaJ homolog subfamily A member 3, mitochondrial                  2.92  2.57E-03 
PTRH2               Peptidyl-tRNA hydrolase 2, mitochondrial      2.77  3.82E-03 
NDUFA5 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5   2.75  4.07E-03 
GRPEL1 GrpE protein homolog 1, mitochondrial       2.39  1.01E-02 
MRPL15 39S ribosomal protein L15, mitochondrial       2.26  1.39E-02 
DUT   Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial   1.87  3.37E-02 
GLS   Glutaminase kidney isoform, mitochondrial      1.81  3.81E-02 
 

Table��S2.��Glycolysis��and��PPP�rrelated��proteins��induced��by��the��ESR1��(Y537S)��mutant,��as��compared��with��ESR1�rWT.

Symbol               Description          Fold-Change (Up-regulation) 
 
TIGAR                Fructose-2,6-bisphosphatase (TIGAR)       Infinity  
ENO2  Gamma-enolase          128.23 
GAPDH   Glyceraldehyde-3-phosphate dehydrogenase      7.41 
PKM  Pyruvate kinase          7.41 
PHGDHL1 Phosphoglycerate dehydrogenase like 1       4.51 
PFKP  Phosphofructokinase, platelet        3.08 
ENO1  Enolase           3.07 
TALDO1 Transaldolase          2.30 
G6PD   Glucose-6-phosphate 1-dehydrogenase       2.19 
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Table��S5.��Mitochondrial�rrelated��proteins��induced��by��the��ESR1��(Y537S)��mutant:��
Association��with��Tumor��Recurrence.��

Symbol    Probe  RFS-HR  Log-Rank Test 
       
HSPD1    200807_s_at   3.40  1.2e-05 
HSPD1    200806_s_at  2.36  0.0035 
MRPL15    218027_at  3.20  1.7e-05 
MRPL4     218105_s_at  2.20  0.005 
AKAP1    210626_at  2.19  0.007 
AKAP1    201674_s_at  1.90  0.025 
PTRH2    218732_at  2.17  0.005 
COX4I1    202698_x_at  2.04  0.049 
GRPEL1    212434_at  2.01  0.012 
HSPA9     200691_s_at  1.97  0.024 
MRPS16     218046_s_at  1.96  0.015 

 

RFS,��recurrence�rfree��survival.��

HR,��hazard��ratio.����

Table��S6.��Glycolysis��and��PPP�rrelated��proteins��induced��by��the��ESR1��(Y537S)��mutant:��
Association��with��Tumor��Recurrence.��

Symbol  Probe  RFS-HR  Log-Rank Test 
       
ENO1  201231_s_at  2.28  0.004 
TALDO1  201463_s_at  2.14  0.014 
TIGAR   219099_at   2.13  0.008 
ENO2  201313_at  1.92  0.019 

 

RFS,��recurrence�rfree��survival.��

HR,��hazard��ratio.��

Table��S4.��Continued.�� 

 
Glycolytic/PPP enzymes 
 
TALDO1 Transaldolase          4.13  6.35E-05 
PKM2  Pyruvate kinase 2         3.26  9.79E-04 
GAPDH               Glyceraldehyde-3-phosphate dehydrogenase                    2.97  2.22E-  
ENO1  Enolase             1.96  2.75E-02 
 
Cell signalling molecules 
 
CD44  CD44 antigen                      3.44                 5.69E-0  
CDK4  Cyclin-dependent kinase 4, isoform                    2.33                 1.19E-02 
TFF1   Trefoil factor 1          1.76  4.17E-02
           

Transcriptional��profiling��data��derived��from��the��analysis��of��N=28��breast��cancer��patients��are��shown,��high�rlighting��the��levels��of��fold�r
upregulation��observed��in��the��epithelial��cancer��cell��compartment��(relative��to��the��tumor��stroma),��and��corresponding��p�rvalues��derived��from��
the��analysis��of��these��clinical��samples. 
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Table��S8.��Glycolysis�rrelated��proteins��induced��by��the��ESR1��(Y537S)��mutant:��
Association��with��Distant��Metastasis.��

Symbol  Probe       DMFS-HR                Log-Rank Test 
      
ENO2  201313_at      2.70              0.0035 
ENO1  201231_s_at      2.29              0.01 

 

DMFS,��distant��metastasis�rfree��survival.��

HR,��hazard�rratio.��
 

Table��S7.��Mitochondrial�rproteins��induced��by��the��ESR1��(Y537S)��mutant:��Association��with��
Distant��Metastasis.��

Symbol   Probe    DMFS-HR   Log-Rank Test 
       
HSPD1   200807_s_at     3.47  9e-05 
HSPD1   200806_s_at    2.03  0.03 
GRPEL1   212434_at    3.18  0.004 
MRPL15   218027_at    2.57  0.0035 
MRPS16    218046_s_at    2.53  0.006 
COX4I1   202698_x_at    2.26   0.013 

 

DMFS,��distant��metastasis�rfree��survival.��

HR,��hazard�rratio.��
 


