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Relativistic and pseudorelativistic formulation of nonlinear envelope equations
with spatiotemporal dispersion. II. Saturable systems

J. M. Christian,� G. S. McDonald, M. J. Lundie, and A. Kotsampaseris
Joule Physics Laboratory, School of Computing, Science and Engineering,

University of Salford, Greater Manchester M5 4WT, United Kingdom
(Dated: July 26, 2018)

We consider an envelope equation with space-time symmetry for describing scalar waves in systems
with spatiotemporal dispersion and a generic saturable nonlinearity. Exact bright and gray solitons
are derived by direct integration methods and coordinate transformations, with the results for cubic-
quintic systems [see companion article|submitted to Phys. Rev. A] recovered in the limit of weak
saturation. Classic predictions from a nonlinear-Schr�odinger formulation of the propagation problem
are shown to emerge asymptotically as subsets of the more general spatiotemporal solutions. The
robustness of the new solitons against perturbations to the local pulse shape is then tested by
deploying integral stability criteria, symmetry principles, and numerical analysis.

PACS numbers: 42.65.-k, 42.65.Fs, 42.65.Tg, 42.65.Wi, 05.45.Yv
Keywords: bright solitons, dark solitons, Kerr e�ect, spatial dispersion, waveguide optics

I. INTRODUCTION

Solitons and solitary-wave phenomena are elementary
excitations, pervasive throughout Nature, that play a key
role in modern understandings of nonlinear systems [1].
Regardless of the physical context|optical or uidic, me-
chanical or electromagnetic, biological or chemical, classi-
cal or quantum|the emergence of these robust particle-
like wave states generally requires just two basic ingredi-
ents: linear dispersion and nonlinearity [2]. Models sup-
porting envelope solitons are historically rooted in uni-
versal equations such as the nonlinear-Schr�odinger (NLS)
type, and in the simplest case they describe waveforms
that are localized in time t and travelling through space z.
Longitudinal modulations to a rapidly-varying harmonic
signal are typically assumed to take place on a scale-
length that is much greater than the carrier wavelength
[the slowly-varying envelope approximation (SVEA)].

The SVEA is often a valid starting point for analy-
ses [3] and the undoubted success of NLS-based models
in predicting experimentally-observed phenomena (e.g.,
in optics [4]) has allowed them to become linchpins of
conventional pulse theory [5]. The SVEA is usually com-
plemented by a Galilean transformation, where for con-
venience one boosts from the laboratory frame to a local-
time frame moving at the group velocity vg, as de�ned
by coordinates zloc � z and tloc � t � z=vg. It is in-
structive, however, to pose questions about the prop-
erties of wavepackets beyond the more traditional level
of description. What are the governing equations? Do
they have exact non-trivial solutions? Can invariance
laws and conserved quantities be identi�ed? What are
the implications for stability? Can predictions be recon-
ciled with the SVEA? etc. We have made some progress
in answering these fundamental questions by proposing

� Corresponding author: j.christian@salford.ac.uk

a spatiotemporal formulation based on generic envelope
equations that respect space-time symmetry [6].

The spatiotemporal nomenclature has di�erent inter-
pretations so it is helpful to begin by clarifying the ter-
minology used throughout (the situation is akin to non-
paraxial when discussing beams in spatial optics [7]). It is
often associated with the phenomenon of wave-like \bul-
lets" where the interplay between nonlinearity, group-
velocity dispersion (GVD) and di�raction can sustain (at
least in the short term) wave self-con�nement in trans-
verse and longitudinal spatial directions in addition to
being localized in time [8]. One also encounters the
term in Ginzburg-Landau contexts when analyzing pat-
tern emergence, bifurcations, and chaotic dynamics un-
der the combined action of gain and loss [9]. Here, we
take it to mean the simultaneous presence of both spatial
and temporal dispersion in any wave-based system [6].

Mathematically, our quite general conception of spa-
tiotemporal dispersion lies with the appearance of both
@2=@z2 and @2=@t2 operators in the envelope equation
(which may or may not also involve formal di�ractive
considerations). It has application in the �eld of non-
linear optics, supplementing the widely-known SVEA-
based models of light propagation [3{5] with a more com-
plete geometrical theory [6]. It also has practical uses
in terms of modelling condensed-matter e�ects in some
special classes of semiconductor (e.g., ZnCdSe/ZnSe su-
perlattices). Bianacalana and Creatore [10] have previ-
ously demonstrated that material spatial dispersion due
to photon-exciton coupling cannot be captured by SVEA-
type frameworks, and that retaining full generality of
@2=@z2 facilitates an adequate description.

To date, the classic cubic [11] and cubic-quintic (see
companion article [12]) nonlinearities have been inves-
tigated in some detail with particular emphasis placed
on deriving exact bright and dark solitons. One of the
most self-evident and intriguing results is that our spa-
tiotemporal formulation has strong analogues with spe-
cial relativity [13]. The invariance laws are either rela-
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tivistic or pseudorelativistic (depending on the interplay
between spatial and temporal dispersion), and as a con-
sequence (inverse) velocities add geometrically through
a rule that is reminiscent of the familiar Lorentz form.
Perhaps most striking is the recovery of SVEA-type re-
sults. They emerge asymptotically through a multiple-
limit procedure that is entirely equivalent to the way
Newtonian physics reappears from special relativity at
low speeds. For completeness, there remains one �nal
class of system nonlinearity that needs to be addressed.

Saturation is a universal phenomenon that tends to in-
hibit unphysical run-away e�ects. In optics, for example,
it is a principal feature of Maxwell-Bloch cavity models
involving the continuous interaction between a circulat-
ing light beam and a system comprising atoms with two
discrete energy levels [14]. Such a system tends to exhibit
saturation in its medium polarization and population in-
version when electric-dipole coupling is subjected to high-
intensity pumping. In cavityless con�gurations, such as
a dispersive waveguide, one might intuitively expect the
nonlinear dielectric response (e.g., permittivity or refrac-
tive index) of the core material [15] to support a maxi-
mum allowable change before approaching the threshold
for optical damage. However, the standard cubic (i.e.,
Kerr) [3, 16] and cubic-quintic [17, 18] approximations
permit arbitrarily-large contributions to self-interaction
e�ects. These models are based on simple scalar power
series (or, more rigorously, on tensor expansions of the
medium polarization and the introduction of nonlinear
susceptibilities [16, 19]) that are truncated after a �nite
number of terms (e.g., on the basis of order-of-magnitude
considerations). In contrast, the plateauing that char-
acterizes saturation (i.e., where a physical property can
sustain no further self-induced variation) does not always
lend itself well to polynomial-type representations that,
inevitably, fail at su�ciently high light intensity.

The saturating responses of many optical materials
have been measured over the years. Such experimental
studies have included some semiconductor-doped glasses
(e.g., CdSSe and Schott OG 550 glass) [20], ion-doped
crystals (e.g., GdAlO3:Cr3+) [21], bio-optical media [22],
�-conjugated polymers [23], and various photorefractive
crystals (e.g., LiNbO3 and SBN) [24].

While several trial functions are available for describ-
ing a saturable refractive index [25{27], all of which
share similar qualitative features, our principal inter-
est lies with that proposed by Wood, Evans, and Ke-
nan [28]. Their model appears to be unique in that
it allows the corresponding governing equations to be
integrated exactly|for instance, families of transverse
guided modes in dielectric planar waveguides were ob-
tained by solving the Helmholtz equation and enforc-
ing continuity conditions at the boundary between sub-
strates. More pertinently, exact bright [29] and dark [30]
solitons derived by Krolikowski and Luther-Davies are
also known within the context of Schr�odinger equations.
It is these latter solution classes that we seek to gener-
alize here and, in so-doing, more fully develop our un-

derstanding of waves in space-time-symmetric systems
by accounting for saturation e�ects. Known spatiotem-
poral cubic-quintic [12] and cubic [11] solitons are then
expected to emerge as special cases, forming a natural
hierarchy of solutions.

The layout of this paper is as follows. In Sec. II, we ex-
plore the spatiotemporal envelope equation in the context
of the saturable nonlinearity and formulate the intensity-
phase quadrature problem. Exact bright and dark soli-
tons are derived in Secs. III and IV, respectively, with
coordinate transformations deployed in Sec. V to ob-
tain more general results (including a discussion of non-
degenerate bistability characteristics). Rigorous asymp-
totic analyses are detailed in Sec. VI with regards various
important physical limits, with predictions about soli-
ton stability made and tested against full simulations in
Sec. VII. We conclude, in Sec. VIII, with some remarks
about connections to other potential research avenues.

II. SPATIOTEMPORAL MODEL

A. Envelope equation

We consider the governing equation for a dimensionless
envelope u that is given by

�
@2u
@�2 +i

�
@u
@�

+ �
@u
@�

�
+
s
2
@2u
@�2

+
1
2

2 + juj2=�sat

(1 + juj2=�sat)
2 juj

2u = 0; (1)

where � and � are normalized space and time coordi-
nates, respectively, as measured in the laboratory frame.
The linear part of the wave operator in Eq. (1) is generic
(in terms of its dispersive contributions and space-time
symmetry) while the nonlinear part is homogeneous and
parametrized by �sat (the normalized saturation inten-
sity). We assume a set of units such that GVD is con-
trolled by s = �1 (+1 for anomalous, �1 for normal) and
the parameter � is a ratio of group velocities. Spatial dis-
persion is determined by �� O(1), and it is taken to be
positive without loss of generality. An example scaling is
given in Appendix A.

To clarify, here we de�ne relativistic and pseudorela-
tivistic scenarios as being those characterized by s = �1
and s = +1, respectively, whereupon the transformation
laws of Eq. (1) correspond to skews and rotations in the
(�; �) plane [11].

In the context of Eq. (1), the SVEA is embodied by the
inequality �j@2u=@�2j � j@u=@�j. Throughout, we pur-
posely avoid that regime (both analytically and compu-
tationally) until considering the position of conventional
model predictions within the wider soliton hierarchy. Ne-
glecting the operator �@2=@�2 will then be shown as syn-
onymous with a simultaneous multiple limit in the alge-
bra of spatiotemporal solutions. Moreover, we have found
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that �@2=@�2 can be accommodated in many exact analy-
ses and thus it does not need to be treated perturbatively
(e.g., through order-of-magnitude considerations [31]).

B. General quadrature equations

Solutions to Eq. (1) are sought that have a general
form described by the Madelung-type ansatz

u(�; �) = �1=2(�; �) exp[i (�; �)]; (2a)

where � and  are real functions determining the inten-
sity and (total) phase, respectively, of u. Substituting
Eq. (2a) into Eq. (1) and collecting the real and imagi-
nary parts yields the following pair of coupled equations:

2
�

�
@2�
@�2 + 2s�

@2�
@�2

�
�

1
�2

"�
@�
@�

�2

+ 2s�
�
@�
@�

�2
#

� 4

"�
@ 
@�

�2

+ 2s�
�
@ 
@�

�2
#

� 8s
�
@ 
@�

+ �
@ 
@�

�

+ 8s
2 + �=�sat

(1 + �=�sat)
2

��
2

�
= 0; (2b)

�
�
@2 
@�2 + 2s�

@2 
@�2

�
+
�
@ 
@�

@�
@�

+ 2s�
@ 
@�

@�
@�

�

+ s
�
@�
@�

+ �
@�
@�

�
= 0 (2c)

(neglecting all the �-dependent terms leads to the well-
known uid-type equations [32] for � and  in the cor-
responding SVEA-type model). One can now eliminate
the carrier-wave part of the solution by setting

 (�; �) = 	(�; �) +K� �
�

2�
: (3)

Here, 	 denotes the phase distribution for the solitary
excitation, K is the propagation constant, and the �nal
factor describes the rapidly-oscillating component inher-
ent to the solutions of models that are second-order in �
[11]. Quadrature equations (2b) and (2c) may then be
written as

2
�

�
@2�
@�2 + 2s�

@2�
@�2

�
�

1
�2

"�
@�
@�

�2

+ 2s�
�
@�
@�

�2
#

� 4

"�
@	
@�

�2

+ 2s�
�
@	
@�

�2
#

� 8s
�
�
@	
@�

+ 2�K
@	
@�

�

� 8s

"

� �
2 + �=�sat

(1 + �=�sat)
2

��
2

�#

= 0 (4a)

and

�
�
@2	
@�2 + 2s�

@2	
@�2

�
+
�
@	
@�

@�
@�

+ 2s�
@	
@�

@�
@�

�

+ s
�
�
@�
@�

+ 2�K
@�
@�

�
= 0: (4b)

Here, we have de�ned the dispersion relation by identi-
fying �K2 � 1=4� � � so that

K = �
1

2�
p

1 + 4��; (4c)

and where the � sign denotes propagation in the forward
(+) or backward (�) longitudinal direction.

C. Space-time coordinate transformation
& symmetry reduction

Inspection of Eqs. (4a) and (4b) demonstrates that
there is a symmetry between space and time derivatives
that does not appear in the conventional approach to
pulse modelling. Such symmetry can be exploited by in-
troducing the lumped space-time coordinate � � �(�; �),
e�ectively a single new independent variable, where

�(�; �) �
� � V0�p
1 + 2s�V 2

0
(5)

and V0 is a constant intrinsic velocity that parametrizes
the transformation. By implementing change-of-
variables (5) through the replacement of partial di�eren-
tial operators @=@� and @=@� and combinations thereof|
see Ref. [12] for details|we can use Eqs. (4a) and (4b) to
write down a pair of coupled ordinary di�erential equa-
tions for the � and 	 quadratures in terms of �:

d
d�

"
1
�

�
d�
d�

�2
#

� 4
�
d	
d�

�2

� 8s

 
�� 2�KV0p

1 + 2s�V 2
0

!
d	
d�

� 8s

"

� �
2 + �=�sat

(1 + �=�sat)
2

��
2

�#

= 0; (6a)

�
d2	
d�2 +

d	
d�

d�
d�

+ s

 
�� 2�KV0p

1 + 2s�V 2
0

!
d�
d�

= 0: (6b)

To �nd particular (e.g., soliton) solutions, Eqs. (6a) and
(6b) must be supplemented by appropriate boundary
conditions on �(�) and 	(�).

III. BRIGHT SOLITON PULSES

One expects bright solitons to exist in the case of
anomalous GVD (where s = +1). In the following anal-
ysis, the ‘b’ subscript is introduced to denote bright soli-
tons through �(�)! �b(�), 	(�)! 	b(�), � ! �b, K !
Kb, and the intrinsic velocity is agged by V0 ! V0b.
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A. Intensity quadrature

To obtain the quadrature equations for bright solitons,
we look for particular solutions where 	b = 0 so that
there is no phase change across the temporal width of
the pulse. Equation (6a) becomes

d
d�b

"
1
�b

�
d�b

d�

�2
#

= 8

"

�b �
2 + �b=�sat

(1 + �b=�sat)
2

��b

2

�#

;

(7a)

and direct integration with respect to �b leads to
�
d�b

d�

�2

= 8�b�2
b � 4�2

sat

�
�2

b
�sat

+
�b

1 + �b=�sat

�
+ c2b�b;

(7b)
where c2b is a constant to be determined from the solu-
tion boundary conditions. As � ! �1, the intensity
pro�le must decay to zero su�ciently rapidly so that
�b ! 0 as (d�b=d�)2 ! 0. Applying these limits to
Eq. (7b) shows that c2b = 4�2

sat (note that, in the cubic-
quintic regime [12], the corresponding constant of inte-
gration vanishes). Similarly, when � ! 0 the intensity
tends to its peak value, denoted by �0, so that

�b =
1

1 + �0=�sat

��0

2

�
: (7c)

The bright soliton propagation constant Kb, given in
Eq. (4c), is then fully determined.

By combining the algebraic results for c2b and �b, the
right-hand side of Eq. (7b) can be factorized to yield the
more compact structure

�
d�b

d�

�2

= 4�2
b

(�0 � �b)
(1 + �0=�sat) (1 + �b=�sat)

: (8)

A second integration uncovers an implicit result describ-
ing the spatiotemporal pulse intensity pro�le which, for
ease of comparison, we express in a form similar to that
introduced by Krolikowski and Luther-Davies [29]:

tan�1 (�b) +
1
2

�
�sat

�0

�1=2

ln
�

(�0=�sat)1=2 + �b

(�0=�sat)1=2 � �b

�

=
�1=2

sat

(1 + �0=�sat)
1=2 �; (9a)

where

�b[�b] �
�
�0 � �b

�sat + �b

�1=2

(9b)

is a positive real parameter and �b(�) � �b[�b(�)]. Equa-
tions (9a) and (9b) can then be solved numerically to
obtain �b(�) (see Fig. 1). One �nds that at �xed �0,
pulse widths tend to decrease with increasing �sat.

One of the most notable aspects of the preceding analy-
sis is that a closed-form prediction for the soliton pro�le

FIG. 1: (color online) Bright soliton intensity distributions
obtained by solving Eq. (9a) for �0 = 1:0. These pro�les are
universal since they are insensitive to variations in �, �, and
V0b. The dilation (pulse broadening) e�ect appears for

anomalous GVD (s = +1) when considering these curves as
functions of � rather than of � [12].

can be obtained. It is surprising, then, that while the
complicated nonlinearity of Wood et al. [28] yields ex-
act results, much simpler variants do not [29]. Indeed,
Gatz and Herrmann have shown that NLS-type bright
solitons of two other saturable refractive-index models
(involving two-level atoms [25] and double-doping [27])
may be obtained only in the form of integral equations
(to be solved iteratively) or through direct numerical so-
lution of the quadrature problem. Similar intractability
is also present in spatiotemporal regimes since the sys-
tem of ordinary di�erential equations often turns out to
be the same (e.g., see Appendix B) but where � and the
local-time coordinate are e�ectively interchangeable.

B. Intrinsic velocity

One must now ensure that Eq. (6b) is also rigorously
satis�ed where, for 	b = 0, it assumes the simple form

(�� 2�KbV0b)
d�b

d�
= 0: (10a)

In order for Eq. (10a) to hold true for arbitrary gradients
d�b=d�, one must have �� 2�KbV0b = 0, or equivalently
V0b = �=2�Kb. Hence,

V0b = �
�

p
1 + 4��b

(10b)

and where the structure of V0b here is identical to that for
other known bright spatiotemporal solitons [11, 12]. Such
a structure arises from the space-time symmetry inherent
to the linear part of the wave operator in Eq. (1). In
contrast, the connection between �b and �0 [c.f., Eq. (7c)]
depends upon the details of the system nonlinearity.

Since the pulse travels (in dimensional units) at a ve-
locity that is proportional to 1=V0b (a quantity de�ned in
dimensionless units), one can immediately see that spa-
tiotemporal solitons must be assigned speeds that have
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a weak dependence on intensity. This type of e�ect is
not typically encountered in NLS-type models, but it
is nonetheless present in other universal nonlinear wave
equations. For instance, the canonical Korteweg de-Vries
model with third-order linear dispersion and a quadratic
self-steepening term predicts a fundamental sech2-shaped
soliton with an amplitude that is directly proportional
to its speed (an essential component for describing wave-
breaking phenomena) [1].

IV. DARK SOLITON PULSES

One expects dark solitons to exist in the case of nor-
mal GVD (where s = �1). Since the localized compo-
nent of u resides as a dip travelling across a background
continuous-wave (cw) solution, we set �(�) ! �d(�),
	(�) ! 	d(�), and V0 ! V0d where the ‘d’ subscript
denotes dark solitons. The remaining two parameters
are labelled as � ! �cw and K ! Kcw with reference to
the cw component.

A. Continuous-wave solutions

The cw solutions of Eq. (1) have a uniform intensity
�0 and may be assigned a �nite frequency shift 
 so that

ucw(�; �) = �1=2
0 exp [i(�
� +Kcw�)] exp

�
�i

�
2�

�

(11a)
and jucwj2 � �0. Substitution of ansatz (11a) in Eq. (1)
yields the dispersion relation

�K2
cw � 


�
�� s



2

�
�

1
4�

= �cw; (11b)

which is parametrized by

�cw �
2 + �0=�sat

(1 + �0=�sat)
2

��0

2

�
: (11c)

Note that dispersion relation (11b) is either elliptic (when
s = +1) or hyperbolic (when s = �1) and thus always
has two branches corresponding to propagation in the
forward and backward longitudinal senses [11].

The stability of the cw background, which is essential
for the dark soliton, can be addressed through linear anal-
ysis (see Appendix C for details with regard to generic
nonlinearity functionals). Solution (11a) is perturbed
by a small-amplitude periodic spatiotemporal modula-
tion with temporal frequency 
p. Any long-wavelength
disturbance then grows whenever


2
p

2
� 2s

�0

(1 + �0=�sat)
3 < 0: (12)

Instability is clearly present in the anomalous-GVD
regime, but it disappears entirely for normal GVD since

inequality (12) can never be satis�ed for any �0 � 0 (de-
tails are given in Appendix C). Hence, the cw back-
ground of spatiotemporal dark solitons in saturable sys-
tems have the desired modulational stability properties.

B. Quadrature equations

Having established the MI characteristics of the cw
solutions to Eq. (1), we now turn our attention to its
dark solitons. The quadrature equations are

d
d�d

"
1
�d

�
d�d

d�

�2
#

= 4
�
d	d

d�

�2

� 8

 
�� 2�KcwV0p

1� 2�V 2
0d

!
d	d

d�

� 8

"

�cw �
2 + �d=�sat

(1 + �d=�sat)
2

��d

2

�#

(13a)

and

d
d�

" 
d	d

d�
�
�� 2�KcwV0dp

1� 2�V 2
0

!

�d

#

= 0: (13b)

Integration of Eq. (13b) leads to a result for the phase
derivative,

d	d

d�
=

 
�� 2�KcwV0dp

1� 2�V 2
0d

!

+
c1d

�d
; (14a)

where c1d is a constant to be determined by considering
the behaviour of 	d as � ! �1. Eliminating d	d=d�
terms from Eq. (13a) using Eq. (14a) leaves an equation
solely for the intensity quadrature:

d
d�d

"
1
�d

�
d�d

d�

�2
#

= 4
c21d
�2

d
� 4

 
�� 2�KcwV0dp

1� 2�V 2
0d

!2

� 8

"

�cw �
2 + �d=�sat

(1 + �d=�sat)
2

��d

2

�#

:

(14b)

Equations (14a) and (14b) are the dark-soliton analogues
of Eqs. (7a) and (10a) describing bright solitons. They
can be solved to provide an exact solution.
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C. Intensity quadrature

Integration of Eq. (14b) with respect to �d gives
�
d�d

d�

�2

= 4�2
sat

�
�2

d
�sat

+
�d

1 + �d=�sat

�

� 4

2

42�cw +

 
�� 2�KcwV0dp

1� 2�V 2
0d

!2
3

5 �2
d

+ c2d�d � 4c21d: (15)

By writing (d�d=d�)2 = 4D(�d � �1)(�0 � �d)2=(1 +
�d=�sat), one may expand the numerator and compare
the coe�cients of �nd with n = 3; 2; 1; and 0. The result
is a system of four auxiliary algebraic equations:

D � 1 +
c3d

�sat
; (16a)

�D (2�0 + �1) �
c2d

4�sat
+ �sat + c3d; (16b)

D
�
�2

0 + 2�0�1
�
�
c2d

4
�
c21d
�sat

+ �2
sat; (16c)

D�2
0�1 � c21d; (16d)

and where we have introduced the parametrization

c3d � �

2

42�cw +

 
�� 2�KcwV0dp

1� 2�V 2
0d

!2
3

5 (16e)

for compactness. Equations (16a)�(16d) can be solved
sequentially to yield algebraic expressions for constants
D, c2d and c1d:

D =
�

1 +
�0

�sat

��2�
1 +

�1

�sat

��1

; (17a)

c2d = 4D
�
�2

0

�
1 +

�1

�sat

�
+ 2�0�1

�
� 4�2

sat; (17b)

c21d =
�2

0�1

(1 + �1=�sat) (1 + �0=�sat)
2 ; (17c)

though only D and c1d are used from here onwards. It
then follows that Eq. (15) may be replaced by the factor-
ized form
�
d�d

d�

�2

= 4
(�0 � �d)2(�d � �1)

(1 + �0=�sat)2 (1 + �1=�sat) (1 + �d=�sat)
:

(18)
In the domain where � > 0, the intensity gradient d�d=d�
must be positive. With these signs in mind, one can
perform an integration of Eq. (18) to arrive at an implicit

spatiotemporal solution for �d(�) that we express in the
form �rst presented by Krolikowski and Luther-Davies
[30]:

�
�0 + �sat

�0 � �1

�1=2

tanh�1

"�
�0 + �sat

�0 � �1

�1=2

�d

#

� tanh�1 (�d) =
�1=2

sat

(1 + �0=�sat) (1 + �1=�sat)
1=2 �;

(19a)

where

�d[�d] �
�
�d � �1

�d + �sat

�1=2

(19b)

is a positive real parameter and �d(�) � �d[�d(�)]. Equa-
tions (19a) and (19b) describe the exact (although im-
plicit) dark soliton intensity pro�le, and they may be
solved numerically to yield �d(�) (see Fig. 2). For �xed
�0 and �1, the width of the pulse increases as �sat de-
creases. The physical nature of this inverse relationship
follows directly from the nonlinearity-dispersion balance
required for stationary states to exist (any reduction in
self-phase modulation must be accompanied by a com-
mensurate weakening of linear spreading) [1, 16].

D. Intrinsic velocity

An expression for the intrinsic velocity V0d can be de-
rived by respecting the asymptotic behaviour of the so-
lution. As � ! �1, the intensity tends towards its cw
value �0 and the phase gradient d	d=d� ! 0 tends to
zero. From Eq. (14a), it thus follows that

�� 2�KcwV0dp
1� 2�V 2

0d

= �
c1d

�0
: (20a)

Agreement between Eqs. (16a) and (16b) demands that
�sat(1�B)�2�cw = B�1 (a result that can be con�rmed
algebraically). It is then straightforward to show that
V0d satis�es the quadratic equation

�
(2�Kcw)2 + 2�V 2

0d loc
�
V 2

0d

� 2�(2�Kcw)V0d + (�2 � V 2
0d loc) = 0; (20b)

where we have de�ned V0d loc � c1d=�0. Analysis of the
two roots of Eq. (20b) must be performed with the two
branches of Kcw in mind [c.f., Eq. (11b)]. Under these
conditions, and being careful to choose the correct sign
for forward- (+) and backward-travelling (�) solitons,
one �nds that the intrinsic velocity is given by
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V0d(F ) = �
V0d loc(F )

n
1 + 2��0 (1 + �0=�sat)

�2
h
2 + �0=�sat + F 2 �1 + F 2�0=�sat

��1
i
� 2��2

o1=2
+ �
p

1 + 4��cw

1 + 2��0 (1 + �0=�sat)
�2
h
2 + �0=�sat + F 2 (1 + F 2�0=�sat)

�1
i ;

(21a)

where the physical interpretation of

V0d loc(F ) �
�1=2

0 F
(1 + �0=�sat) (1 + F 2�0=�sat)

1=2 (21b)

will become clear in Sec. VI B. Here, the dark soliton
contrast parameter F 2 � �1=�0, with A2 + F 2 = 1 and
0 < F 2 � 1, has been introduced for universal notation
[5, 11]. Inspection of Eq. (21b) also shows that, unlike
for the competing cubic-quintic nonlinearity [12], there is
generally no upper limit on the allowed value of �0.

E. Phase quadrature

By combining Eqs. (14a) and (20a), it can be shown
that the soliton phase �d(�) is given by the integral

	d(�) =
�
c1d

�0

�Z
d�
�
�0 � �d

�d

�
+ 	d0; (22a)

where 	d0 is a constant that can be set to zero without
loss of generality. The intensity pro�le is not known ex-
plicitly as a function of �, but by deploying Eq. (18) an
exact expression for the phase can be obtained wherein
the integration is over �d. In the domain � � 0,

	d [�d] = tan�1

"�
1
F

��
�sat

�0

�1=2

�d

#

+ F
�
�0

�sat

�1=2

tanh�1 (�d) (22b)

and we note that 	d(��) = �	d(�). As expected, the
parity of the dark soliton is determined by the sign of F ,

so under the change F ! �F the phase pro�le is reversed
in the � coordinate. The phase change across the dark
soliton, �	d � 	d(+1)�	d(�1), can be expressed as

�	d = � � 2 tan�1

"�
F
A

��
1 +

�0

�sat

�1=2
#

+ 2F
�
�0

�sat

�1=2

� tanh�1

"

A
�
�0

�sat

�1=2�
1 +

�0

�sat

��1=2
#

:

(23)

Under some conditions, �	d can be greater than � radi-
ans (regimes in which the solution has been designated
\darker than black" by Krolikowski et al. [33]).

V. MORE GENERAL SOLUTIONS

A. Frequency-velocity relations

The covariance of Eq. (1) under rotations or skews of
the space-time coordinate axes means that one may al-
ways observe the waves it describes from any arbitrarily-
de�ned frame of reference. This degree of freedom per-
mits one to construct more general solution families that
involve a �nite frequency shift, denoted here by 
, so
that now ub / exp(i
�) and ud / exp(�i
�).

Following the methods established in Refs. [11] and
[12], one may relate 
 to a transformation parameter Vb
or Vd characterizing the coordinate change according to

Vb;d(
) =
(
 + �)

p
1 + 4��b;cw � 4s�
 (�+ 
=2)� �

p
1 + 4��b;cw

1 + 4��b;cw � 2s� (
 + �)2 ; (24)

and where Vb;d has a status analogous to the trans-
verse velocity typically introduced into the analysis of
obliquely-propagating nonlinear beams [7].

In the spatiotemporal formulation, velocities can be
shown to combine geometrically (akin to those in special
relativity [13], as determined by the Lorentz rule) rather
than additively (as in Galilean relativity). Hence, the
net velocity parameters Wb;d de�ned in the laboratory
frame, being the resultant of the intrinsic and transverse

contributions, can be obtained through a rule that is ei-
ther pseudorelativistic (when s = +1 and the geometry
is thus Euclidean) or relativistic (when s = �1 and the
geometry is instead Riemannian) in nature [6]:

Wb;d =
V0b;0d + Vb;d

1� 2s�V0b;0dVb;d
; (25a)

After some algebra, combining Eqs. (10b), (24) and (25a)
one can show that the net velocity of bright solitons has
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the compact form

Wb = �
�+ 


q
1 + 4��b � 4�


�
�+ 1

2

� ; (25b)

where the � sign denoted forward- (+) and backward-
travelling waves (�). An analogous expression for Wd is
somewhat cumbersome and does not exhibit such alge-
braic simpli�cation.

Having introduced a transverse velocity, the lumped
space-time variable � describing the intensity and phase
quadratures [c.f. Eqs. (9a) and (19a)] must be replaced
with its transformed counterpart,

�b;d(�; �) �
� �Wb;d�q
1 + 2s�W 2

b;d

; (26)

where �b is associated with s = +1 and bright solution,
while �d is selected when considering s = �1 and dark
solutions. For notational convenience, the � sign inher-
ent to Wb;d [e.g., see Eq. (25b)] has been absorbed into
the �b;d variable so as the net velocity parameter is now

always a positive quantity. The frequency-shifted bright
soliton of Eq. (1) is now given by

ub(�; �) = �1=2
b (�; �)

� exp

"

i
� � i

s

1 + 4��b � 4�

�
�+



2

�
�

2�

#

� exp
�
�i

�
2�

�
; (27a)

where �b(�; �) is obtained from

tan�1 [�b(�; �)]

+
1
2

�
�sat

�0

�1=2

ln
�

(�0=�sat)1=2 + �b(�; �)
(�0=�sat)1=2 � �b(�; �)

�

=
�1=2

sat

(1 + �0=�sat)
1=2 �b(�; �): (27b)

and �b retains its formal de�nition from Eq. (9b). Simi-
larly, the frequency-shifted dark soliton is

ud(�; �) = �1=2
d (�; �) exp

"

i

(

tan�1

"�
1
F

��
�sat

�0

�1=2

�d(�; �)

#

+ F
�
�0

�sat

�1=2

tanh�1 [�d(�; �)]

)#

� exp

"

�i
� � i

s

1 + 4��cw + 4�

�
�+



2

�
�

2�

#

exp
�
�i

�
2�

�
; (28a)

where
�
�sat

�0

�1=2 (1 + �0=�sat)
1=2

A
tanh�1

"�
�sat

�0

�1=2 (1 + �0=�sat)
1=2

A
�d(�; �)

#

� tanh�1 [�d(�; �)] =
�1=2

sat

(1 + �0=�sat) [1 + (1�A2)�0=�sat]
1=2 �d(�; �) (28b)

and �d still has the formal de�nition from Eq. (19b).
Both solutions have now been parametrized by the ratio
�0=�sat, which faciliates a more straightforward asymp-
totic analysis of waveforms in the weak-saturation limit
[de�ned to be �0=�sat � O(1)].

B. Non-degenerate bistability

As with cubic-quintic systems [12, 34, 35], it is possible
to sweep across the solution continua for the saturable
system and identify pairs of non-degenerate bistable
pulses. For the case of bright solitons, there emerges a
range of values for �sat within which two solitary pulses
may have di�erent peak intensities while sharing the

same full-width-half maximum (FWHM) [29, 30]. Such
a bistable characteristic is di�erent from that proposed
by Kaplan [36] describing degenerate solitons, where the
integrated intensity may become a multi-valued function
of the propagation constant. It is also distinct from the
familiar S-shaped response curve from external feedback
in driven nonlinear cavities [14] (e.g., as described by the
roots of a cubic equation modelling the steady states of a
plane wave experiencing interferomic mistuning, periodic
pumping, and coupling-mirror losses).

Non-degenerate bistable bright solitons with a FWHM
of 2�� (in the rest frame of the pulse), where � =
sech�1(2�1=2) ’ 0:8814 is scale factor, are described by
�b(�b = ��) = �0=2 [34]. Applying that condition to
solution (27b) shows that �0 and �sat can be connected
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FIG. 2: (color online) Dark soliton intensity distributions
obtained by solving Eq. (19a) with �0 = 1:0 and �1 = 0:3.
These pro�les are universal since they are insensitive to �,
�, and V0b. The contraction (pulse narrowing) appears for
normal GVD (s = �1) when considering these curves as

functions of � rather than of � [12].

by the implicit equation [29]

tan�1

"�
�0=�sat

2 + �0=�sat

�1=2
#

+
1
2

�
�sat

�0

�1=2

ln

"
(2 + �0=�sat)

1=2 + 1
(2 + �0=�sat)

1=2 � 1

#

=
�

�sat

1 + �0=�sat

�1=2

��: (29a)

For weak saturation e�ects, the lower branch tends to-
wards �0 ’ 1=�2 while for strong saturation [character-
ized by �0=�sat � O(1)], the upper branch diverges ac-
cording to �0 ’ �sat

�
�sat(4��=�)2 � 1

�
(see Fig. 3).

For dark solitons, the bistability condition changes
slightly to read �d(�d = ��) = (�0 +�1)=2 [35], in which
case application to solution (28b) leads to a second im-
plicit equation [30]

�
�sat

�0

�1=2 (1 + �0=�sat)
1=2

A

� tanh�1

"�
�sat

�0

�1=2� 1 + �0=�sat

2�A2 + 2�sat=�0

�1=2
#

� tanh�1

"
A

(2�A2 + 2�sat=�0)1=2

#

=
�1=2

sat

(1 + �0=�sat) [1 + (1�A2)�0=�sat]
1=2 ��:

(29b)

Equation (29b) prescribes pairs of gray solitons that have
the same FWHM but where the cw backgrounds have
di�erent intensities. The lower branch tends towards
�0 ’ 1=�2A2 in the weak saturation regime (see Fig. 4),
as expected [30].

VI. ASYMPTOTIC ANALYSES

A. Soliton hierarchies

For waves of low intensity, de�ned by juj2=�sat � O(1),
saturation is relatively weak and the system response is
traditionally represented through a truncated power se-
ries [18]. To leading order, the dominant nonlinear con-
tribution to Eq. (1) is well approximated by

1
2

2 + juj2=�sat

(1 + juj2=�sat)
2 juj

2u ’
�

1�
3

2�sat
juj2
�
juj2u; (30)

which corresponds to a cubic-quintic model with a domi-
nant (positive) cubic term and a small (negative) quintic
correction. In the notation of Ref. [12], one can iden-
tify coe�cients 2 � +1 and 4 � �3=2�sat with the
standard cubic nonlinearity clearly recovered when the
quintic contribution is neglected. Hence, we expect spa-
tiotemporal saturable solitons to transition through their
cubic-quintic countparts when intensities are much less
than �sat and the cubic limit is approached. It is self-
evident that the underlying quadrature equations must
also reduce accordingly at each stage.

1. Bright solitons

To facilitate the asymptotic analysis of bright solitons,
it is helpful to recast exact solution (27b) in the slightly
di�erent but more instructive form [37]

2
�
�0

�sat

�1=2

tan�1

"�
�0

�sat

�1=2� 1� �b=�0

1 + �b=�sat

�1=2
#

+ cosh�1

"
2�0 (1� �0=�sat)

�1 � �b

�b (1 + �0=�sat) (1� �0=�sat)
�1

#

= 2
p

2�b�b(�; �); (31a)

which more closely resembles the target cubic-quintic
bright soliton [12]. For �0=�sat � O(1), result (31a) is
well approximated by

2
�
�0

�sat

��
1�

�b

�0

�1=2

+ cosh�1
�

2�0 (1 + �0=�sat)� �b

�b (1 + 2�0=�sat)

�
’ 2
p

2�b�b(�; �):

(31b)

In going from Eq. (31a) to (31b), one is obliged to rec-
ognize the leading-order change to the �b parameter [c.f.
Eq. (7c)], namely �b ’ (1 � �0=�sat)(�0=2). Hence, the
net velocity Wb [de�ned in Eq. (25b)] has the correct
behaviour so that the right-hand side of Eq. (31b) nat-
urally converges. Note that �0=�sat does not need to be
all that small before the left-hand side of Eq. (31b) can
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be replaced to yield:

cosh�1
�

2�0 (1� �0=�sat)� �b

�b (1� 2�0=�sat)

�
’ 2
p

2�b�b(�; �)

(31c)
[for instance, approximate solutions (31b) and (31c) are
nearly indistinguishable for �0=�sat = 1=10]. Crucially, it
follows that the approximate saturable soliton described
by Eq. (31c) corresponds to an exact cubic-quintic soliton
with 2 = +1 and 4 � �3=2�sat [12]. As �0=�sat ! 0,
the cubic result also emerges from Eq. (31c) [11],

cosh�1
�

2�0 � �b

�b

�
’ 2�1=2

0 �b(�; �); (31d)

as it must. Hence we have proved that bright solitons
form a hierarchy wherein saturable solutions must neces-
sarily pass through the corresponding cubic-quintic shape
before �nally (and rather slowly) converging on the cubic
limit as �0=�sat ! 0.

2. Dark solitons

A similar analysis of dark solitons is more involved, but
the same procedure is generally followed for its intensity
and phase quadratures. Exact solution (28b) describing
the intensity distribution can be reexpressed [37] as

cosh�1

(
2�0A2 (1 + �0=�sat)�

�
1 +

�
1 +A2� �0=�sat

�
(�0 � �d)

[1 + (1�A2) �0=�sat] (�0 � �d)

)

�
2A

(1 + �0=�sat)
1=2

�
�0

�sat

�1=2

tanh�1

8
<

:
1

�1=2
sat

"
�d �

�
1�A2� �0

1 + �d=�sat

#1=2
9
=

;
= 2
p

2�d�d(�; �); (32a)

and where we have introduced the parameter

�d �
�0A2

2

�
1 +

�0

�sat

��3 �
1 +

�
1�A2� �0

�sat

��1

(32b)

for a more transparent recovery of known results for the
cubic-quintic system [12].

In the limit �0=�sat � O(1), the expression for �d re-

duces to its cubic-quintic counterpart with 2 = +1 and
4 = �3=2�sat, namely �d = (�0A2=2)[1�(4�A2)�0=�sat]
[12]. Since the intrinsic velocity V0d derived in Ref. [12] is
also recovered from Eq. (21a) in the same way, it follows
that right-hand side of Eq. (32a) necessarily converges
as desired. As in the case of bright solitons, the ratio
�0=�sat does not need to be especially small before the
exact left-hand side of Eq. (32a) can be replaced with an
excellent approximation thus:

cosh�1

(
2�0A2 �1� (�0=�sat)

�
4�A2��� (1� 4�0=�sat) (�0 � �d)

[1� 2 (�0=�sat) (2�A2)] (�0 � �d)

)

’ 2
p

2�d�d(�; �): (33a)

One subsequently recovers the cubic-quintic intensity
pro�le detailed in Ref. [12]. As �0=�sat ! 0, the well-
known pro�le for the cubic system [7] appears as the
limit of Eq. (33a):

cosh�1
�

2�0A2 � (�0 � �d)
�0 � �d

�
’ 2�1=2

0 A�d(�; �): (33b)

The phase distribution of the cubic-quintic dark soliton
can be recovered from the saturable solution in a similar
way (we do not present the details here). Hence, dark
solitons must also form a self-consistent saturable|cubic-
quintic|cubic hierarchy.

B. Slowly-varying envelopes

1. Envelope equation

By neglecting the �rst term in Eq. (1), we can recover
the governing equation of conventional pulse theory in
the laboratory frame:

i
�
@u
@�

+ �
@u
@�

�
+
s
2
@2u
@�2 +

1
2

2 + juj2=�sat

(1 + juj2=�sat)2 juj
2u ’ 0:

(34a)
By Galilean boosting to the local time-frame, de�ned by
coordinates �loc � � � �� and �loc = �, Eq. (34a) is
transformed into the more familiar form considered by
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FIG. 3: (color online) Non-degenerate bistablity curves for
saturable bright solitons as predicted by Eq. (29a). Lower

branches with 1=�sat ! 0 correspond to regimes where
saturation is weak, in which case the peak intensity

converges toward �0 ’ 1=�2.

Krolikowski and Luther-Davies [29, 30],

i
@u
@�loc

+
s
2
@2u
@�2

loc
+

1
2

2 + juj2=�sat

(1 + juj2=�sat)2 juj
2u ’ 0: (34b)

Crucially, one must be able to recover the soliton so-
lutions of these two related models in the limit that all
contributions from �@2u=@�2 are su�ciently small simul-
taneously. In practice, one is obliged to asymptote the
spatiotemporal predictions for velocities and propagation
constants in conjunction with a Galilean transformation
to the (�loc; �loc) frame.

2. Intrinsic, transverse, and net velocities

We �rst consider algebraic results for the various ve-
locity contributions (10b), (21b), and (25a) under the as-
sumption of slowly-varying envelopes. The label ‘SVEA’
is used to denote these components in the laboratory
frame, while ‘loc’ refers to their local-time frame rep-
resentations.

In the limit ��b � O(1), bright solitons have an in-
trinsic velocity V0b ’ � � V0b SVEA. For dark solitons
with ��cw � O(1) and ��2 � O(1), it follows that
V0d ’ V0d loc + � � V0d SVEA. When considering the pa-
rameters Vb;d, the additional inequality �j
(�+
=2)j �
O(1) leads to the simple result Vb;d ’ 
 � VSVEA.
This key �nding demonstrates that transverse veloci-
ties and frequency shifts are interchangeable in conven-
tional pulse theory. Finally, the net velocities Wb;d are
well-approximated by Wb;d ’ V0b;0d SVEA + VSVEA �
Wb;d SVEA.

In the local time-frame, parameters V0b;0d SVEA and
VSVEA combine in a way that maps directly onto the ve-
locity combination rule of Galilean relativity. For bright
solitons, the intrinsic velocity V0b SVEA is transformed
away so that in (�loc; �loc) coordinates one has V0b loc = 0.
It then follows that Wb loc = VSVEA = 
, and hence solu-
tions with 
 = 0 describe pulses that are strictly station-
ary (that is, they travel with their peak always centered

FIG. 4: (color online) Non-degenerate bistablity curves for
saturable dark solitons [(a) black (A = 1) and (b) gray (with
� = 1) solutions] as predicted by Eq. (29b). Lower branches

with 1=�sat ! 0 correspond to weak saturation, in which
case the cw intensity tends to �0 ’ 1=�2A2.

on �loc = 0). The situation is slightly more complicated
for dark solitons. The factor � in V0d SVEA disappears so
that the intrinsic velocity of the dark soliton is simply
V0d loc and hence Wd loc = V0d loc + 
. Black solutions
(having F = 0 = V0d loc) with 
 = 0 thus have zero local
net velocity and are also strictly stationary.

3. Asymptotic solutions

Since all the coordinate transformations we have con-
sidered here are geometrical operations, the pro�le of any
solution must be independent of the frame of reference in
which it is observed. For example, a sech-shaped pulse
in the laboratory frame must also be sech-shaped in the
local-time frame (though in spatiotemporal regimes one
necessarily encounters a contraction or dilation factor)
[6, 7].

From the results of the previous subsection, it fol-
lows that under the SVEA, one must have �b;d(�; �) ’
� � Wb;d� � �b;d SVEA(�; �). The intensity and phase
quadratures of localized components of the solutions [c.f.,
Eqs. (27b), (28a) and (28b)] remain formally unchanged
when assuming slowly-varying envelopes (one simply re-
places �b;d with �b;d SVEA). However, the linear part of
the phase distribution alters its structure due to the co-
ordinate change. When considering forward-propagating
spatiotemporal solitons, transforming to the local-time
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frame shows that

ub(�loc; �loc) / exp
�
i
�loc + i

�
�b �


2

2

�
�loc

�
; (35a)

and

ud(�loc; �loc) / exp
�
�i
�loc + i

�
�cw +


2

2

�
�loc

�
:

(35b)

These solutions satisfy Eq. (34b) exactly for s = +1 and
s = �1, respectively. Hence, one can now fully appreciate
that the known (conventional) solitons derived by Kro-
likowski and Luther-Davies [29, 30] are important subsets
of the more general spatiotemporal solutions. Applying
the same multiple-limit procedure to the backward spa-
tiotemporal solitons yields largely similar results except
that a rapidly-varying phase term, exp[�i2(�=2�)], sur-
vives in the linear phase distributions. The non-vanishing
nature of this contribution demonstrates that conven-
tional pulse theory (based on a nonlinear-Schr�odinger
formalism) has no analogue of backward waves.

VII. SOLITON STABILITY

In going from cubic [7] to cubic-quintic [12] to sat-
urable systems, the linear part of the wave operator al-
ways has the same form. In that sense, one does not
expect to encounter substantial changes in soliton sta-
bility characteristics since the fundamental elliptic / hy-
perbolic structure of the governing equation remains un-
changed. Here, the same physical arguments with re-
gards frame-of-reference symmetries are deployed, and
standard tools [viz., the Vakhitov-Kolokolov (VK) and
renormalized-momentum integral criteria] that have pre-
viously proved so invaluable [7, 12] are applied to make
predictions about the robustness of localized solutions to
Eq. (1).

A. Vakhitov-Kolokolov criterion

A bright-type solution of Eq. (34b) is predicted to be
stable against small disturbances if the integrated pulse
intensity P , de�ned by

P �
+1Z

�1

d�loc jubj2; (36a)

has a positive gradient such that

d
d�b

P (�b) > 0; (36b)

where �b is the propagation constant [c.f. Eq. (7c)]. Since
the wave intensity pro�le is known only implicitly, the ex-
plicit computation of P (�b) can be potentially awkward.

FIG. 5: (color online) Integrated intensity curves P (�b)
obtained from Eq. (36c) for increasing saturation parameter.

The gradient dP=d�b is always positive so that the VK
criterion [c.f. Eqs. (36a) and (36b)] is satis�ed.

However, the calculation can be facilitated indirectly by
transforming the integral [36] so that

P (�b) =
1
p

2

�0 (�b )Z

0

dR0

�
�b �

1
1 +R0=�sat

�
R0

2

���1=2

;

(36c)
where �0(�b) = 2�b=(1 � 2�b=�sat). Since the peak in-
tensity lies in the range 0 � �0 < 1, it must be that
0 � �b < �sat=2 (note that the corresponding cubic-
quintic soliton also has a maximum allowed value for �b
[12]). Plotting the P (�b) curves reveals that inequality
(36b) tends to be satis�ed and hence saturable solitons
are anticipated to be stable entities (see Fig. 5).

B. Perturbed bright solitons

To test analytical predictions of bright soliton stability,
a similar prescription is followed to that in Ref. [12]. Ini-
tial data is selected for Eq. (1) using solution (27a) but
where the dilation factor (1 + 2�W 2

b )1=2 characterizing
the broadening of �b(�; 0) in the anomalous-GVD regime
is omitted from �b(�; 0). The strength of the local shape
perturbation thus increases with 
 = 4; 8; 12 and 16.

Typical examples of pulse self-reshaping due to internal
dynamics are shown in Fig. 6. A saturation intensity of
�sat = 4:0 has, according to Eq. (29a), bistable lower- and
upper-branch solitons with peak intensities �0 ’ 2:298
and �0 ’ 8:763, respectively. The lower-branch solution
exhibits monotonically-decaying oscillations as the wave-
form evolves towards a stationary state of Eq. (1), with a
small amount of energy shed as low-amplitude dispersive
waves (radiation). The upper-branch solution behaves
somewhat di�erently, with persistent (and much more
rapid) oscillations surviving in the long-term evolution.
These oscillations are bounded within an envelope that
is weakly modulated in �|behaviour that is consistent
with the excitation of an internal mode [38]|with sim-
ulations giving no indication of convergence towards a
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stationary state (even over propagation distances much
longer than those shown).

The self-reshaping characteristics of the lower-branch
soliton are reminiscent of those recently uncovered in
cubic-quintic systems [12]. By interpreting perturbation-
induced radiative losses as a mechanism for local energy
dissipation (while noting that the system is still globally
conservative), one might regard the asymptotic station-
ary states emerging in Fig. 6(a) as �xed-point attractors
surrounded by wide basins of attraction. Similarly, the
surviving oscillatory solutions in Fig. 6(b) are qualita-
tively similar to the limit-cycle attractors reported else-
where in spatial soliton contexts [7].

C. Renormalized-momentum criterion

The stability of dark solitons of generalized NLS-type
models such as Eq. (34b) is typically discussed in terms
of a renormalized momentum Mren,

Mren �
i
2

+1Z

�1

d�loc

�
ud

@u�d
@�loc

� u�d
@ud

@�loc

��
1�

�0

judj2

�
:

(37a)
The integral expression for Mren can be recast in a more
convenient form by way of Eq. (14a) and by noting that

FIG. 6: (color online) Evolution of the bistable bright
soliton peak amplitude when the initial waveform resides on

the (a) lower branch (�0 = 2:298) and (b) upper branch
(�0 = 8:763)|c.f. Fig. 3 with � = 1:0. System parameters:
�sat = 4:0, s = +1, � = 1:0, � = 1:0� 10�3. Blue circle:


 = 4. Green square: 
 = 8. Red triangle: 
 = 12. Black
diamond: 
 = 16.

� and �loc are interchangeable in conventional analyses:

Mren = �V0d loc

+1Z

�1

d�loc
(�d � �0)2

�d
: (37b)

Solitons are predicted to be stable when the inequality

d
dV0d loc

sMren(V0d loc) > 0 (37c)

is satis�ed. Note that Eq. (37c), proved by Barashenkov
[39] to be an acceptable stability criterion and further
developed by Pelinovsky et al. [40], captures nonlinear
dynamical phenomena that the MI (linear) calculation of
Sec. IV A (and Appendix C) clearly cannot.

By considering the behaviour of the integral in
Eq. (37b), Kivshar and Afanasjev have shown that black
solitons of Eq. (34b) possess a drift instability that ap-
pears when �sat=�0 is less than a critical value of � 0:45
(see Fig. 3 in Ref. [41]). The instability manifests itself as
the gradual transformation of an initially black (F = 0)
solution into a gray (jF j > 0) waveform, accompanied by
the strong emission of radiation. In the following simu-
lations with Eq. (1), we restrict our attention to param-
eter regimes above criticality. A set of typical curves for
the renormalized momentum, as de�ned in Eq. (37b), is
shown in Fig. 7. The gradients are generally positive and
Mren is unde�ned at V0d loc = 0 [41].

D. Perturbed dark solitons

The perturbed dark soliton initial-value problem is de-
�ned by using solution (28a) but where the contraction
factor (1�2�W 2

d )1=2 in the normal-GVD regime is omit-
ted from �d(�; 0). Attention is �rst paid to black solitons
with frequency shifts of 
 = 4; 8; 12; and 16. The tempo-
ral width of the input pulse, de�ned as w0 � (2�d)�1=2

FIG. 7: (color online) Renormalized dark soliton
momentum when �0 = 2:0, computed with Eq. (37b) for the

contrast range 0 < F � 1. The gradient dMren=dV0d loc is
always positive for V0d loc > 0, so that stability criterion

(37c) is always satis�ed. Here, Mren approaches a numerical
value of �2� as V0d loc tends toward zero.
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FIG. 8: (color online) Evolution of the bistable black
soliton full width when the initial waveform resides on the

(a) lower branch (�0 = 2:383) and (b) upper branch
(�0 = 6:167)|c.f. Fig. 4 with � = 1:0 (horizontal bars
indicate theoretical predictions). System parameters:
�sat = 5:0, s = �1, � = 1:0, � = 1:0� 10�3. Blue circle:


 = 4. Green square: 
 = 8. Red triangle: 
 = 12. Black
diamond: 
 = 16.

[c.f. Eq. (32b)], is broader than that required by the exact
solution. We thus expect the localized pulse to become
narrower as it travels through space, evolving smoothly
towards its limiting value of w1 = w0(1 � 2�W 2

d )1=2.
Typical self-reshaping characteristics are shown in Fig. 8
for �sat = 5:0 and � = 1:0 [in which case Eq. (29b) deter-
mines the lower- and upper-branch cw intensities to be
�0 ’ 2:383 and �0 = 6:167, respectively]. The evolution
into a stationary state occurs relatively rapidly, within a
distance of � ’ 10.

Finally, illustrative results are presented for perturbed
gray solitons (curves for the reshaping pulse widths are
similar to those in Fig. 8 but they occur on much longer
scalelengths in �). Such solutions tend not to preserve
their grayness and are described by F ! F (�), where
F (�) must be obtained numerically. Gray solitons thus
often exhibit a small drift-type instability that is reminis-
cent of that in cubic-quintic systems [12], where the min-
imum intensity of the pulse dip (which is itself varying
slowly in �) tends to travel along the (approximately lin-
ear) characteristic ��Wd(�)� = const: and where V0d(�)
is computed from Eq. (21a) after adiabatic �tting of the
numerical dataset to solution (28b). Typical variations
in relaxing grayness for perturbed solitons with a �xed
saturation intensity �sat = 5:0 are shown in Fig. 9. Sim-
ulations have also shown that for a �xed perturbation

FIG. 9: (color online) Evolution of the gray soliton
contrast parameter when the initial waveform has �0 = 2:0
and F 2(0) = 0:5. System parameters: �sat = 5:0, s = �1,
� = 1:0, � = 1:0� 10�3. Blue circle: 
 = 4. Green square:


 = 8. Red triangle: 
 = 12. Black diamond: 
 = 16.

FIG. 10: (color online) Evolution of the gray soliton
contrast parameter when the initial waveform has �0 = 2:0
and F 2(0) = 0:5 and the initial perturbation has 
 = 8:0.

System parameters: s = �1, � = 1:0, � = 1:0� 10�3. Blue
circle: �sat = 1:0. Green square: �sat = 2:0. Red triangle:

�sat = 4:0. Black diamond: �sat = 8:0.

strength (e.g., for a moderate value 
 = 8:0), the relax-
ation of F (�) tends to occur over distances that decrease
with increasing �sat (see Fig. 10).

VIII. CONCLUSIONS

Our analyses of spatiotemporal systems have now con-
sidered exact bright and dark envelope solitons in some
detail for the three classic nonlinearities where one might
expect to �nd analytical solutions|cubic [11], cubic-
quintic [12], and saturable models. These wavepackets
tend to exhibit a raft of corrections to their known con-
ventional counterparts that arise solely from the space-
time-symmetric nature of the governing equation; they
include relativistic- or pseudorelativistic-type contrac-
tion/dilation factors in the pulse width, along with
generic (intensity- and frequency-dependent) modi�ca-
tions to propagation constants and group velocities. In
each case, standard mathematical tools have been used
to investigate spatiotemporal wave stability, with sup-
porting simulations testing and verifying theoretical pre-
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dictions by way of perturbed initial-value problems. The
new solitons have demonstrated remarkable robustness
throughout, and they may be interpreted as attractors
in the system’s dynamics.

Having derived soliton solutions (fundamental station-
ary states to facilitate subsequent investigations), there
is now a wide spectrum of higher-order e�ects to explore
within the spatiotemporal context. Quite general wave-
based phenomena to accommodate include third- [42] and
fourth-order [43] linear dispersion while, in the photonics
domain speci�cally, self-steepening and stimulated Ra-
man scattering [44, 45] are often practical concerns in
optical-�ber systems. The arena of spatiotemporal soli-
ton collisions is also one that merits attention, given the
fundamental importance of nonlinear wave interactions
in general [46, 47] and for optical applications in partic-
ular [48].

Finally, it is desirable to extend our (1 + 1)D spa-
tiotemporal modelling into higher-dimensional (2 + 1)D
and (2 + 2)D regimes, where excitations may be fully
localized in four-dimensional space-time. Such an ex-
ercise opens the door to formulating symmetrized (i.e.,
more complete relativistic- and pseudorelativistic-type)
descriptions of exotic phenomena such as optical bullets
[8] and X waves [49] that include the interplay between
nonlinearity, GVD, and Helmholtz (as opposed to parax-
ial) di�raction.

Appendix A: Example in waveguide optics

We consider a scalar electric �eld of the form E(t; z) =
A(t; z) exp[i(k0z � !0t)] + c.c., where A(t; z) is the en-
velope and \c.c." denotes the complex conjugate of the
preceding quantity. The travelling wave has a center fre-
quency !0 and propagation constant k0 = n0!0=c, where
n0 is the linear refractive index of the host medium at
!0 and c is the speed of light in vacuo. Taking the wave
intensity to be jA(t; z)j2, the generic model chosen for a
saturable nonlinear refractive index nNL is [28]

nNL(jAj2) =
n2Isat

2

"

1�
1

(1 + jAj2=Isat)
2

#

; (A1)

where Isat is the saturation intensity parametrizing the
response. At low intensities, where jAj2=Isat � O(1),
saturation is small and Eq. (A1) is well approximated by
nNL(jAj2) ’ n2jAj2 + n4jAj2, where n4 � �(3=2)n2=Isat
(the system essentially has a cubic-quintic response) [18].
Hence, the standard Kerr e�ect, nNL(jAj2) = n2jAj2 de-
termines the dominant behaviour when jn4jjAj2 is negli-
gible compared with n2.

Deployment of the Fourier decomposition techniques
to capture the linear-dispersive properties of the system

[16] then leads to the following equation for A:

1
2k0

@2A
@z2 + i

�
@A
@z

+ k1
@A
@t

�
�
k2

2
@2A
@t2

+
!0

c

�n2

2

� 2 + jAj2=Isat

(1 + jAj2=Isat)
2 jAj

2A = 0: (A2)

The two parameters k1 � (@k=@!)!0 = 1=vg and k2 �
(@2k=@!2)!0 are related to the group-velocity and tem-
poral dispersion (GVD), respectively, where k is formally
obtained from an associated eigenvalue problem (i.e.,
solving Maxwell’s equations for the transverse distribu-
tion of the guided �eld [50]).

One can now introduce a scaling for the laboratory
space z and time t coordinates according to � = z=L and
� = t=tp, and also for the envelope A(t; z) = A0u(t; z).
By connecting the spatial and temporal units through
L � t2p=jk2j (essentially scaling to a linearly-dispersing
reference Gaussian pulse [50]) and measuring amplitudes
in units de�ned by (!0=c)n2A2

0L � 1, we can arrive
at Eq. (1) where the parameters are � = 1=2k0L, � =
k1L=tp, s = �sgn(k2), and �sat = Isat=A2

0.

Appendix B: Two-level atom saturable
refractive index model

1. Bright solitons

Perhaps the simplest saturation model stems from the
two-level-atom approximation [14]. Here, it is captured
within the envelope equation

�
@2u
@�2 + i

�
@u
@�

+ �
@u
@�

�
+
s
2
@2u
@�2 +

1
1 + juj2=�sat

juj2u = 0;

(B1)
which is a direct spatiotemporal generalization of the
classic model considered by Gatz and Herrmann [25]. For
weak saturation, where juj2=�sat � O(1), the nonlinear-
ity functional tends to the constant �sat [c.f. a limit-
ing value of �sat=2 for Eq. (1)]. Moreover, a competing
cubic-quintic response emerges in which 2 = +1 cap-
tures the dominant contribution and 4 � �1=�sat (c.f.
4 � �3=2�sat in Sec. VI A) parametrizes the leading-
order correction to the Kerr e�ect [12, 18].

Following the method detailed in Sec. II, the intensity
quadrature is described by

d
d�b

"
1
�b

�
d�b

d�

�2
#

= 8
�
�b �

�b

1 + �b=�sat

�
(B2a)

so that, after a �rst integration, we �nd

�
d�b

d�

�2

= 8�b�2
b � 8�sat�2

b

�
1�

�sat

�b
ln
�

1 +
�b

�sat

��

+ c2b�b: (B2b)
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Applying the bright-soliton boundary conditions at � !
�1 shows that c2b = 0 (recall that the corresponding
constant was non-vanishing, assuming a value of 4�2

sat,
in Sec. III A). Considering the boundary conditions at
� = 0 also leads to

�b = �sat

�
1�

�sat

�0
ln
�

1 +
�0

�sat

��
: (B3)

Eliminating �b from Eq. (B3) using Eq. (B2b) leads to
�
d�b

d�

�2

= 8�2
sat�

2
b

�
�

1
�b

ln
�

1 +
�b

�sat

�
�

1
�0

ln
�

1 +
�0

�sat

��
;

(B4)

which cannot now be integrated exactly. To compute
the intensity pro�le for a given peak intensity �0, one

might resort to direct numerical techniques [e.g., treating
Eq. (B2a) as a boundary-value problem and applying the
shooting method (see Fig. 11)]. Alternatively, Eq. (B4)
can be transformed into an integral equation. In the
domain � > 0, where d�b=d� < 0, it can be shown that
�b may be obtained from

�b(�)
�0

= exp
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� 2
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2�sat

�Z
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1
�b(X)

ln
�
1 +
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1 +
�0

�sat

��1=2
#

; (B5)

which may be solved iteratively (e.g., in tandem with the
non-degenerate bistability condition) [25].

After implementing the coordinate discussed in Sec. V,
one can write down the more general frequency-shifted
bright soliton solution of Eq. (B1), namely

ub(�; �) = �1=2
0 exp
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�
; (B6)

where �b(�; �) and Wb are given by Eqs. (26) and (25b),
respectively. We note in passing, but do not rigorously
prove here, that the double-doping saturable nonlinear-
ity proposed by Gatz and Herrmann [27] can be treated
in exactly the same way and their solution (expressed in
terms of an integral equation) generalized to spatiotem-
poral regimes accordingly. Since bright soliton (B6) is
now known, it is now instructive to consider its stability
properties in relation to those of solution (27a).

2. Soliton stability

For completeness, we thus consider briey the same
class of perturbed bright soliton initial-value problem for
Eq. (B1) as in Sec. VII. The input pulse ub(�; 0) is
de�ned by solution (B6) but where the dilation factor
(1 + 2�W 2

b )1=2 is omitted from the upper limit [i.e., from
�b(�; 0)]. For straightforward comparison with earlier
simulations, the same frequency shifts are retained to
control the strength of the perturbation (
 = 4; 8; 12;
and 16) and peak intensities �0 = 2:298 and �0 = 8:763
are used (though these values do not necessarily lie on
the bistability curve [25]). We also note that for �xed
peak intensity and saturation parameters, the two-level
model tends to have a stronger nonlinear response than

the phenomenological model of Wood et al. [28].
Comparing Figs. 12(a) and 6(a) shows that quantita-

tively similar reshaping curves can be expected for the
low-intensity waves. More pronounced di�erences can ap-
pear for higher-intensity waves, where the long-term limit
cycle-type oscillations associated with reshaping solitons
of Eq. (1) may be absent from the predictions of model

FIG. 11: (color online) Bright soliton intensity
distributions obtained by solving Eq. (B2a) numerically for
�0 = 1:0 (they are universal since they are insensitive to

variations in �, �, and V0b). Di�erences between the
stationary solutions of Eqs. (1) and (B1) occur
predominantly at low values of �sat (c.f. Fig. 1).
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FIG. 12: (color online) Evolution of the bright soliton peak
amplitude when the initial waveform for Eq. (B1) has a peak

amplitude of (a) �0 = 2:298 and (b) �0 = 8:763. System
parameters: �sat = 4:0, s = +1, � = 1:0, � = 1:0� 10�3.
Blue circle: 
 = 4. Green square: 
 = 8. Red triangle:


 = 12. Black diamond: 
 = 16.

(B1) [compare Figs. 12(b) and 6(b)]. One �nds, instead,
oscillatory features (with variations on a shorter longi-
tudinal scalelength) that vanish as � ! 1 to leave a
stationary solution. The simulations presented here and
in Sec. VII B thus demonstrate that two di�erent spa-
tiotemporal saturable-nonlinearity models possess soliton
solutions with similar stability characteristics.

Appendix C: Modulational instability

1. Perturbation dispersion relation

Here, we analyze the MI characteristics for a fully-
second-order envelope equation with a generic nonlinear-
ity function f(juj2),

�
@2u
@�2 +i

�
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@�
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@u
@�

�
+
s
2
@2u
@�2 + f(juj2)u = 0; (C1a)

where f(0) = 0. Typical examples of f include cubic-
quintic systems such as f(juj2) = 2juj2 +4juj4 [12], and
saturable systems that may have either a simple form,
f(juj2) = juj2(1 + juj2=�sat)�1 [c.f., Eq. (B1)], or one
that is more complicated,

f(juj2) =
1
2

2 + juj2=�sat

(1 + juj2=�sat)
2 juj

2 (C1b)

[c.f., Eq. (1)]. The two cw families are described by

ucw(�; �) = �1=2
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(C2)
where �0 � jucwj2 is the uniform intensity, �cw � f(�0),
and the � sign determines the longitudinal sense of prop-
agation (+ for forwards in �, � for backwards).

Perturbed solutions are now sought that have the form

u(�; �) = �1=2
0 [1 + �a(�; �)] exp

�
�i
p

1 + 4��cw
�

2�

�

� exp
�
�i

�
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�
; (C3a)

where �� O(1) is a small parameter and a(�; �) is a com-
plex function with O(1) magnitude describing perturba-
tions to both the amplitude and phase of the underlying
cw solution. It thus follows that, within a linear approxi-
mation, ju(�; �)j2 � � ’ �0+��0 (a+ a�) � �0+��(�; �).
The nonlinearity function f can then be Taylor-expanded
around the cw intensity �0 so that

f(juj2) ’ f(�0 + ��) ’ �cw + ��0f 0(�0) (a+ a�) ;
(C3b)

where f 0(�0) � df(�)=d�j�=�0 parametrizes the leading-
order correction [e.g., f 0(�0) = 2 + 24�0 for a cubic-
quintic nonlinearity, or f 0(�0) = (1 + �0=�sat)�2 and
f 0(�0) = (1 + �0=�sat)�3 for the two saturation models,
respectively]. Higher-order terms in the expansion, such
as (��)2 and (��)3 etc., are neglected in linear analysis.

Substitution of Eqs. (C3a) and (C3b) into Eq. (C1a)
shows that a must satisfy the linearized equation at O(�),
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(C4)

Following the method detailed in Ref. [11], the Fourier
modes of Eq. (C4) have a complex propagation constant
Kp (allowing for potential growth of the perturbation
wave) and frequency 
p that are connected by the quartic
dispersion relation

�2K4
p �
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2

p
�
K2

p

� 2�
p
p

1 + 4��cwKp

+
� 1

2
2
p
� �� 1

2
2
p
�
� 2�2 � 2s�0f 0(�0)

�
= 0: (C5)

While the four roots of Eq. (C5) can be written down
exactly [51], they are algebraically cumbersome and do
not provide much further physical insight. However, one
regime of key importance of that corresponding to long-
wavelength excitations.
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2. Long-wavelength instabilities

Neglecting all �-dependent contributions to the MI
spectrum can be expected to recover the long-wavelength
result from conventional pulse theory. By considering a
forward-travelling host wave, perturbation dispersion re-
lation (C5) is well-described by the quadratic approxi-
mation

K2
p + 2�
pK �

� 1
2
2

p
� �� 1

2
2
p
�
� 2�2 � 2s�0f 0(�0)

�
’ 0

(C6a)

which has the two solution branches

Kp = ��
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q� 1

2
2
p
� �� 1

2
2
p
�
� 2s�0f 0(�0)

�
: (C6b)

The term at ��
p is transformed away after a Galilean
boost to the local time-frame, leaving the familiar result
for MI in NLS-based models. One can thus deduce that
the long-wavelength MI properties of the system are es-
sentially independent of �, and that they occur whenever
2s�0f 0(�0) > 
2

p=2.
Our principal interest lies with model (C1b), where

f 0(�0) � 0 for �0 � 0. In the anomalous-GVD regime
(where s = +1), it follows that MI appears in the long-
wave band 0 < 
2

p < 4�0f 0(�0). The most unsta-
ble frequency 
p0 is then easily calculated from 
2

p0 =
2�0f 0(�0). In contrast, Eqs. (C6a) and (C6b) predict
that there is no long-wavelength MI in the normal-GVD
regime (where s = �1). Hence, the background wave of
dark soliton (28a) is expected to be always stable against
small background disturbances.

[1] T. Dauxois and M. Peyrard, Physics of Solitons (Cam-
bridge University Press, Cambridge, 2006).
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Mor-
ris, Solitons and Nonlinear Wave Equations (Academic
Press, London, 1982).
G. L. Lamb, Elements of Soliton Theory (John Wiley
and Sons, New York, 1980).

[2] Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61,
763 (1989).
V. G. Makhankov, Phys. Rep. 35, 1 (1978)
A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc.
IEEE 61, 1443 (1973).

[3] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34,
62 (1972).
V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 37,
823 (1973).

[4] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142
(1972).
A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171
(1972).
L. F. Mellenauer, R. H. Stolen, and J. P. Gordon, Phys.
Rev. Lett. 45, 1095 (1980).
A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N.
Thurston, and E. M. Kirschner, Phys. Rev. Lett. 61, 2445
(1988).
P. Emplit, J. P. Hamaide, F. Reynaud, C. Frohly, and A.
Barthelemy, Opt. Commun. 62, 374 (1987).

[5] Y. S. Kivshar, Opt. Quantum Electron. 30, 571 (1998).
Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81
(1998).

[6] J. M. Christian, G. S. McDonald, T. F. Hodgkinson,
and P. Chamorro-Posada, Phys. Rev. Lett. 108, 034101
(2012).

[7] J. M. Christian, G. S. McDonald, and P. Chamorro-
Posada, Phys. Rev. A 76, 033833 (2007).
J. M. Christian, G. S. McDonald, and P. Chamorro-
Posada, Phys. Rev. A 81, 053831 (2010).

[8] A. B. Aceves, O. V. Shtyrina, A. M. Rubenchik, M. P.
Fedoruk, and S. K. Turitsyn, Phys. Rev. A 91, 033810
(2015).
B. A. Malomed, D. Mihalache, F. Wise, and L. Torner,
J. Opt. B: Quantum Semiclass. Opt. 7, R53 (2005).

F. Wise and P. Di Trapani, Optics & Photonics News,
February 7, 2002.
S. Raghavan and G. P. Agrawal, Opt. Commun. 180, 377
(2000).
X. Liu, L. Qian, and F. Wise, Phys. Rev. Lett. 82, 4631
(1999).
S.-S. Yu, C.-H. Chien, Y. Lai, and J. Wang, Opt. Com-
mun. 119, 167 (1995).

[9] J. Burguete, H. Chat�e and F. Daviaud, N. Mukolobwiez,
Phys. Rev. Lett. 82, 3252 (1999).
M. van Hecke, Phys. Rev. Lett. 80, 1896 (1998).
I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett.
72, 2561 (1994).
H. Chat�e, Nonlinearity 7, 185 (1994).
K. Nozaki and N. Bekki, Phys. Rev. Lett. 51, 2171
(1983).

[10] F. Biancalana and C. Creatore, Opt. Express. 16, 14822
(2008).
V. M. Agranovich and V. L Ginzburg, Crystal Optics
with Spatial Dispersion, and Excitons (Springer, Berlin,
1984).

[11] J. M. Christian, G. S. McDonald, T. F. Hodgkinson, and
P. Chamorro-Posada, Phys. Rev. A 86, 023838 (2012).
J. M. Christian, G. S. McDonald, T. F. Hodgkinson, and
P. Chamorro-Posada, Phys. Rev. A 86, 023839 (2012).

[12] J. M. Christian, G. S. McDonald, and A. Kotsam-
paseris, companion article submitted to Physical Review
A (2018).

[13] J. D. Jackson, Classical Electrodynamics, 3rd ed. (John
Wiley and Sons, New York, 1999).
H. Goldstein, Classical Mechanics, 2nd ed. (Addison-
Wesley, Philippines, 1980).

[14] P. Mandel, Theoretical Problems in Cavity Nonlinear Op-
tics (Cambridge University Press, New York, 1997).

[15] M. Karlsson, Phys. Rev. A 46, 2726 (1992).
[16] R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press,

San Diego, 2003).
[17] K. I. Pushkarov and D. I. Pushkarov, Rep. Math. Phys.

17, 37 (1980).
K. I. Pushkarov, D. I. Pushkarov, and I. V. Tomov, Opt.
Quantum Electron. 11, 471 (1979).

[18] Y. Chen, Phys. Rev. E 55, 1221 (1997).



19

[19] Y. R. Shen, The Principles of Nonlinear Optics, (John
Wiley and Sons, California, 2003).

[20] P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis,
J. Opt. Soc. Am. B 4, 5 (1987).
J.-L. Coutaz and M. Kull, J. Opt. Soc. Am. B 8, 95
(1991).

[21] T. Catunda and L. A. Cury, J. Opt. Soc. Am. B 7, 1445
(1990).

[22] Q. Wang Song, X. Wang, R. R. Birge, J. D. Downie,
D. Timucin, and C. Gary, J. Opt. Soc. Am. B 15, 1602
(1998).

[23] L. Demenicis, A. S. L. Gomes, D. V. Petrov, C. B. de
Ara�ujo, C. P. de Melo, C. G. dos Santos, and R. Souto-
Maior, J. Opt. Soc. Am. B 14, 609 (1997).

[24] S. Bian, J. Frejlich, and K. H. Ringhofer, Phys. Rev. Lett.
78, 4035 (1997).
D. N. Christodoulides and M. I. Carcalho, J. Opt. Soc.
Am. B 12, 1628 (1995).

[25] S. Gatz and J. Herrmann, J. Opt. Soc. Am. B 14, 1795
(1997).
J. Herrmann, J. Opt. Soc. Am. B 8, 1507 (1991).
S. Gatz and J. Herrmann, J. Opt. Soc. Am. B 8, 2296
(1991).

[26] Y. Chen, Phys. Rev. A 45, 5215 (1992).
[27] S. Gatz and J. Herrmann, Opt. Lett. 17, 484 (1992).
[28] V. E. Wood, E. D. Evans, and R. P. Kenan, Opt. Com-

mun. 69, 156 (1988).
[29] W. Krolikowski and B. Luther-Davies, Opt. Lett. 17,

1414 (1992).
[30] W. Krolikowski and B. Luther-Davies, Opt. Lett. 18, 188

(1993).
[31] S. Blair, Chaos, 10, 570 (2000).

K. Marinov, D. I. Pushkarov, and A. Shivarova, in
Soliton-Driven Photonics, edited by A. D. Boardman and
A. P. Sukhorukov (Kluwer Academic Press, Netherlands,
2001) p. 95.
C. Chen and S. Chi, Opt. Commun. 157, 170 (1998).

[32] R. Fedele, H. Schamel, and P. K. Shukla, Phys. Scr. T98,
18 (2002).
R. Fedele and H. Schamel, Eur. Phys. J. B 27, 313 (2002).

[33] W. Krolikowski, N. Akhmediev, and B. Luther-Davies,
Phys. Rev. E 48, 3980 (1993).

[34] S. Gatz and J. Herrmann, IEEE J. Quantum Electron.
28, 1732 (1992).

[35] J. Herrmann, Opt. Commun. 91, 337 (1992).
[36] A. E. Kaplan, Phys. Rev. Lett. 55, 1291 (1985),
[37] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,

Series, and Products, 7th ed. (Academic Press, New
York, 2007).

[38] D. V Skryabin, J. Opt. Soc. Am. B 19, 529 (2002).
D. V. Skryabin, Phys. Rev. E 64, 055601 (2001).
D. E. Pelinovsky, V. V. Afanasjev, and Y. S. Kivshar,

Phys. Rev. A 53, 1940 (1996).
[39] I. V. Barashenkov, Phys. Rev. Lett. 77, 1193 (1996).
[40] D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev,

Phys. Rev. E 54, 2015 (1996).
[41] Y. S. Kivshar and V. V. Afansasjev, Opt. Lett. 21, 1135

(1996).
[42] V. V. Afanasjev, Y. S. Kivshar, C. R. Menyu, Opt. Lett.

21, 1975 (1996).
Y. S. Kivshar, Opt. Lett. 16, 892 (1991).
Y. S. Kivshar, Phys. Rev. A 43, 1677 (1991).

[43] M. Pich�e, J. F. Cormier, X. Zhu, Opt. Lett. 21, 845
(1996).
M. Karlsson and A. H�o�ok, Opt. Commun. 104, 303
(1994).

[44] A. Mahalingam and K. Porsezian, Phys. Rev. E 64,
046608 (2001).

[45] Y. S. Kivshar and B. A. Malomed, Opt. Lett. 18, 485
(1993)
Y. S. Kivshar and V. V. Afanasjev, Opt. Lett. 16, 285
(1991).
Y. S. Kivshar, Phys. Rev. A 42, 1757 (1990).

[46] M. J. Ablowitz and D. E. Baldwin, Phys. Rev. E 86,
036305 (2012).
C. S. Gardner, J. M Greene, M. D. Kruskal, and R. M.
Miura, Phys. Rev. Lett. 19, 1095 (1967).
N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15,
240 (1965).

[47] M. Li and T. Xu, Phys. Rev. E 91, 033202 (2015).
J. A. Besley, P. D. Miller, and N. N. Akhmediev, Phys.
Rev. E 61, 7121 (2000).

[48] J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen,
Nat. Photon. 7, 657 (2013).
T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R.
Menyuk, Opt. Lett. 22, 983 (1997).
Y. Kodama and K. Nozaki, Opt. Lett. 12, 1038 (1987).
S. Wabnitz, Y. Kodama, and A. B. Aceves, Opt. Fib.
Technol. 1, 187 (1995).

[49] A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and
P. Di Trapani, Phys. Rev. E 73, 016608 (2006).
Y. Kominis, N. Moshonas, P. Papagiannis, K. Hizanidis,
and D. N. Christodoulides, J. Opt. Soc. Am. B 30, 2924
(2005).
C. Conti, Phys. Rev. E 68, 016606 (2003).
C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A.
Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett.
90, 170406 (2003).

[50] K. J. Blow and N. J. Doran, in Nonlinear Waves in Solid
State Physics, NATO ADI Series B: Physics, Vol. 247,
edited by A. D. Boardman, M. Bertolotti, and T. Twar-
dowski (Plenum Press, New York, 1990) p. 325.

[51] M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathe-
matical Tables, (Dover, New York, 1972).


