Fuzzy Pattern Tree for Edge Malware Detection and Categorization in IoT

Ensieh Modiri
Azad University of Mashhad

Amin Azmoodeh & Ali Dehghantanha
Cyber Science Laboratory, University of Guelph, Ontario, Canada

David Ellis Newton
School of Computer Science, University of Salford, UK

Reza M. Parizi
Department of Software Engineering and Game Development, Kennesaw State University, GA, USA

Hadis Karimipour
School of Engineering, University of Guelph, Guelph, Canada

Abstract
The surging pace of Internet of Things (IoT) development and its applications has resulted in significantly large amounts of data (commonly known as big data) being communicated and processed across IoT networks. While cloud computing has led to several possibilities in regard to this computational challenge, there are several security risks and concerns associated with it. Edge computing is a state-of-the-art subject in IoT that attempts to decentralize, distribute and transfer computation to IoT nodes. Furthermore, IoT nodes that perform applications are the primary target vectors which allow cybercriminals to threaten an IoT network. Hence, providing applied and robust methods to detect malicious activities by nodes is a big step to protect all of the network. In this study, we transmute the programs’ OpCodes into a vector space and employ fuzzy and fast fuzzy pattern tree methods for malware detection and categorization. We obtained a high degree of accuracy during reasonable run-
times especially for the fast fuzzy pattern tree. Both utilized feature extraction and fuzzy classification, which were robust, led to more powerful edge computing malware detection and categorization method.

Keywords: Malware Detection, Edge Computing, IoT, Fuzzy Pattern Tree, Machine Learning, Cyber Security.

1. Introduction

Over the last decade, the Internet of Things (IoT) has changed the face of our world and ubiquitous sensing enabled by wireless technologies is expanding into countless objects that surround us [1]. IoT, as a cutting-edge topic of Information Technology, has penetrated into all facets of everyday life ranging from health [2] and agriculture [3] to smart city [4] and energy & transport management systems [5] [6]. Numerous smart nodes are sensing, storing and communicating valuable and private information over widely distributed IoT networks without human intervention and this has caused increasing interest for cybercriminals to attack and misuse IoT [7]. Although Cloud Computing has significantly changed our computation paradigms, since a considerable volume of data is produced at the edge of IoT network, its speed of transportation is a bottleneck for cloud-based computation [8]. Furthermore, there are several security issues associated with the cloud-based computing model such as unauthorized access, lack of control or availability risks, privacy risk and etc. [9] [10] [11].

The intrinsic importance of IoT’s information and applications requires that specific concerns are addressed which secure and protect IoT nodes and architecture [7] [12] [13]. Since malicious actors endeavour to attack compromised IoT nodes, malware and intrusion detection is an essential and evolving research sphere in cyber security [14] [15] [16] [17]. While there are different approaches which detect malicious activities and attack vectors [18] [19]. Machine Learning has ranked amongst the top methods that robustly recognize malware and intrusions [20] [21].
Fuzzy system and inference [22] is a major category of machine learning methods that demonstrate its abilities to deal with ambiguity and unseen conditions and accurately simulates human brain decision making behavior. This potential increases the fuzzy methods’ robustness against changes of malicious behavior and signature during test time. Despite proposals for methods using fuzzy in malware detection domains [23, 24, 25], this area is still not completely covered so and there are niche potentials to apply security and forensics issues. Fuzzy Pattern Tree (FPT) induction was recently introduced as a novel machine learning method for classification. The structure of an FPT is similar to a binary decision tree in which inner nodes are marked with generalized (fuzzy) logical and arithmetic operators, whereas the leaf nodes are associated with (unary) fuzzy predicates on a given set of input attributes [26, 27]. FPT is competitive with other machine learning rival methods in terms of prediction performance. Moreover, it tends to produce compact models that are quite appealing from an interpretation point of view due to the limited processing resource of IoT nodes. However, this method has a disadvantage which is its high computational complexity for large datasets with many examples or attributes, the runtime may become unacceptably high. Therefore, a fast Fuzzy Pattern Tree [26] method was proposed to improve the runtime learning. We demonstrate our major contribution regarding fuzzy pattern tree advantages by applying fuzzy and fast fuzzy pattern tree for malware detection, and obtained high accuracies of 100% for IoT and VxHeaven datasets, about 97% for Kaggle dataset and more than 93.13% for Ransomware dataset.

Typically, the following criteria are used to evaluate the utility of machine learning aided techniques in malware detection:

- True Positive (TP): indicates that a malware is correctly identified as a malicious application.

- True Negative (TN): indicates that a benign is detected as a non-malicious application correctly.
• False Positive (FP): indicates that a benign is falsely detected as a malicious application.

• False Negative (FN): indicates that a malware is not detected and labeled as a non-malicious application.

Based on the criteria described above, the following metrics will be introduced to quantify a given system:

Accuracy indicates the number of samples that a classifier correctly detects, divided by the number of all malware and goodware:

\[
Accuracy = \frac{TP + TN}{TP + TN + FP + FN}
\]

(1)

Precision is another metric that indicates the ratio of predicted malware samples that are correctly predicted:

\[
Precision = \frac{TP}{TP + FP}
\]

(2)

Recall indicates the ratio of malware samples that are correctly predicted:

\[
Recall = \frac{TP + TN}{TP + FN}
\]

(3)

F-Measure is the harmonic mean of prediction and recall, and defined as follows:

\[
F-Measure = \frac{2 \times TP}{2 \times TP + FP + FN}
\]

(4)

Matthews correlation coefficient is used in machine learning as a measure of the quality of classification and defined as follows:

\[
F-Measure = \frac{TP + TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}
\]

(5)

Cross-validation is one of the most widely used techniques in machine learning to assess a detection method’s outcomes gained from experiments that can be generalized into an independent dataset. There are many cross validation techniques such as Leave-P-Out, K-fold and Repeated Random Sub-sampling and K-fold validation which are suitable for datasets with limited size [25].
In the next section, we briefly review related work. Section 3 describes our collection, preprocessing and evaluation methodology. Section 4 presents our proposed approach, followed by its evaluation in Section 5. Section 6 concludes this paper and suggests a future research agenda.

2. Related Work

Analyzing the extracted information from graph of programs is a practical solution for malicious activity detection. Azmoodeh et al. [29] developed a deep learning based method to detect Internet Of Battlefield Things (IoBT) malware via the devices Operational Code (OpCode) sequence and they achieve 99.68% of accuracy. They extracted an adjacency matrix of OpCode’s control flow and then applied deep learning on eigen-decomposition of the matrix. Yuxin et al. [30], proposed a method based on graph matching using the common behavior graph of the malware family. They used a dynamic taint analysis technique for finding the dependency relations between system calls, extracted the common behavior graphs and lastly, employed graph matching based on the maximum weight of subgraphs to detect malicious code and achieved 82% of recall. Hashemi et al. [31] extracted OpCode’s of Windows benign and malware executable files and then formed a graph for each sample and turned the generated graph into a vector using Power Iteration procedure to train classifiers such as Support Vector Machine and Adaboost. They achieved an accuracy and a F-measure of 96.09% and 95.98% respectively.

The IoT as state-of-the-art ubiquitous technology in modern life is a prominent target for cybercriminals. Therefore, protecting IoT against cyber attackers is a crucial requirement in generating trust IoT. Haddadpajouh et al. [32] employed the capability of Deep Recurrent Neural Networks and proposed a method to accept OpCode’s as features for three different Long Short Term Memory settings and achieved 98.18% of detection rate to detect IoT malware. In another study, Su et al. [33] converted IoT’s malware binary to image and
then leveraged a light-weight convolutional neural network for classifying their families and achieved 94.0% of accuracy for the classification of goodware and DDoS IoT malware. Sharmeen et al. [34] analyzed static, dynamic, and hybrid detection methods for industrial IoT malware and discovered machine learning approaches are commonly used to classify malware and benign in this domain. They indicated that the permission list, API call list, and the system call list are major features to detect mobile malware with a high accuracy to ensure Zero-day detection.

Robustness and an ability to deal with unseen conditions is an important motivation to apply fuzzy learning on the cybersecurity domain. Afifi et al. [23] proposed a multi agent system for monitoring and data preparation. Then, they introduced a hybrid method to combine an adaptive neuro fuzzy inference system (ANFIS) with a particle swarm optimization (PSO) for mobile malware detection. After extensive studying of fuzzy hashing methods, Li et al. [24] proposed a clustering approach to cluster malware based on their novel fuzzy hashing algorithm and obtained acceptable clustering outcome for different malware families. Bernardi et al. [25] presented a dynamic mobile malware detection method using process mining and fuzzy logic that characterized the behaviour of malware and utilized fuzzy logic for malware classification and obtained high precision for different mobile malware families.

3. Fuzzy Pattern Tree

3.1. Fuzzy Pattern Tree

A fuzzy pattern tree [27] contains a tree-like structure in which the inner nodes are fuzzy logic arithmetic operators and the leaf nodes are associated with fuzzy predicates on input attribute, although a pattern tree has a bottom to top induction which means that a node somehow takes the values of its descendants as input and combines them using fuzzy operators. Finally, submit the output to its predecessor (Figure 1). During an iterative approach, several pattern trees are generated for each class and at the end of each iteration, the best pattern...
tree that has least prediction error on the class is selected to expand leaf nodes at the next stage. In order to use fuzzy pattern tree for malware detection, we applied it on processed datasets of OpCode sequences (described in Section 4) in which an instance is a vector $X = (x_1, x_2, ..., x_m) \in X_1 \times X_2 \times ... \times X_m$. X_i is the domain of i_{th} attribute and for each domain, X_i is discretized by means of a fuzzy partition $F_i = \{F_{i,1}, ..., F_{i,d_i}\}$ into a collection of fuzzy subsets that $F_{i,j} : X_i \rightarrow [0, 1]$ ($j = 1, ..., d_i$) and $\sum_{j=1}^{d_i} = F_{i,j}(x_i) > 1$ for all $x \in X_i$.

The $F_{i,j}$ defines a unary fuzzy predicator on individual attribute values that are often associated with linguistic labels such as "small" or "large", for example, $F_{i,2} \simeq X_i$ is medium. On the other hand, each instance is associated with a class label of malware or benign in the output space $Y \in \{\text{malware, benign}\}$ or generally, $Y \in \{\text{Class}_1, ..., \text{Class}_k\}$. Leaf nodes are associated with a fuzzy partition $F_{i,j}$ and each inner node is a fuzzy operator, which belongs to:

- t-norms and t-conorms [35]
- weighted and ordered-weighted average (OWA) [36, 37]

A fuzzy pattern classifier is a collection of fuzzy pattern trees $PT = \{PT_i | i = 1, ..., k\}$ and each PT_i is the pattern tree associated with class $y_i \in Y$. For
classifying a new instance x, a prediction is made in favor of the class whose tree produces the highest score:

$$\hat{y} = \text{argmax}(PT_i(x)) \text{ for } y_i \in Y \quad (6)$$

3.1.1. Top-Down Induction

During the learning phase and iteratively, by expansion of the leaf nodes, several pattern trees for each class are generated and at the end of each iteration the best fuzzy pattern tree for each class is selected with respect to the root mean squared error (Equation 7), which serves as a continuous and differentiable surrogate of 0/1 loss.

$$\text{error}(PT_z) = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (y_j - PT_z(x_j))^2} \quad (7)$$

In the first step, fuzzy partitions are constructed for each input attribute and the candidate set C^0 is initialized using all primitive pattern trees P in which each primitive tree is a tree that constructed with only one node that is labeled by a fuzzy term $F_{i,j}$. Thus, the optimal PT is initialized by the model that has the lowest empirical error in C^0. During each iteration, a new set of candidate models C^t that include all expansions of the current best model M^* is reproduced. An expansion of a primitive tree is a model that is constructed by replacing a leaf node L by a sub tree of two leaf nodes and a parent fuzzy operator node. All existing candidates in C^t are evaluated based on their error score and M^* replaced by the new best models.

3.2. Fast Fuzzy Pattern Tree

Although the fuzzy pattern tree has demonstrated its capability to compete with state-of-the-art classification methods, it suffers from computational complexity especially for large datasets or those have curse of dimensionality. To overcome this disadvantage, the fast fuzzy pattern tree as a modified version was presented [26]. The first modification endeavors to speed up the detection of the best model among a set of candidate models, and with the second one restricted the total number of candidates.
3.2.1. Racing Algorithm

The Racing Algorithm intends to accelerate the selection of the best model from a set of candidate models. By calculating the performance of all models, those who have lower performance and are unlikely to exhibit the best productivity at the end are eliminated in early steps. The race iterates over a random number of datasets. For each model, two variables are stored: the number of examples \(n_j \) and the mean estimate of its error \(\text{err}_j \). Each two models are compared pairwise and the model with the higher error is omitted. It is an heuristic estimation of the models’ error and to obtain more accurate knowledge about the model a confidence interval is defined such as \([l_j, u_j]\) for the error of \(M_j \) and \([l_k, u_k]\) for \(M_k \). Then a decision about the better model can be made if the intervals do not overlap, e.g. \(l_j > u_j \). Using the Hoeffding inequality [26] that upper-bounds the deviation of the mean from the true expectation of a random variable with high probability gives:

\[
[l_j^n, u_j^n] = \text{err}_j \pm \sqrt{\frac{B^2 \log(\frac{2}{\delta})}{2n}} \tag{8}
\]

where \(\delta \) is an external parameter that controls the reliability of a confidence interval and the constant \(B \) is an upper bound on the value of the random variable and \(n \) is the number of observations.

3.2.2. Potential Heuristic

The idea behind Potential Heuristic is to narrow the search in each iteration with the algorithm creating new candidate models \(C^t \) by expanding every leaf node. This heuristic restricts expansion to a constant number \(p < |C^t| \) of leaf nodes with highest potential. In fact, this method calculates the potential of each node to expand and selects the ones with highest potential. The potential of each node is defined as follows: Let \(L \) be a leaf of a candidate tree \(M_L \in C^t \). A model \(M(L_{Opt}) \) by replacing \(L \) in \(M_L \) by \(L_{Opt} \), where \(L_{Opt} \) is a fictitious oracle leaf that provides the ideal output \(y_i \) for every training instance \((x_i, y_i)\) in the dataset. Then, we define the potential of \(L \) in terms of the possible
4. Dataset

4.1. Dataset Description

In this study, we applied fuzzy and fast fuzzy pattern tree on four different data sets namely IoT, Vx-Heaven, Kaggle and Ransomware. IoT dataset \[29\] includes malware and benign samples from ARM-Based architecture. Ransomware dataset \[38\] contains OpCodes' of six different ransomware families. Vx-Heaven dataset includes 22000 Microsoft Windows samples belonging to malware and benign categories. Kaggle\[^1\] dataset includes Microsoft Windows malware from nine different families. Table 1 shows the dataset information.

4.2. Feature Extraction

Binary executable files contain a long sequence of OpCodes which are instructions to be performed on each device’s processing unit. Although leveraging OpCodes as features for learning algorithm is a common approach\[39\], the curse of dimensionality turns it to a challenging topic to utilize. In this study, we leverage Azmoodeh et al.\[29\] approach to extract features for fuzzy pattern tree method. At the first stage, we extracted the OpCode sequence of each sample and generated a dictionary of unique OpCodes. Then, we assessed the utility

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#instances</th>
<th>#classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vx-Heaven</td>
<td>22000</td>
<td>2</td>
</tr>
<tr>
<td>Ransomware</td>
<td>555</td>
<td>6</td>
</tr>
<tr>
<td>IoT</td>
<td>1207</td>
<td>2</td>
</tr>
<tr>
<td>Kaggle</td>
<td>9601</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1: Datsets Information

reduction of empirical risk:

\[P_M(L) = err(M_L) - err(M_{L_{Opt}}) \] (9)
of each OpCode by a class-wise information gain (CIG) approach \[40\]. CIG was proposed to overcome global feature selection imperfection and endeavors to recognize more useful features based on each dataset’s classes. CIG calculates information gain for each unique OpCode-Class and this is our main criteria for selecting OpCodes as features. Equation 10 shows the CIG calculation for a two-class dataset where \(P(v_f = 1, C_i) \) denotes the probability of feature \(f \) appearing in \(C_i \), and \(P(v_f = 0, C_j) \) is the probability of feature \(f \) being absent from \(C_j \). \(C_B \) and \(C_M \) denote benign program and malicious applications, respectively.

\[
\begin{align*}
CIG(f, C_B) &= P(v_f = 1, C_B) \cdot \log \frac{P(v_f = 1, C_B)}{P(v_f = 1) P(C_B)} \\
&\quad + P(v_f = 0, C_M) \cdot \log \frac{P(v_f = 0, C_M)}{P(v_f = 0) P(C_M)} \\
CIG(f, C_M) &= P(v_f = 1, C_M) \cdot \log \frac{P(v_f = 1, C_M)}{P(v_f = 1) P(C_M)} \\
&\quad + P(v_f = 0, C_B) \cdot \log \frac{P(v_f = 0, C_B)}{P(v_f = 0) P(C_B)}
\end{align*}
\]

(10)

Afterwards, the most beneficial features were selected to generate control flow graph of each sample. A Control Flow Graph (CFG) is a data structure that represents the order of OpCodes in an executable file. A graph, \(G = V,E \), has two sets: \(V \) and \(E \). \(V \) Where denotes the graphs vertices and \(E_{i,j} \) shows the relation between \(V_i \) and \(V_j \)[29]. In order to generate OpCodes’ CGF, we employed Equation 11 to calculate CFG’s edges \(E_{v_i,v_j} \).

\[
E_{v_i,v_j} = \sum_{s \in S} \frac{2}{1 + \alpha \cdot e^{\min(|s-t|-1)}}
\]

\(S = \{ \text{index of all appearance of OpCode}_{V_i} \text{ in sample’s OpCode sequence} \} \)

\(t \epsilon \{ \text{index of all appearance of OpCode}_{V_j} \text{ in sample’s OpCode sequence} \} \)

\(\alpha \) is tuning paramter (here \(\alpha = 1 \))

(11)

At the final stage, Azmoodeh et al.[29] demonstrated the usefulness of CFG’s eigenspace instead a complete graph. Therefore, we extracted the first \(k \) eigen-
vectors and eigenvalues of graph as final features where k is the number of classes.

5. Experiments

5.1. Settings

The experiments to demonstrate the ability of a fuzzy pattern tree for malware detection have been implemented on a Microsoft Windows 10 station with 8GB of memory and a Core i7 CPU. Preprocessing for generating datasets was implemented by Python 3.7 and classification phase was developed by MATLAB 2016.

5.2. Results

In order to investigate and assess the competency of fuzzy and fast fuzzy pattern tree methods for malware detection, we have conducted three different approaches to obtain comparable results. The first experiment in Section 5.2.1 compares fuzzy and fast fuzzy with other state of the art classification algorithms namely Support Vector Machine, Decision Tree, k-Nearest Neighbor and Random Forest. Section 5.2.2 includes outcomes for fuzzy and fast fuzzy pattern tree with more emphasis on the racing algorithm and potential heuristic.

5.2.1. State-of-the-art Classifiers Comparison

<table>
<thead>
<tr>
<th>Dataset</th>
<th>PTTD</th>
<th>PTTD-FAST</th>
<th>SVM</th>
<th>KNN</th>
<th>Random Forest</th>
<th>Decision Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX-Heaven</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99.9955</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Kaggle</td>
<td>97.0427</td>
<td>95.136</td>
<td>93.7086</td>
<td>99.4144</td>
<td>99.6505</td>
<td>99.4051</td>
</tr>
<tr>
<td>Ransomware</td>
<td>88.7641</td>
<td>83.0649</td>
<td>93.9416</td>
<td>94.5303</td>
<td>95.9805</td>
<td>93.0909</td>
</tr>
</tbody>
</table>

Table 2: Accuracy of different classifiers
5.2.2. Fuzzy and Fast Fuzzy Pattern Tree Comparison

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
<th>MCC</th>
<th>Time(Second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heaven</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>301.106437</td>
</tr>
<tr>
<td>IoT</td>
<td>99.8347</td>
<td>100</td>
<td>98.7302</td>
<td>0.99344</td>
<td>0.9922</td>
<td>29985.142449</td>
</tr>
<tr>
<td>Kaggle</td>
<td>97.0427</td>
<td>86.0988</td>
<td>87.2818</td>
<td>0.85879</td>
<td>0.84769</td>
<td>6507.781891</td>
</tr>
<tr>
<td>Ransomware</td>
<td>88.7641</td>
<td>91.2389</td>
<td>72.8486</td>
<td>0.71799</td>
<td>0.70787</td>
<td>2438.27705</td>
</tr>
</tbody>
</table>

Table 3: Performance of Fuzzy Pattern Tree Algorithm

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
<th>MCC</th>
<th>Time(Second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vx-Heaven</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>17.1706407</td>
</tr>
<tr>
<td>IoT</td>
<td>99.174</td>
<td>99.55</td>
<td>95.455</td>
<td>0.97393</td>
<td>0.94916</td>
<td>51.010565</td>
</tr>
<tr>
<td>Kaggle</td>
<td>90.093</td>
<td>77.81</td>
<td>77.506</td>
<td>0.72821</td>
<td>0.7079</td>
<td>66.853548</td>
</tr>
<tr>
<td>Ransomware</td>
<td>86.061</td>
<td>81.448</td>
<td>85.392</td>
<td>0.81741</td>
<td>0.74146</td>
<td>9.123403</td>
</tr>
</tbody>
</table>

Table 4: Performance of Fast Fuzzy Pattern Tree with Racing Algorithm

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
<th>MCC</th>
<th>Time(Second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vx-Heaven</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>60.68227</td>
</tr>
<tr>
<td>IoT</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>32.612093</td>
</tr>
<tr>
<td>Kaggle</td>
<td>89.861</td>
<td>84.907</td>
<td>87.1047</td>
<td>0.69092</td>
<td>0.71603</td>
<td>6287.27425</td>
</tr>
<tr>
<td>Ransomware</td>
<td>93.132</td>
<td>82.786</td>
<td>81.318</td>
<td>0.7925</td>
<td>0.77486</td>
<td>80.85638</td>
</tr>
</tbody>
</table>

Table 5: Performance of Fast Fuzzy Pattern Tree with Potential Heuristics

6. Concluding Remarks

Edge Computing as a state-of-the-art trend related to the Internet of Things has naturally drawn considerable attention. There are several risks associated with cloud-based computing such as unauthorized access, lack of control or availability risks & privacy risk and therefore, edge computing as an alternative solution aids cyber scientists in providing an alternative practical security mechanism. Hence, edge malware detection research is attracting more consideration and investigation into its potentiality for for applied solutions.
In this study, we employed fuzzy and fast fuzzy pattern or malware detection and demonstrated that these methods are capable of accurately detecting malicious codes and can compete with rival classification methods such as SVM, KNN, Random Forests and Decision Trees. What makes fuzzy approaches more remarkable for their pattern recognition is their potential to deal with ambiguities and human brain simulation.

During our research, we implemented fuzzy pattern and fast fuzzy pattern trees and their variations. Based on experimental results, the fuzzy pattern tree could accurately classify malware and benign for IoT and Vx-Heaven dataset with an accuracy of 99.834% and 100% respectively. Fast fuzzy pattern tree using Potential Heuristics performed 100% accuracy for both dataset with much more lower run-time. As for malware categorization, we applied both methods on Kaggle and Vx-Heaven datasets and achieved 97.0427% and 88.76% of accuracy by fuzzy pattern tree and 90.093% and 93.132% of accuracy by fast fuzzy pattern tree. In the future, we plan to boost fuzzy pattern tree accuracy and present a distributed variation of a fuzzy pattern tree that will be more efficient regarding edge computing over an IoT network.

References

