Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines : the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)

http://dx.doi.org/10.1136/bjsports-2019-100786

<table>
<thead>
<tr>
<th>Title</th>
<th>Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines : the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/51047/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2019</td>
</tr>
</tbody>
</table>
USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)

AUTHOR AND AFFILIATIONS:

Emmanuel Stamatakis¹, Annemarie Koster², Mark Hamer³, Vegar Rangul⁴, I-Min Lee⁵, Adrian Bauman¹, Andrew J Atkin⁶, Mette Aadahl⁷, Charles E. Matthews⁶, Paul Jarle Mork⁹, Lisa Askie¹⁰, Peter A. Cistulli¹¹, Malcom Granat¹², Peter Palm¹³, Patrick Crowley¹⁴, Matthew Stevens¹⁴, Nidhi Gupta¹⁴, Anna Pulakka¹⁵, Sari Stenholm¹⁵, Daniel Arvidsson¹⁶, Gita Mishra¹⁷, Patrik Wennberg¹⁸, Sebastien Chastin¹⁹, Ulf Ekelund²⁰, and Andreas Holtermann¹⁴

¹ Prevention Research Collaboration, Charles Perkins Centre, Faculty of Medicine and Health, School of Public Health, University of Sydney, Australia
² Department of Social Medicine, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands.
³ School Sport Exercise Health Sciences, Loughborough University, UK
⁴ HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
⁵ Division of Preventive Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
⁶ School of Health Sciences, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK.
⁷ Centre for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksborg, Denmark.
⁸ Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA
⁹ Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
¹⁰ NHMRC Clinical Trials Centre, University of Sydney, Australia
¹¹ Sleep Research Group, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Australia.
¹² School of Health and Society Sciences, University of Salford, Salford, UK
¹³ Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Sweden
¹⁴ The National Research Centre for the Working Work Environment, Copenhagen, Denmark
¹⁵
¹⁶
¹⁷
¹⁸
¹⁹
²⁰
15 Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
16 Center for Health and Performance, Department of Food and Nutrition and Sport Science, University of Gothenburg, Sweden
17 School of Public Health, University of Queensland, Brisbane, Australia.
18 Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Sweden
19 School of Health and Life Science, Glasgow Caledonian University, Glasgow, Scotland, UK
20 Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway

CORRESPONDING AUTHOR
Emmanuel Stamatakis, 6th floor West, The Hub, Charles Perkins Centre, Building D17, University of Sydney, Camperdown, NSW 2006, Australia
email: emmanuel.stamatakis@sydney.edu.au T: +61 2 86271867
Galileo Galilei’s quote “measure what is measurable, and make measurable what is not so” has particular relevance to health behaviours, such as physical activity (PA), sitting and sleep, whose measurement during free living is notoriously difficult. To date, much of what we know about how these behaviours affect our health is based on self-report by questionnaires which have limited validity, are prone to bias, and inquire about selective aspects of these behaviours. Although self-reported evidence has made great contributions to shaping public health and exercise medicine policy and guidelines until now, the ongoing advancements of accelerometry-based measurement and evidence synthesis methods are set to change the landscape. The aim of this editorial is to outline new directions in PA and sleep related epidemiology that open new horizons for guideline development and improvement; and to describe a new research collaboration platform: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS).

Feasible research technology at scale, big consortia
Measurement technology used in epidemiology has made measurable what was not so until recently. Several population-based studies have used accelerometers to wear for 24 hours a day for a whole week, offering unprecedented insights into the health attributes of PA, sitting and sleep. One of the most exciting aspect of accelerometers is that they show great promise for capturing nearly-complete accounts PA, including posture and activity type detection.

However, advanced measurement methods and optimal evidence synthesis are not synonymous. Individual accelerometry studies have limited generalisability beyond the specific country, population, and setting, and usually have low statistical power to address detailed research questions. For example, none of the NHANES accelerometry studies has been able to study potentially metabolic health-enhancing sporadic short (<2-3 minutes) bursts of higher intensity incidental PA, likely because of the sparsity of such data. Classic systematic reviews of accelerometry inherit the problems of source studies and their conclusions are often not robust. We need to think differently when it comes to consolidating, analysing, and interpreting new formats of accelerometry data. As John Ioannidis’ BJSM editorial succinctly put it, the next generation of evidence in exercise medicine and PA involves large consortia that harmonise and pool existing studies. Prospective harmonisation (i.e. agree on same or similar measurements across different
studies prior to data collection), in particular, is an extremely powerful tool as it can overcome heterogeneity, which is one of the largest obstacles for rigorous evidence synthesis5. The value of such consortia goes beyond producing more robust and generalisable knowledge, there is also a strong economic argument. The value of every dollar, pound, or euro tax payers and research funders invested in the original studies is maximised through further use of the data resources to inform better public health and clinical practice guidelines.

A new consortium
The momentum generated by successful accelerometry consortia (e.g. International Children’s Accelerometry Database6) and large epidemiological studies like NHANES3 and the UK Biobank7 that used waist or wrist mounted accelerometers inspired the genesis of the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)8. ProPASS is a research collaboration platform that aims to bring together existing and future observational studies of thigh-worn accelerometry. Although each accelerometer placement site has both strengths and challenges, the ProPASS choice of site was far from accidental: the unique appeal of the thigh-worn method is that it provides information not only on movement intensity (e.g. light, moderate and vigorous PA), but also on posture (e.g. sitting/lying, standing). Behaviours such as cycling, running, and stair-climbing can also be extrapolated by thigh attached sensors2 and integration with other important behaviours such as sleep (duration and timing) can provide unique insights on lifestyle and health9. Information about such tangible aspects of behaviour has immediate relevance to people’s daily lives; and is easier for clinicians, policy makers, and the public alike to understand, “digest”, and hopefully seek to improve.

The ultimate scientific objective of ProPASS is to produce evidence on the associations of PA, sitting, and sleep and long-term health outcomes and longevity. As of February 2019, ProPASS is supported by twelve international cohorts totalling over 70,000 participants (Table 1). To safeguard consortium feasibility, longevity and faster growth, ProPASS is not restricted to one specific model of accelerometer, but any tri-axial device that outputs raw acceleration and is worn on the thigh is suitable - an approach we have validated empirically10. The ProPASS cohorts are rich in health outcome data, many contain genotypic information, and most can be linked to administrative health and mortality records, opening up a huge variety of possibilities for generation of new knowledge.
Call for collaboration

New research collaboration platforms have paved the way for the next generation of evidence on PA-related behaviours and health. Detailed and accurate objective accounts of daily movement behaviour and posture are now feasible in large epidemiological studies. Meeting ProPASS’ objectives will be determined by at least two essential conditions: breaking down the silos to integrate research paradigms across PA domains; and tight multidisciplinary collaboration.

In this editorial we invite researchers from any discipline who have collected or are considering collecting thigh-worn accelerometry data in observational studies to contact us. We also invite, scientists with an interest in health related data consortia as well as health professionals and policy makers, to help us form a ProPASS research agenda with maximal relevance to patients, the public, and health policy. There is no question in our mind that such a research agenda is a prerequisite for the success of ProPASS and any other effort aimed at shaping the next generation of physical activity, sitting, sleep, and exercise medicine guidelines.

Get in touch to discuss opportunities for current or future studies joining the consortium (e-mail: propass.consortium@sydney.edu.au), and join our mailing list (www.propassconsortium.org) to stay updated about future events and activities.

FINANCIAL DISCLOSURES AND COMPETING INTERESTS

The ProPASS consortium has received financial support by the following organisations: an unrestricted grant by PAL Technologies Ltd, Scotland, UK; a grant by the Worldwide Universities Network – Research Development Fund 2018; an internal seed grant by the University of Sydney; a National Health and Medical Research Council (Australia) equipment grant; in kind support by the National Research Centre for the Working Environment, Copenhagen; and financial support by Loughborough University. None of the authors has competing interests to declare.

REFERENCES

Table 1: Accelerometry studies supporting the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)

<table>
<thead>
<tr>
<th>Main Study Name / Country</th>
<th>Leading Institution</th>
<th>Geographical Coverage of the Study</th>
<th>Number of Participants (n)</th>
<th>Sex</th>
<th>Population/Age Range (accelerometry measurement)</th>
<th>Accelerometry Device</th>
<th>Years (accelerometry measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Longitudinal Study for Women’s Health / Australia</td>
<td>The University of Queensland and The University of Sydney</td>
<td>Australia</td>
<td>(target) ≈ 3,250</td>
<td>Women</td>
<td>General population / 45-50 years</td>
<td>ActivPAL3 and ActivPAL4 micro</td>
<td>2019-20</td>
</tr>
<tr>
<td>1970 British Birth Cohort Study / UK</td>
<td>Loughborough University and University College London</td>
<td>UK</td>
<td>≈ 5,500</td>
<td>Both</td>
<td>General population / 47-49 years</td>
<td>ActivPAL3 micro</td>
<td>2016-18</td>
</tr>
<tr>
<td>Copenhagen City Heart Study / Denmark (3)</td>
<td>Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen</td>
<td>Two districts of Copenhagen</td>
<td>≈ 2,000</td>
<td>Both</td>
<td>General Population /18 years or older</td>
<td>Actigraph GT3X</td>
<td>2011-2015</td>
</tr>
<tr>
<td>Danish PHysical ACTivity cohort with Objective measurements (DPHACTO) Study (4) / Denmark</td>
<td>National Research Centre for the Working Environment, Copenhagen</td>
<td>Denmark</td>
<td>≈ 1,000</td>
<td>Both</td>
<td>Workers in manufacturing, cleaning and transportation companies / 18-67 years</td>
<td>Actigraph GT3X</td>
<td>2012-2014</td>
</tr>
<tr>
<td>Danish Observational Study of Eldercare work and musculoskeletal disorderS (DOSES)(5) Study/ Denmark</td>
<td>National Research Centre for the Working Environment, Copenhagen</td>
<td>Greater Copenhagen region</td>
<td>≈ 500</td>
<td>Both</td>
<td>Eldercare workers / 18 to 67 years of age</td>
<td>Actigraph GT3X</td>
<td>2013-2014</td>
</tr>
<tr>
<td>Finnish Retirement and Aging Study (FIREA) / Finland(6)</td>
<td>University of Turku</td>
<td>Southwest Finland</td>
<td>≈ 280</td>
<td>Both</td>
<td>General Population /Occupational cohort / 59-65 60-64</td>
<td>ActivPAL3</td>
<td>2015-2020</td>
</tr>
<tr>
<td>Health2016 Study / Denmark</td>
<td>Centre for Clinical Research and Prevention, Frederiksberg</td>
<td>Western part of Greater Copenhagen</td>
<td>≈800</td>
<td>Both</td>
<td>General Population / 18-69</td>
<td>Axivity</td>
<td>2016-2017</td>
</tr>
<tr>
<td>Study Name</td>
<td>Institution</td>
<td>Region</td>
<td>Sample Size</td>
<td>Population Details</td>
<td>Device</td>
<td>Year Range</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>The Nord-Trøndelag Health Study (HUNT 4) (7) / Norway</td>
<td>Norwegian University of Science and Technology</td>
<td>Northern part of Trøndelag region</td>
<td>≈ 40,000</td>
<td>Both General Population / 18 years or older</td>
<td>Axivity 3</td>
<td>2017-19</td>
<td></td>
</tr>
<tr>
<td>The Maastricht Study (8) / The Netherlands</td>
<td>Maastricht University</td>
<td>South of The Netherlands</td>
<td>≈ 9,000</td>
<td>Both General Population (Oversampling of people with Type 2 Diabetes) / 40-75</td>
<td>ActivPAL3</td>
<td>2010-2019</td>
<td></td>
</tr>
<tr>
<td>Swedish CARdioPulmonary bioImage Study (SCAPIS) (9) Ad-On Gothenburg / Sweden</td>
<td>University of Gothenburg</td>
<td>Gothenburg region</td>
<td>≈ 500</td>
<td>Both General Population / 50-64</td>
<td>Axivity AX3</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>Swedish CARdioPulmonary bioImage Study (SCAPIS) (9) Ad-On Umeå / Sweden</td>
<td>Umeå University</td>
<td>Umeå region</td>
<td>≈ 2,500</td>
<td>Both General Population / 50-64</td>
<td>ActivPAL3</td>
<td>2016-2018</td>
<td></td>
</tr>
<tr>
<td>Swedish CARdioPulmonary bioImage Study Ad- On Uppsala (SCAPIS) (9) / Sweden</td>
<td>Uppsala University</td>
<td>Uppsala region</td>
<td>≈ 5,000</td>
<td>Both General Population / 50-64</td>
<td>Axivity AX3</td>
<td>2015-2018</td>
<td></td>
</tr>
</tbody>
</table>

3 Aguib Y, Al Suwaidi J. The Copenhagen City Heart Study (Østerbrouundersøgelsen). Global Cardiology Science & Practice 2015; 2015: 33-