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ABSTRACT

Consider a �xed body in a uniform �ow �eld in the limit as the Reynolds number approaches in�nity and the �ow �eld remains steady.
Instead of using standard techniques and theory for describing the problem, a new method is employed based upon the concept of matching
two different Green's integral representations over a common boundary, one given by approximations valid in the near-�eld and the other
by approximations in the far-�eld. Further novelty arises from the choice of a near-�eld, that is, the Euler �ow matched to an Oseen �ow
far-�eld. This entails introducing and de�ning eulerlets that are Green's functions of the Euler equation. One important consequence of the
model is the presence of a new Euler wake velocity not captured in standard models. This has a constant unchanging downstream pro�le
and arises from the matching to the far-�eld Oseen wake velocity. It is then shown how this representation reduces to classical inviscid
ideal �ow aerodynamics when applied to �ow past aerofoils and wings. It is also shown how it reduces to slender body �ow theory. Finally,
the formulation is tested on uniform �ow past a circular cylinder for mean-steady subcritical laminar �ow and turbulent �ow. The inviscid
impermeability boundary condition is used, the drag coef�cient is speci�ed, and a constant distribution of drag eulerlets is modeled. The
forward �ow separation and pressure drop in the wake are captured and compare favorably with experiment. The future expectation is the
modeling of multiple general shaped bodies.

Published under license by AIP Publishing.https://doi.org/10.1063/1.5088132

NOMENCLATURE

� , � , U, l Dimensional parameter: density, coef�cient of vis-
cosity, uniform stream velocity, and typical body
length (for the circular cylinder this is the radius)

Re= � Ul/� Dimensionless Reynolds number
k = Re/2 Dimensionless wake number
" Order of perturbation to uniform �ow �eld
Superscript„ Dimensional variable: Navier-Stokes
u„ , p„ , x„ Velocity, pressure, and position vector
u, p Dimensional Navier-Stokes velocity and pressure

perturbed to a uniform stream
x Dimensionless position vector
xœ Variable of integration in Green's integral of the

dimensionless position vector
SuperscriptO Dimensionless Oseen variables
SuperscriptE Dimensionless Euler variables
SuperscriptI Leading order variable in Oseen perturbation
SuperscriptII Second order variable in Oseen perturbation
� The wake variable in two-dimensions
� ‡ The wake variable in three-dimensions

r Dimensionless radial length in two dimensions
r‡ Cross-sectional dimensionless radial length

»
x2

2 + x2
3

R Dimensionless radial length in three dimensions
ai Vector representation with English index starting

from 1 and ending at dimension of space
a� Vector representation with Greek index starting

from 2 and ending at dimension of space
a,i Differentiation ofa with respect toxi

a;i Differentiation ofa with respect toxœ
i

� Velocity potential satisfying the Laplace equation
w Wake velocity
� Wake velocity potential
� , d� , A region of space, an element of the space,
@� , The boundary of the region of space,
@� M , The matching boundary,
d� An element of the boundary
� Dirac delta function of the variables of the space
� (xi) Dirac delta function of the variablexi

H(x1) Heaviside function of the variablex1

� ij Kronecker delta
" ijk Three-dimensional Levi-Civita symbol
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I. INTRODUCTION

The Euler �ow and, in particular, potential �ow are important
for designing maneuvering bodies in air and water, for example, the
design of the shape of a wing or the hull of a boat. This is because it
is understood how changes in the potential �ow representation lead
to changes in the maneuvering characteristics of the body. This is
in contrast to computational �uid dynamics solvers where there is
no representation in terms of mathematical functions, and instead,
the solver computes directly the differential equation. In the present
paper, it is proposed to introduce a new theory for the Euler �ow
that uses eulerlets, which we de�ne as Green's functions in the Euler
�ow. The eulerlet Green's function is de�ned as the impulsive (Dirac
delta function) response at the origin for the Euler equations in an
unbounded �uid with a uniform �ow �eld far from the origin. The
response in the direction parallel to the �ow �eld is called the drag
eulerlet, and the responses perpendicular to the �ow �eld are called
the lift and side-force eulerlets. A pictorial representation of the drag
and lift eulerlets are given in Figs. 1 and 2.

By matching to a far-�eld Oseen �ow, it turns out that a Green's
integral representation for the Euler velocity is possible. This is
because we shall �nd in the present paper that in the high Reynolds
number limit, the oseenlets tend to the eulerlets on the matching
boundary. As well, the Euler equation and Oseen equation match.
The main consequence of this theory is the existence of an Euler
wake which has a pro�le over the cross-sectional plane perpendic-
ular to the �ow direction that remains unchanged at every down-
stream wake position. In particular, there is an Euler wake in�ow
giving drag.

This theory is the culmination of the work by Chadwick and
co-workers on potential and Oseen �ows; Chadwick presented the
far-�eld Oseen velocity description for a �xed body in a uniform �ow
�eld.1 It was shown how the far-�eld velocity is represented by an
integral distribution of oseenlets, as described by Oseen.2 This relies
on certain far-�eld integral contributions tending to zero, as subse-
quently shown by Fishwick and Chadwick.3 This far-�eld velocity
representation can then be matched to a near-�eld �ow, such as the
low Reynolds number Stokes �ow.4 For the high Reynolds number

FIG. 1. Streamlines for the drag eulerlet.

FIG. 2. Streamlines for the lift eulerlet. (a) Streamlines for the 2D lift eulerlet. (b)
Streamlines for the 3D lift eulerlet.

steady �ow, it can also be continued into the near-�eld giving an
Oseen �ow for slender-bodies.5 For this case, a discrepancy in the
description of the wake is found between the Oseen model and the
standard inviscid potential �ow model. This gives rise to a differ-
ence between the two models for the calculation of the forces on
the slender body. Subsequently, the experiment veri�ed that the
Oseen model, rather than the potential �ow model, evaluated lift
correctly for slender bodies of different elliptic cross section;6 see
Fig. 3. Similarly, by comparing the lift oseenlet and the inviscid
potential horseshoe vortex, a new slender wing potential �ow model
is obtained.7 This is different from standard potential �ow theory
in that it also includes a singular vortex-wake-velocity part origi-
nating from the lift oseenlet. This is the core of the Oseen vortex
line.8 This difference also produces a lift discrepancy between exist-
ing Euler and Oseen �ow models which leads to a proposal for an
alternative model from the Oseen �ow in the high Reynolds number
limit.9 This suggests developing a new Euler model by consider-
ing eulerlets, which in Ref. 10 are obtained from oseenlets in the
limit as the Reynolds number tends to in�nity. In this case, the term
that produces the difference and discrepancy within the eulerlet is
a nonpotential core originating from the limiting value of the sin-
gular vortex-wake-velocity part that lies along a semi-in�nite wake
half-line.

FIG. 3. Comparison of lift between Oseen theory, inviscid potential �ow theory, and
Jorgensen theory against the experiment for a slender body with the elliptic cross
section.6
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This allows us to also consider bluff body �ows by an eulerlet
model,11,12where the problem of steady uniform �ow past a circular
cylinder is considered. However, steady �ow breaks down above a
Reynolds numbers of 40, so the eulerlet model only approximately
holds. Despite this, for a Reynolds number up to 40, good agree-
ment is shown with the far-�eld wake pro�le and formation of wake
eddies.

In the present paper, we focus on bringing together all this pre-
vious work within a general and overarching eulerlet theory that
encompasses slender-body theory, lifting wing theory, and bluff-
body �ow. In particular, we shall assume a far-�eld Oseen �ow �eld
that is matched to a near-�eld Euler �ow �eld. The matching is
made by comparing Green's integral representations. In this case,
Green's functions in the far-�eld are oseenlets, and Green's func-
tions in the near-�eld are eulerlets. The outcome of this model is a
wake in the Euler �ow, which we call the Euler wake and which mod-
els momentum de�cits giving both drag and lift. In particular, we
apply the theory to uniform �ow past a bluff circular cylinder at the
high Reynolds number for mean-steady �ow giving an Euler wake
and drag on the body. There have been several recent studies inves-
tigating rotary oscillations of cylinders13 and their stable modes,14

as well as the vortex motion above a plane15 and an experimental
PIV (Particle Image Velocimetry) investigation with dual step cylin-
ders.16 Similarly, the focus of the application in this paper is circular
cylinders with the emphasis on the mean-steady �ow to use as a
benchmark test.

The present study is structured as follows. In Sec. II, a state-
ment of the problem is given where the Navier-Stokes equation
is approximated in the far-�eld to produce the Oseen equation
and in the near-�eld to produce the Euler equation. The relative
size of the terms in the Navier-Stokes equation is carefully docu-
mented together with the size of the near- and far-�elds in terms
of the Reynolds number. The approach adopted is similar to that
used by Sobey in Boundary Layer Theory (BLT)17 because both
stretch the coordinate in the �ow direction relative to the others.
In Sec. III, the far-�eld Oseen integral representation in terms of
oseenlets is given, and the high Reynolds number limit is taken.
This is obtained by considering momentum losses in the wake
that must be conserved and results in a constant distribution of
Dirac delta functions along an in�nite half-line in the wake. In
Sec. IV, the near-�eld representation is given in terms of the euler-
lets, and these are described and shown to be Green's functions
of the Euler equation as well as matching to the far-�eld col-
lapsed oseenlets. In Sec. V, the near and far-�eld integral repre-
sentations are matched which results in the Euler �ow represen-
tation of the velocity as an integral distribution of eulerlets over
the body surface with strength given by the force distribution.
In Sec. VI, the resulting Euler �ow representations for attached �ow
around thin aerofoils, thin wings, and slender bodies are consid-
ered. These reduce to and so agree with standard aerodynamics
potential �ow models. In Sec. VII, separated �ow past a circular
cylinder is considered for the high Reynolds number, subcritical
laminar �ow at a Reynolds number of 1.1� 104, and also tur-
bulent �ow at a Reynolds number of 8.4� 106. It is shown that
all the essential �ow physics is captured. The streamlines compare
well with �ow visualization, and the pressure distribution around
the circular cylinder is a reasonable match given the approximation
made.

II. STATEMENT OF THE PROBLEM

We consider a steady, incompressible �uid of density� and
viscosity� such that the Navier-Stokes equation

� u„
j
@u„

i

@x„
j

� �
@p„

@x„
i

+ �
@2u„

i

@x„
j @x„

j

(1)

and continuity equation

@u„
i

@x„
i

� 0 (2)

hold throughout the �uid, where the symbol„ means the dimen-
sional and unperturbed values. Sou„

i and p„ are the �uid velocity
and pressure, respectively, in Cartesian coordinatesx„

i , 1 B i B 2
for two-dimensional �ow and 1B i B 3 for three-dimensional �ow.
The Einstein convention of repeated suf�x implying a summation
is used such thataibi = a1b1 + a2b2 + a3b3 in three-dimensions, for
example.

Consider an exterior problem such that the far-�eld boundary
condition is that the �uid velocity tends toward a uniform stream
aligned to thex„

1 axis of magnitudeU, and so

u„
i � U� i1, (3)

where� ij is the Kronecker delta. The perturbed velocityui and per-
turbed pressurep to the uniform stream satisfyu„

i � U� i1 + ui , p„

= � (1/2)� U2 + p, respectively, and so the perturbed Navier-Stokes
equation is given by

� U
@ui

@x„
1

+ � uj
@ui

@x„
j

� �
@p

@x„
i

+ �
@2ui

@x„
j @x„

j

. (4)

In the far-�eld, the Navier-Stokes equation is approximated by the
Oseen equation. The velocityui and pressurep then approximate
to the Oseen velocityuO

i and Oseen pressurepO, and the far-�eld
boundary condition becomes

uO
i � 0 asSxjS� ª . (5)

Consider a near-�eld within which there is a �xed closed body.
For the large Reynolds number, in the near-�eld, we approximate
the Navier-Stokes equation again, and this time, we take the Euler
equation to hold. The velocityui and pressurep then are approxi-
mated to the Euler velocityuE

i and the Euler pressurepE. Therefore,
the slip (impermeability) boundary condition for the Euler �ow is
considered such that

uE
i ni � � Un1 (6)

for a normal vectorni to the body boundary@� 0. This assumes a
negligibly thin viscous boundary layer just outside of which the Euler
�ow slips past the body. So, we take the Euler �ow to be a leading
order approximation to the viscous Navier-Stokes �ow in the near
�eld. This also means that we have not omitted the no-slip boundary
condition; this still holds on the body, but instead, we apply the slip
boundary condition at the edge of the boundary layer and then in the
limit of a high Reynolds number assume the boundary layer thick-
ness is vanishingly small. In future work, we shall consider including
the boundary layer in the model and then match it to the near-�eld
Euler �ow outside the boundary layer. However, we argue that this is
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a secondary effect; for uniform �ow past a circular cylinder, we shall
�nd in Sec. VII that the drag originates from an Euler wake that pro-
duces a momentum de�cit. Then, in the far-�eld, the wake diffuses,
becoming the Oseen wake: Physically, in the near-�eld, diffusion is
suppressed because the viscous diffusion term in the Navier-Stokes
equations is negligible giving the Euler equations, which model the
Euler wake. Then, in the far-�eld, the viscous diffusion term is no
longer negligible giving the Oseen equations which model the Oseen
wake. On the matching boundary, the Euler wake and Oseen wake
match.

Finally, let us assume that the �ow representation in the near
and far-�elds matches on a common shared matching boundary
@� M for the large Reynolds number, so

uO
i � uE

i , on@� M . (7)

Before continuing, we need to demonstrate that the far-�eld does
indeed approximate to the Oseen �ow and the near-�eld to the Euler
�ow in the high Reynolds number limit, as seen in Sec. II A.

A. Far-�eld

Let the far-�eld Cartesian coordinates scale asx„
1 � ˆRe• lxO

1 ,
x„

� � lxO
� , see Fig. 4, wherel is a typical length dimension of the body,

Re= � Ul/� is the Reynolds number which tends to in�nity, and we
denote the Greek letter suf�xes starting from index 2. So, for a two-
dimensional �ow, we have that� = 2, and for a three-dimensional
�ow, we have that 2B � B 3. In the far-�eld, the �ow is a small
perturbation" to the uniform �ow �eld such that ui � "UuO

i and
p = "� U2pO, wherepO = pI + (1/Re)pII . Substituting this into (4) and
multiplying through by ˆ Re• l

"� U2 give

@uO
i

@xO
1

+ "uO
1

@uO
i

@xO
1

+ "ˆRe•uO
�

@uO
i

@x�

� �
@pI

@x0
1

� i1 � Re
@pI

@xO
�

� i� �
1
Re

@pII

@xO
1

� i1

�
@pII

@x0
�

� i� +
1

ˆRe•2

@2uO
i

@xO
1 @xO

1

+
@2uO

i

@xO
� @xO

�
. (8)

The leading order term in largeReis then Re@pI

@xO
�
� i� � 0, which

means thatpI (x1), which is the same as the result found in BLT.17

FIG. 4. The matching between the near and far �elds.

The next order gives

@uO
i

@xO
1

� �
@pI

@xO
1

� i1 �
@pII

@xO
�

� i� +
@2uO

i
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� @xO

�
(9)

since"uO
1

@uO
i

@xO
1

� 0 and"ˆRe•uO
�

@uO
i

@x�
� 0 whenRe� ª if we choose"

small enough such that" = o(1/Re), where little “o” means “of smaller
order than.” This means that all the terms in (9) are of the same order
and none can be discounted. Rewriting in terms of dimensionless
coordinatesxi � x„

i ~l, then asRe� ª ,

@2uO
i

@xj@xj
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@2uO
i
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+

1
ˆRe•2
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Re
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@pO

@xO
1

� i1 + Re
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@xO
�

� i�

�
@pI

@xO
1
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and

Re
@uO

i

@x1
�

@uO
i

@xO
1

. (12)

Putting (10)–(12) into (9) and dividing through byRegive

@uO
i

@x1
� �

@pO

@xi
+

1
Re

@2uO
i

@xj@xj
. (13)

Letting a comma denote a differentiation such thatf,i � @f
@xi

, this is
the Oseen equation

uO
i,1 � � pO

,i + ˆ1~Re•uO
i,jj (14)

such that asRe� ª , all the terms are of the same order and none
can be discounted from (9).

B. Near-�eld

Considering near-�eld dimensionless variablesx„
i � lxi , u„

i �
Uui , p = � U2p, then substituting into (4), and multiplying through
by l/(� U2) give

ui,1 + ujui,j � � p,i + ˆ1~Re•ui,jj . (15)

In the limit asRe� ª , this becomes the Euler equation

uE
i,1 + uE

j uE
i,j � � pE

,i . (16)

The near-�eld and far-�eld then match on the common boundary
x„

1 � ˆRe• l; see Fig. 4.

III. FAR-FIELD OSEEN REPRESENTATION

Green's functions for the Oseen equation, called oseenlets,
satisfy2

uO
ik,1 � � pO

k,i + ˆ1~Re•uO
ik,jj � �� ik , uO

ik,i � 0, (17)
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whereuO
ik and pO

k are the velocity and pressure, respectively, of the
kth oseenlet and thekth oseenlet velocityuO

ik has vector components
directed along thexi axes. The function� is the Dirac delta function
such that the spatial integration across it is unity«� � d� = 1.

Oseen gives the oseenlets in two-dimensional �ow as

uO
i1 �

1
2�

›� ln r + ekx1K0ˆkr•�
,i

� 2kekx1K0ˆkr• � i1  ,

uO
i2 �

1
2�

" ij3� ln r + ekx1K0ˆkr•�
,j
, pO

k � �
1
2�

� ln r� ,k,
(18)

where" ijk is the Levi-Civita symbol such that"123 = "231 = "312 = 1,
"132 = "213 = "321 = � 1, and" ijk = 0 otherwise. In three-dimensional
�ow, Oseen gives the oseenlets as

uO
ik � � O

k,i � � O
k,i + 2k� O

1 � ik, pO
k � �

1
4�

� 1~R� ,k,

� O
k �

1
4�

� lnˆR� x1•� ,k, � O
k �

1
4�

e� kˆ R� x1• � lnˆR� x1•� ,k.
(19)

We call the constant termk (not the suf�x index) the dimensionless
wake number such thatk = (Re)/2 (the dimensional wake number
is k/l and so has dimension 1/l for lengthl). (The counterpart is the
wave numberk arising from a sign change in the differential equa-
tion terms leading to wave rather than wake solutions. In the same
way that the wave number gives the expected wave size, the wake
number gives the expected wake size.) The modi�ed Bessel function
of the �rst kind of order 0 is denoted byK0. The two-dimensional
radial lengthr and the three-dimensional radial lengthR are such
that xixi = r2 in two-dimensions andxixi = R2 in three-dimensions.

Using (14) and (17), Oseen then gives the following Green's
integral in the Oseen �ow:

S
� O

�™uO
i;1 + pO

;i � ˆ1~Re•uO
i;jjžuO

ik

� ™uO
ik,1 + pO

k,i � ˆ1~Re•uO
ik,jj + �� ikžuO

i � d� œ� 0, (20)

where we denote the semicolon to represent a derivative with respect
to the variable of integration (de�ned in more detail in this following
paragraph) andd� œ� dxœ

1dxœ
2dxœ

3 (in three-dimensions, for example)
refers to an element of the space� O over which the integration takes
place; the integral is therefore parameterized by points denoted byxœ

i ,
the variable of integration. In this integral, the velocity and pressure
are therefore functions ofxœ

i , but the oseenlet Green's functions are
given as functions of̂xi � xœ

i • . In the analysis, two types of differenti-
ations are therefore used, a differentiation with respect toxi but also
differentiation with respect toxœ

i , the coordinate position of the vari-
able of integration. In the Einstein notation, we have used comma
“,” to denote a differentiation with respect toxi , so we will use a
semicolon “;” as shorthand to denote differentiation with respect
to xœ

i . (This is different from their use in the Einstein tensor nota-
tion as representing the contravariant and covariant derivatives.)
So,uO

ik,j � � uO
ik;j , for example. Rearranging and evaluating the Dirac

delta function term in (20), a representation for the far-�eld Oseen
velocity is then given by

uO
k � S

� O
� ˆuO

i uO
ik• ;1 + pO

;i u
O
ik � pO

k,iu
O
i

+ ˆ1~Re•ˆ uO
ik;jju

O
i � uO

i;jju
O
ik• � d� œ. (21)

We now express this integral in terms of the velocity potential
� rather than the pressurep; noting that from (18), the two-
dimensional oseenlets can be expressed in the formuO

ik � � O
k,i + wO

ik

such that� O
1 � 1

2� ln r and � O
2 � � 1

2� � for the polar angle� in the
polar coordinate representationx1 = r cos� , x2 = r sin� . From (19),
the three-dimensional oseenlet velocitiesuO

ik are already expressed
in the form of a velocity potential derivative� O

k,i added to a wake
velocitywO

ik, and for both two- and three-dimensions, the following
expression for the oseenlet pressure holds:

pO
k � � � O

k,1. (22)

Due to the linearity of (21), it follows that the same Helmholtz-
Hodge vector decomposition (fundamental theorem of vector cal-
culus) also holds for the Oseen velocity such that

uO
i � � O

,i + wO
i . (23)

In this context, the wake velocity is further decomposed by a wake
potential � 0 and this is called the Lamb-Goldstein velocity decom-
position which when substituted into the Oseen equation (14) gives
the relation for pressure

pO � � � O
,1. (24)

However, we note that in general, this vector decomposition is unde-
�ned in a shadow wake region.1 In two-dimensional �ow, we can
make the potential term� single-valued instead of multivalued by
introducing a branch cut along the positivex1 axis across which the
potential is discontinuous. In this way, the potential is then de�ned
in the shadow region for two-dimensional �ow.1 The physical inter-
pretation of this is a circulation related to lift. However, in three-
dimensional �ow, the whole shadow region may have an unde�ned
potential.1 The physical interpretation of this region is a vortex wake
related to lift. However, we also see that by pairing the potential
velocity and wake velocity together, the resultant velocityuO

i is now
de�ned in the shadow region.1 Substituting (22) and (24) into (21)
and taking the limit asRe� ª , we get

uO
k � S

� O
� ˆuO

i uO
ik• ;1 � � O

;1iu
O
ik + � O

k,1iu
O
i � d� œ. (25)

In the far-�eld wake, we havex1 = O(Re), x2 = O(1), and sox2/x1 =
O(1/Re) � 0 asRe� ª , and so the wake oseenletswO

ik � uO
ik � � O

k,i
collapse onto a wake line and simplify. We determine this form by
looking at wake integrals next.

A. Wake integrals

The potential �ow of the oseenlet generates a force, and the
viscous �ow of the oseenlet also generates a force, and from (17),
in total, these generate unit force in thek� direction. The con-
tributions from each have been determined, in particular, for the
three-dimensional lift,7,9 and are listed in Table I.

For the wake velocity, the contributions can be calculated
from far-�eld wake momentum de�cits,18 which are proportional
to integrations of the velocity in the cross-sectional plane normal
to the x1-direction. These integral contributions must still hold in
the high Reynolds number limit so that the oseenlet (17) also still
holds.
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TABLE I. The force contributions to the oseenlets.

Velocity potential Wake velocity

2-D drag 0 1
2-D lift 1 0
3-D drag 0 1
3-D lift/side force 1/2 1/2

1. Two-dimensions

In the far-�eld, thex1 scaling is of orderO(Re), whereas thex�

scaling is of orderO(1). So, for largeRe= 2k, we approximate for
x1 AA|x� |. This gives from the work of Abramowitz and Stegun19

ekx1K0ˆkr• �
½

�
2kr

e� kˆ r� x1• �
½

�
2kr

e� kx2
2~2x1

�
½

�
2kr

e� � 2

, � �

¾
k

2x1
x2, (26)

where� is the same as the boundary layer variable, except in BLT
xBLT

1 � Oˆ1• , xBLT
2 � Oˆ 1º

Re
• ,17 whereas in the far wakex1 = O(Re),

x2 = O(1). However, both give the same parabolic wake/boundary
layer pro�le described by� due to stretching of thex1 coordinate
relative to the others. In the near-�eld, the scaling isxi = O(1), and so
� � Oˆ

º
Re•. For largeRe, � is large and so diffusion is suppressed,

meaning that the wake does not diffuse.
The two-dimensional drag is given as a far-�eld momentum

de�cit; see, for example, Ref. 18. For the two-dimensional oseenlet,
from Table I, unit drag comes from the wake velocity and so

� S
ª

�ª
wO

11dx2 �
1

º
� S

ª

�ª
e� � 2

d� � 1 � S
ª

�ª
Hˆx1• � ˆ x2•dx2,

(27)

whereH(x1) is the Heaviside functionH(x1) = 0 for x1 @0 andH(x1)
= 1 for x1 C0. So, the two-dimensional oseenlet collapses to

uO
i1 �

1
2�

� ln r� ,i � Hˆx1• � ˆ x2• � i1,

uO
i2 �

1
2�

" ij3� ln r� ,j � �
1
2�

� ,i ,

pO
k �

1
2�

� ln r� ,k.

(28)

2. Three-dimensions

For x1 AA |x� |, then k(R � x1) approximates tok(R � x1) �

kr‡ 2/2x1 = � ‡ 2, � ‡ �
¼

k
2x1

r‡ , r‡ �
»

x2
2 + x2

3. So in the far-�eld wake,
the oseenlet potentials become

� O
k �

1
4�

� 2 lnr‡ � ln 2x1� ,k
� O

k �
1
4�

e� � ‡2

� 2 lnr‡ � ln 2x1� ,k
. (29)

Drag: To calculate the drag, we need the limiting wake velocity
wO

11 � � � O
1,1 + 2k� O

1 from (19), where� O
1 � � 1

4� x1
e� � ‡2

, and so

� O
1,1 � � 1

4� x1
e� � ‡2

� � 2� ‡ � ‡
,1 � 1

x1
� . Looking at the order of the terms,

� ‡
,1 �

¼
k

2x1
r‡ Š� 1

2x1
• � Oˆ1~Re• and 1

x1
� Oˆ 1

Re• , the unit drag of
the oseenlet is

� S
2�

0
S

ª

0
wO

11r
‡ dr‡ d� ‡

� � S
2�

0
S

ª

0
2k� O

1 r‡ dr‡ d� ‡ ˆ1 +Oˆ
1

ˆRe•2
••

�
k
x1

S
ª

0
e� � ‡2

r‡ dr‡

� 1 � S
ª

�ª
S

ª

�ª
Hˆx1• � ˆ x2• � ˆ x3•dx2dx3, (30)

where the polar angle� ‡ is de�ned asx2 = r‡ cos� ‡ andx3 = r‡ sin� ‡ .
So the three-dimensional drag oseenlet becomes

uO
i1 � �

1
4�

�
1
R

�
,i

� Hˆx1• � ˆ x2• � ˆ x3• � i1. (31)

Lift: From Ref. 7, half the lift contribution comes from the wake �ow,
as presented in Table I. This is con�rmed by the far-�eld wake eval-
uation next. For the evaluation, we require� O

2,2 in the far-�eld wake.
We have

� O
2 �

1
4�

e� � ‡2 2x2

r‡2
, (32)

and so

� O
2,2 �

1
2�

œe� � ‡2

Œ
1

r‡2
�

2 cos2 � ‡

r‡2
�

k
x1

cos2 � ‡ ‘¡ . (33)

Substituting this into the momentum de�cit integration for lift

� S
@� O

wO
22d� � S

2�

0
S

ª

0
‰� O

2,2 � 2k� O
1 Žr‡ dr‡ d� ‡ , (34)

where@� O is an integration across the whole of the 2� dimensional
plane located at constantx1, gives a contribution from the �rst term
in the integrand of

S
ª

0
S

2�

0
� O

2,2r
‡ d� ‡ dr‡

�
1
2� S

ª

0
S

2�

0
e� � ‡2

Œ
1

r‡2
�

2 cos2 � ‡

r‡2
�

k
x1

cos2 � ‡ ‘ r‡ d� ‡ dr‡

� � S
ª

0
� ‡ e� � ‡2

d� ‡ � � 1~2. (35)

The contribution from the second term in the integrand is the same
as for the drag calculation, and so the total contribution gives

� S
@� O

wO
22d� � � 1~2 + 1� 1~2

� 1~2S
ª

�ª
S

ª

�ª
Hˆx1• � ˆ x2• � ˆ x3•dx2dx3. (36)

So the three-dimensional lift oseenlet becomes

uO
i� �

1
4�

� lnˆR� x1•� ,� i � ˆ1~2•Hˆx1• � ˆ x2• � ˆ x3• � i� . (37)

IV. NEAR-FIELD EULER REPRESENTATION

The eulerlets are de�ned as the unit force fundamental solu-
tions such that

uE
ik,1 + � uE

j uE
i,j � k

� � pE
k,i � �� ik, (38)
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where � uE
j uE

i,j � k is the kth eulerlet expression for the termuE
j uE

i,j ,
and � = � (x1)� (x2) in two-dimensions and� = � (x1)� (x2)� (x3)
in three-dimensions. We shall show that (38) is satis�ed by the
two-dimensional eulerlets given by

uE
i1 �

1
2�

� ln r� ,i � Hˆx1• � ˆ x2• � i1, uE
i2 � �

1
2�

� � � ,i (39)

and the three-dimensional eulerlet velocity

uE
i1 � �

1
4�

�
1
R

�
,i

� Hˆx1• � ˆ x2• � ˆ x3• � i1,

uE
i� �

1
4�

� lnˆR� x1•� ,� i � ˆ1~2•Hˆx1• � ˆ x2• � ˆ x3• � i� .

(40)

From (28), (31), and (37), it is clear that these eulerlets match to the
respective oseenlets on the matched boundary such thatuE

ik � uO
ik

there. The streamlines for the eulerlets are represented pictorially
in Figs. (1), 2(a), and 2(b) centered at the origin. For the three-
dimensional lift eulerlet described in Fig. 2(b), thex1-axis represents
a collapsed circulatory �ow.

In Sec. IV A, we shall show that (39) and (40) satisfy the
continuity equation and then calculate the eulerlet vorticity and
forces.

A. Continuity equation and vanishing divergence

In two-dimensional �ow, the drag eulerlet gives divergence

uE
i1,i �

1
2�

� ln r� ,ii � � � 0 (41)

sinceHœ(x1) = � (x1) and� = � (x1)� (x2). From symmetry, the conti-
nuity and divergence for the lift eulerlet are identically zero. [The
resulting domain integration, about a sphere in three-dimensions
and a circle in two-dimensions, centered at the origin transforms
to boundary integrals over the sphere surface/circle circumference
upon application of the divergence theorem. However, all the result-
ing integrands are antisymmetric (odd), and so the domain integra-
tion is identically zero.] So

uE
i2,i � 0. (42)

Similarly, in three-dimensions, the drag eulerlet gives divergence

uE
i1,i � � �

1
4� R

	
,ii

� � � 0, (43)

and again from symmetry arguments, the lift and side force eulerlet
gives zero divergence

uE
i� ,i � 0, (44)

where� = 2, 3.

B. Eulerlet vorticity

Again, by invoking symmetry, the vorticity for the drag eulerlet
for both two- and three-dimensional �ows is identically zero, so

" ijkuE
k1,j � 0. (45)

However, the vorticity for the lift eulerlet in two-dimensions gives

"3jkuE
k2,j � "3jk"kq3

1
2�

� ln r� ,jq

�
1
2�

ˆ � 3q� j3 � � 33� jq•� ln r� ,jq � �
1
2�

� ln r� ,jj � � � . (46)

Similarly, by invoking symmetry in three-dimensions, the vor-
ticity for the 2-eulerlet is

" ijkuE
k2,j � " ijk ˆ � ‡ ,2kj +wE

k2,j • � "3jk� i3ˆ � ‡ ,2kj +wE
k2,j •

� � i3˜ˆ � ‡ ,221� � ‡ ,212• � � ~2• , (47)

where we have let� ‡ � 1
4� lnˆR� x1• . However, we note that

S
�
ˆ � ,‡221� � ,‡212•d� � S

@�
ˆ � ,‡22n1 � � ,‡21n2•d�

� S
@�

ˆˆˆ 1~2• � ,‡22+ˆ1~2• � ,‡33•n1 � � ,‡21n2•d�

� S
@�

ˆˆˆ � 1~2• � ,‡11•n1 � � ,‡12n2•d�

� S
@�

ˆˆˆ � 1~2•ˆ 1~3• � ,‡1j •nj � ˆ1~3• � ,‡1j nj•d�

� � 1~2S
@�

� ,‡1j njd�

� � 1~2S
@�

� � 1~4� R� ,j njd�

� � 1~2S
�
� � 1~4� R� ,jj d� � � 1~2S

�
� d� , (48)

where@� is the boundary of� . (It is also noted that when perform-
ing these operations, the derivatives over the space� that include the
eulerlet origin are not commutative, whereas over the boundary of
the space@� that encloses the eulerlet they are.) Using this result in
(47) gives

" ijkuE
k2,j � � i3ˆ � � ~2 � � ~2• � � �� i3. (49)

Similarly, the vorticity for the 3-eulerlet is

" ijkuE
k3,j � " ijk ˆ � ‡ ,3kj +wE

k3,j• � � i2˜ˆ � ‡ ,313� � ‡ ,331• � wE
33,1•

� � i2ˆ � ~2 + � ~2• � �� i2. (50)

Putting all these results together then gives the vorticity expression

uE
ik,j � uE

jk,i � 0 for k � 1

� � �� ik� j1 + �� jk� i1 for k x 1. (51)

C. Eulerlet force distribution

De�ne the eulerlet force distribution asfik � � E
k,1i � uE

ik,1. To �nd
the eulerlet pressure and force, we �rst evaluate this relation.

For k = 1, wE
1k,i � � �� i1 � � �� ik from (39) and (40), and so

substituting this into (51) withj = 1 gives

uE
ik,1 � uE

1k,i � 0 , � E
k,1i + wE

1k,i � uE
ik,1 � 0,

� E
k,1i � uE

ik,1 � � wE
1k,i � �� ik.

(52)
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For kx1, wE
1k � 0 and sowE

1k,i � 0 from (39) and (40), and so
substituting this into (51) withj = 1 gives

uE
ik,1 � uE

1k,i � � �� ik , � E
k,1i + wE

1k,i � uE
ik,1 � �� ik,

� E
k,1i � uE

ik,1 � �� ik.
(53)

So for allk, we have the relation

fik � � E
k,1i � uE

ik,1 � � E
k,1i � � E

k,i1 � wE
ik,1 � �� ik. (54)

The potential part gives a vorticity expression related to circula-
tion, and the wake part gives a velocity de�cit in the wake related
to momentum loss.

D. Eulerlet pressure

Substituting into the eulerlet equation (38) gives� E
k,1i � �� ik +

� uE
j uE

i,j � k � � pE
k,i � �� ik, and so the eulerlet pressure satis�es

pE
k,i + � uE

j uE
i,j � k � � � E

k,1i . (55)

For x x 0 (wherex = (x1, x2) in two-dimensions and (x1, x2, x3) in
three-dimensions), we haveuE

ik,j � uE
jk,i from (51). Substituting into

(55) and integrating up give

pE
k + ˆ1~2•� uE

j uE
j � k + � E

k,1 � 0, (56)

which is the Bernoulli equation.

E. Eulerlet force

The eulerlet force is

Fik � S
�
ˆ � pE

k,i � uE
ik,1 � � uE

j uE
i,j•� kd� � S

�
ˆ � E

k,1i � uE
ik,1•d�

� S
�

fikd� � S
�

�� ikd� � � ik. (57)

So thek� eulerlet gives a unit force in thek� direction.

F. Green's integral representation by eulerlets

From the Euler equation (16) and the eulerlet equation (38),
applying Green's integral construction that Oseen used but for the
Euler �ow, we get

S
� E

�™uE
i;1 + pE

;i + uE
j uE

i;jžuE
ik � ™uE

ik,1 + pE
k,i + � uE

j uE
i,j � k + �� ikžuE

i � d� œ� 0
(58)

for some space� E in the Euler �ow over which the integration takes
place. [It is noted that the Dirac delta function in (58) assumes that
(58) can be changed to a boundary integral and the Dirac delta func-
tion then represents the contribution around the pointx. This is
only demonstrated once it is matched.] Rearranging (58) then gives
a representation for the near-�eld Euler velocity as

uE
k � S

� E
� ˆuE

i uE
ik• ;1 + ˆpE

;i + uE
j uE

i;j•uE
ik � ˆpE

k,i + � uE
j uE

i,j � k•uE
i � d� œ.

(59)

From (55), we have thatpE
k � � � E

k,1 � � uE
j uE

i,j � k and from (16) that
uE

i,1 + uE
j uE

i,j � � pE
,i , so (59) becomes

uE
k � S

� E
� ˆuE

i uE
ik• ;1 � uE

i;1u
E
ik + � E

k,1iu
E
i � d� œ. (60)

G. Matching of the near and far-�elds

We require the velocity representations (25) and (60) to match.
So, we letuE

i,1 � � E
,1i in the matching region. In the matching region,

uE
i � � E

,i + wE
i sinceuE

i � uO
i . This means that the matching also

additionally requireswE
i,1 � 0. So the Euler wake has an unchanging

cross-sectional pro�le in the plane of constantx1. This then gives the
Euler velocity representation in the matching region the same as the
Oseen velocity representation (25) to be

uE
k � S

� E
� ˆuE

i uE
ik• ;1 � � E

;1iu
E
ik + � E

k,1iu
E
i � d� œ. (61)

It is noted that a consequence of the matching is that (61) is linear
rather than nonlinear. Furthermore, since the eulerlets are solutions
to the Euler equation, then, we can use (61) to continue the Euler
velocityuE

k into the near-�eld, and by doing so, (61) now represents
the near-�eld Euler velocityuE

k everywhere in the near �eld.

V. EULER FLOW EXPRESSIONS

Using this formulation, we can now work out expressions for
the Euler velocity by an integral distribution of eulerlets whose
strength is the force distribution over the body.

A. Euler velocity

Applying the divergence theorem to (61) gives

uE
k � S

@�
� uE

i uE
ikn�

1 � � E
;1u

E
ikn�

i + � E
k;1u

E
i n�

i � d� œ

� S
@�

� � uE
i uE

ikn1 + � E
;1u

E
ikni + � E

k,1u
E
i ni � d� œ

� S
@�

� � uE
i uE

kin1 + � E
;1u

E
kini + � E

1,ku
E
i ni � d� œ

� S
@�

� fiu
E
ki + uE

i ni �
E
1,k� d� œ, (62)

wheren�
i is the outward pointing normal to the space� and ni �

� n�
i is the outward pointing normal to the surface@� ; see Fig. 5; we

have used the properties� E
k;i � � � E

k,i , and so� E
k;1i � � E

k,1i as well as
uE

ik � uE
ki which can be seen from (39) and (40); �nally, the function

f i is de�ned as

fi � � E
,1ni � uE

i n1. (63)

If the Euler �ow is assumed up to a boundary layer of negligible
thickness over the body surface@� 0, then as the normal velocity is
zero, the velocity is represented by a distribution of eulerletsuki over
the body surface with strengthf i

uE
k � S

@� 0

fiu
E
kid� œ. (64)

Also, on the matched boundary and in the far-�eld, the velocity is
given by the same equation(64) such that the eulerlets are replaced
by oseenlets.

B. Euler wake velocity

The Euler wake velocity is therefore given by

wE
k � S

@� 0

fiw
E
kid� œ. (65)
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FIG. 5. The denotation of the space and the boundaries.

From Sec. IV B, the eulerlet vorticity away from its origin is zero.
Therefore, taking the curl of (65) will also be zero since it is a lin-
ear integral distribution of eulerlets. Such a wake representation of
wake eulerlets is unstable as in the limit, there is a different in�ow
along each wake line giving rise to shear. This is also found from the
experiment; see, for example, Fig. 8 where the �ow becomes unstable
in the downstream wake after a few radius distances.

Similarly, an implication of the results in Sec. IV B is that
wE

ik,1 � 0. Consequently,

wE
i,1 � 0. (66)

This means that the wake pro�le at a constantx1 cross section will
be the same regardless of value ofx1, so it remains unchanged. This
is expected from the matching requirement given in Sec. IV G.

C. Euler force

The force representation in the Oseen �ow is �rst given from
Ref. 1, and from this, the representation in the Euler �ow is obtained.
The force integral in the Oseen �ow is

Fi � S
@� O

� � O
ij � uO

j uO
i � njd�

� S
@� O

� � pO� ij +
1
Re

uO
i,j � ˆ � j1 + uO

j •ˆ � i1 + uO
i •� njd�

� S
@� O

� O
,1ni � uO

i n1 +
1
Re

uO
i,jnjd� . (67)

In the limit as Re� ª , we approach the matching boundary� M

such that@� O � @� M anduO
i � uE

i , and so

Fi � S
@� M

� E
,1ni � uE

i n1d� . (68)

From (63), then this gives a force integration in the near-�eld

Fi � S
@� E

fid� (69)

for the force per unit boundary of the spacefi � � E
,1ni � uE

i n1.

VI. ATTACHED POTENTIAL FLOW REPRESENTATIONS

From (64), the velocity is represented by a summation of the
potential �ow velocity and the wake �owuE

i � � E
,i + wE

i such that

uE
k � � E

,k + wE
k � S

@� 0

fiˆ � E
i,k + wE

ki•d� œ, (70)

where we let

� E � S
@� 0

fi �
E
i d� œ (71)

and

wE
k � S

@� 0

fiw
E
kid� œ. (72)

From (63), thenf1 � � E
,1n1 � � E

,1n1 � wE
1n1 � � wE

1n1. However, since
wE

k is an integration of the wake eulerletswE
ki and the in�ow must

balance out�ow, then«@� � E
,i nid� � � «@� wE

1n1d� for any domain
boundary@� enclosing domain� . So� E

,i ni � � wE
1n1, and

f1 � � E
,i ni � ©� E � n,

f2 � "3ij �
E
,i nj � � ©� E � n� 3,

f3 � � "2ij �
E
,i nj � � �© � E � n� 2,

(73)

where� is the cross product. Both (71) and (72) are required in the
calculation of the forcef i on the body. Considering only the poten-
tial (71) gives only the contribution to the force from the potential,
which from Table I is seen to be zero for the drag problem (giving
rise to D'Alembert's paradox) and a half for the 3-D lifting problem
(giving rise to Chadwick's lift discrepancy9). Additionally, consider-
ing (72) gives as well the contribution to the force from the wake
velocity, which from Table I is seen to be all the drag (resolving
D'Alembert's paradox) and an additional half for the 3-D lifting
problem (resolving Chadwick's lift discrepancy9).

A. Uniform attached �ow past an aerofoil at small
angle of attack

Let us consider attached �ow such that a wake line emerges at
the trailing edge, so (72) reduces to

wE
1 � F1w

E
11 � DHˆx1• � ˆ x2• (74)

for two-dimensional �ow, whereF1 = D is the drag and is assumed
nonzero. This represents a streamline emerging from the trailing
edge in the downstream wake, which is equivalent to imposing the
Kutta condition that there is a stagnation point at the trailing edge.
Equation (71) represents the �ow by a distribution of point sources
� E

1 and point vortices� E
2. However, for a thin aerofoil, the out�ow

strengthf 1 of the point sources is much smaller than the circula-
tion strengthf 2 of the point vortices. In particular, the ratio of the
strength is of the order of the thinness parameter of the aerofoil
(de�ning thinness = thickness/chord). So (71) approximates to
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� E � S
@� 0

�
�
2�

d� œ, (75)

where the potential part of the two-dimensional lift eulerlet (39) giv-
ing � �

2� represents a clockwise circulation point vortex on@� 0 with

circulation strength � � E
,1n2 � � E

,2n1. Satisfying the impermeabil-
ity boundary conditionuE

i ni � � Un1 on the body surface where
uE

i � � E
,i as well as imposing the condition that there is a stream-

line emerging at the trailing edge (the Kutta condition) then gives a
unique solution and is equivalent to the classical thin aerofoil theory
representations.

B. Uniform attached �ow past a wing at small angle
of attack

For three-dimensional attached �ow, the wake is now along
a wake sheet and emerges at the trailing edge. The potential part
of the lift eulerlet� E

2 in three-dimensional �ow is the in�nitesimal
horseshoe vortex, and from Ref. 8, it is shown that numerical dis-
cretizations of these will give distributions of horseshoe vortices; see
Fig. 6. For example, from (71) and following Ref. 8, a constant span-
wise distribution of lift eulerlets with strength� from x3 = 0 to span
x3 = swill give a contribution to the velocity potential of

� E
,i �

�
4� S

s

0
� lnˆRœ� x1•� ,i2 dxœ

3

� �
�
4� S

s

0
S

ª

0
‹

1
Rœœ

• ,i2 dxœ
1dxœ

3

� �
�
4� S

s

0
S

ª

0
�‹

1
Rœœ

• ,i2 � � i2‹
1

Rœœ
• ,jj � dxœ

1dxœ
3

� �
�
4� S

s

0
S

ª

0
ˆ � im� j2 � � jm� i2•‹

1
Rœœ

• ,mj dxœ
1dxœ

3

�
�
4� S

s

0
S

ª

0
"qij"qm2‹

1
Rœœ

• ,j;m dxœ
1dxœ

3

�
�
4� S

Ch

"qij"qm2nm‹
1

Rœœ
• ,j dlœ

�
�
4� S

Ch

" ijq‹
1

Rœœ
• ,j tqdlœ, (76)

whereRœ � ˜ x2
1 + x2

2 + ˆx3 � xœ
3•

2• 1~2, Rœœ� ˜ˆ x1 � xœ
1•

2 + x2
2 +

ˆx3 � xœ
3•

2• 1~2, and whereCh is the horseshoe described by the lines
around the perimeter of the area integral, given in Fig. 6. Here,dlœ

is an element of length of the horseshoe,nm is the outward pointing

FIG. 6. Horseshoe vortex.

normal to the area integral, andtq is the tangent vector in the direc-
tion denoted in Fig. 6. This is the Biot-Savart law integral used to
determine the velocity induced by a vortex line. This discretization
by horseshoe vortices can be assembled over the body surface to
give a panel method or over the wing planform area to give a vor-
tex lattice method. So with the appropriate numerical discretization,
(71) reduces to the standard thin aerofoil, thin wing, and vortex lat-
tice methods. However, the horseshoe vortex was obtained using a
piecewise constant numerical discretization, but (71) now gives the
possibility of considering different higher-order approximations for
greater accuracy.

C. Uniform �ow past a slender body

Furthermore, a line distribution of the potential part of the lift
eulerlet is consistent with the Oseen slender body theory5 in the limit
asRe� ª . In this case, an axial distribution of lift eulerlets gives a
leading order distribution of two-dimensional dipoles in the cross-
sectional transverse �ow plane. So, following Ref. 5, we have

� E � S
1

0
lˆ xœ

1•� lnˆRœ� xœ
11•� ,2 dxœ

1, (77)

wherel(x1) is the lift distribution along the axis,Rœ� � xœ2
11+x2

2+x2
3� 1~2,

xœ
11 � x1 � xœ

1, r‡ � � x2
2 + x2

3� 1~2, and the body is positioned on thex1

axis from 0B x1 B 1. Following Ref. 5 and using standard slender
body approximations, this gives forxœ

11 A 0

Rœ� xœ
11 � � xœ2

11 + r‡2� 1~2 � xœ
11 � xœ

11� 1 +r‡2~xœ2
11�

1~2 � xœ
11

� r‡2~2xœ
11 (78)

and forxœ
11 @0

Rœ� xœ
11 � � xœ2

11 + r‡2� 1~2 � xœ
11 � � xœ

11� 1 +r‡2~xœ2
11�

1~2 � xœ
11

� � 2xœ
11. (79)

Substituting into (77) then gives

� E � S
x1

0
lˆ xœ

1•� lnˆ r‡2~2xœ
11•� ,2 dxœ

1 + S
1

x1

lˆ xœ
1•� lnˆ � 2xœ

11•� ,2 dxœ
1

� S
x1

0
lˆ xœ

1•2� ln r‡ � ,2 dxœ
1 � 2Lˆx1•

x2

r‡2
. (80)

So twice the lift at any section,Lˆx1• � «x1
0 lˆ xœ

1•dxœ
1 is the two-

dimensional dipole strength in the sectional plane; as observed by
experiment.6

VII. SEPARATED FLOW PAST A CIRCULAR CYLINDER

Consider modeling separated rather than attached �ow past a
circular cylinder of normalized radius 1 centered at the origin rep-
resented by a distribution of eulerlets over the cylinder boundary
producing a wake distribution.

A. Potential �ow

The potential is given in terms of the potential parts of the
eulerlets which can then be represented by a harmonic expansion
originating from the origin such that
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� E �
D
2�

ln r +
ª

Q
n� 1

an
cosn�

rn
(81)

for some unknown coef�cientsan, from either use of the Taylor
series expansion or complex potential theory, andD is the drag and
out�ow strength.

B. Euler wake

The wake velocity is given in terms of a distribution of the wake
velocity of the drag eulerlets over the cylinder boundary; each wake
eulerlet singular along the in�nite half-line aligned to thex1-axis. So,
this can be represented as originating from a distribution along the
line � 1 Bx2 B1,x1 = 0 such that

wE
i ˆx• � S

1

� 1
dˆxœ

2•wE
i1ˆx-xœ•dxœ

2

� � S
1

� 1
dˆxœ

2•Hˆx1• � ˆ x2 � xœ
2• � i1dxœ

2 (82)

from (39), whered(x2) is the drag per unit length in thex2 direction
anddx2 is a differential element of lengthx2.

From (69), the total Euler drag isD � � «@� wE
1d� �

«1
� 1 dˆx2•dx2, and from (81), the out�ow is«@� � E

,i nid� � D, and from
(82), the in�ow is«@� wE

i nid� � � D.

C. Euler drag pro�le

Consider a constant drag eulerlet distribution such that

dˆx2• �
D
2

(83)

for |x2| B 1 and zero otherwise. Then, the Euler drag isD �
«1
� 1 dˆx2•dx2.

D. Boundary condition

Assuming a boundary layer of negligible thickness over the
body, then the impermeability condition holds for the Euler velocity

u„
i ni � 0Sr� 1,

ˆ � i1 + � E
,i � Hˆx1•dˆx2• � i1•ni � 0Sr� 1,

n1 + � E
,i ni � Hˆx1•dˆx2•n1 � 0Sr� 1.

(84)

Substituting in the expression for the potential (81) then gives for
r = 1,x1 @0:

cos� +
D
2�

�
ª

Q
n� 1

nan cosn� � 0 (85)

and forr = 1,x1 A0:

cos� +
D
2�

�
ª

Q
n� 1

nan cosn� �
D
2

cos� � 0. (86)

E. Coef�cients an

Applying the Fourier analysis integrating over the half space
«
�
0 d� gives

a1 � 1 �
D
� S

� ~2

0
cos2 � d� � 1 �

D
4

am � �
D

m� S
� ~2

0
cosm� cos� d�

� �
D

2m�
�

1
m + 1

sin̂ m + 1• � +
1

m � 1
sin̂ m � 1• � �

�
D

mˆm2 � 1• �
cosm� ~2

�
ˆ � 1•m~2D

mˆm2 � 1• �
for m even, and

� 0 for m odd. (87)

VIII. RESULTS

A. Pressure distribution around the circular cylinder

We de�ne the pressurepE as an integration over the cylinder
starting from the forward stagnation point on the cylinder and then
integrate around the circle circumference to the desired point. So

pE � 1~2 +S
l

0

@pE

@lœ
dlœ� 1~2 � S

�

�
tip,Ei d�

� 1~2 +S
�

�
ti™uE

j uE
i,j + uE

i,1žd� , (88)

wheret i is the clockwise tangent (t1, t2) = (sin� , � cos� ).

B. Subcritical laminar �ow

Consider subcritical laminar �ow at a Reynolds number of
Re= 1.1� 104. Although this �ow is unsteady, let us further assume
that the time-averaged mean �ow can still be approximately mod-
eled with the steady �ow theory. A constant eulerlet distribution is
chosen because the pressure in the wake is close to constant. Mod-
eling the �ow by a constant distribution of eulerlets in the wake
domain with a wake distribution strength of 2.4 gives a pressure drag
coef�cient determined from (88) as 1.02 and a streamline �ow given
in Fig. 7. Since the wake distribution strength value 2.4 is not the
same as the pressure drag coef�cient 1.02, this shows that there is a
contribution to the drag additional to that from the pressure drag
and this is originating from the Euler wake.

FIG. 7. Streamlines for subcritical laminar �ow.
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FIG. 8. Streamlines forRe= 1.0� 104. [Reproduced from Album of Fluid Motion
(Parabolic Press, Stanford, CA), with permission from Thomas Corke].

This compares to the �ow visualization from the experiment
for Reynolds numberRe= 1.0 � 104 given in Fig. 8. We see that
the two Figs. 7 and 8 trace similar streamlines. We see that the
model has correctly predicted �ow separation on the fore side of the

cylinder and a parabola-like separation streamline. This is in con-
trast to Gustaffsson's Oseen model20 which gives �ow separation on
the lee side and a straight separation streamline.

Using (88), the corresponding pressure distribution can be
determined and is given in Fig. 9(a) and compared against the exper-
imental pressure distribution at Reynolds numberRe= 1.1 � 104

reproduced from the work of Batchelor.21

It is noted that characteristic features of the physics of the �ow
are reproduced, such as reversal in the pressure gradient at an angle
of around 70–80X and a negative �attened pressure pro�le in the
wake of the cylinder.

C. Turbulent �ow

Let us also assume that mean turbulent �ow can also be approx-
imately modeled with this steady �ow theory. Again, a constant
eulerlet distribution is chosen because of knowledge that the pres-
sure in the wake is close to constant. Modeling the �ow by a con-
stant distribution of eulerlets in the wake domain but this time
with a wake distribution strength of 1.5 gives a pressure drag

FIG. 9. Pressure distribution. (a) Pressure distribution for
sub-critical laminar �ow. (b) Pressure distribution for turbu-
lent �ow.
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FIG. 10. Streamlines for turbulent �ow.

coef�cient determined from (88) as 0.95 and a streamline �ow given
in Fig. 10.

The expected narrowing of the wake in turbulent �ow is mod-
eled; see, for example, Van Dyke'sAlbum of Fluid Motionfor the
similar related case of a sphere.22 This results in a reduction in the
drag coef�cient; see, for example, the work of Batchelor.21 Again, it is
noted that characteristic features of the physics of the �ow are repro-
duced, such as reversal in the pressure gradient at an angle of around
70X–80X and a negative pressure pro�le in the wake of the cylinder;
see Fig. 9(b).

IX. DISCUSSION

A new Euler �ow description is given for the velocity by a
boundary integral distribution of eulerlets whose strength gives the
force distribution over the boundary. So drag as well as lift is gen-
erated with the drag eulerlet describing an Euler wake with in�ow
balanced by a potential out�ow. For potential �ows, D'Alembert's
paradox exists. However, this description includes an Euler wake
and implicitly evaluates drag, and consequently, D'Alembert's para-
dox does not arise. It is also seen that this description represents an
overarching representation for aerodynamic attached potential �ow
including thin aerofoil theory, thin wing theory, panel and vortex
lattice methods, and slender body theory; the potential part of the
two-dimensional lift eulerlet is the clockwise circulation point vor-
tex, and the potential part of the three-dimensional lift eulerlet is the
in�nitesimal horseshoe vortex.

The theory is tested against the problem of uniform separated
�ow past a circular cylinder for the high Reynolds number mean-
steady subcritical laminar �ow and mean-steady turbulent �ow.
The problem is uniquely described by assuming a constant strength
eulerlet distribution. An analytic formulation is obtained from the
Fourier series and compared to experimental results. All the �ow
physics is captured such as separating streamlines forward of the
cylinder and pressure drop in the wake.

The pressure distribution, given in Figs. 9(a) and 9(b), follows
the experiment to an acceptable level of accuracy given the approx-
imation of steady Euler �ow. The theoretical equivalence to existing
attached potential �ow theories as well as the close comparison to
experimental results for detached �ow past a circular cylinder indi-
cates the original premise in the paper to have been appropriate.
That is, to treat the Euler �ow as a near-�eld approximation that

should be matched to a far-�eld which is an Oseen �ow in the case
of a uniform �ow �eld.

Further work will consider the application to arbitrarily shaped
bodies and �ows that do not have rotational symmetry, for instance,
when the �ow is perturbed by an ellipsoidal, arbitrarily oriented par-
ticle. For the low Reynolds number Stokes �ow, this has already been
conducted by Dassios and Vafeas,23,24 and so this method would
then be applied for the high Reynolds number eulerlet representa-
tion given here. This would entail developing a boundary element
code from this boundary integral formulation, which would have to
incorporate the effect of the Euler wake generated from the eulerlet
distribution.

Greater accuracy requires inclusion of the boundary layer
within a Reynolds Averaged Navier Stokes (RANS) scheme, but the
approach here is to investigate a fast leading order Euler method
instead. This can be extended in a straightforward way for time-
dependent problems, and future work will be to obtain the time-
dependent eulerlets that can then be used to investigate �apping,
swimming, and other novel propulsion mechanisms particularly
for Unmanned Aerial Vehicles (UAVs) and Unmanned Under-
water Vehicles (UUVs). Such problems pose great dif�culty for
time-dependent initial value problem computational �uid dynamics
solvers. This is because of the accuracy that depletes with each time
step. By contrast, it is anticipated that an Euler model using eulerlets
will be more accurate because the time variation is included in the
eulerlet function itself rather than from a numerical time step.

Further work will also be to experimentally test this theory.
This veri�cation will be to experimentally capture the Euler wake.
For example, consider steady �ow past an elliptical cylinder in a
low-speed wind tunnel. We can choose cylinders with a variety of
ellipticities and orientations. We will use a hot-wire probe to deter-
mine the wake velocity pro�le at downstream wake cross sections
before the �ow becomes unsteady. The probe will be controlled via
a probe arm connected to a traverse mechanism capable of move-
ments accurate to a tenth of a millimeter. The Euler wake velocity
is the subtraction of the �uid velocity from the potential velocity.
The theory predicts that the Euler wake velocity has an unchang-
ing cross-sectional pro�le for all ellipticities and orientations, and
we can test whether the experiment con�rms this.
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