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INTRODUCTION 
 
Previously, we have demonstrated that cancer stem cells 
(CSCs) critically rely on mitochondrial biogenesis and 
oxidative metabolism for their propagation [1, 2]. 
Doxycycline, a tetracycline-based antibiotic, is a known 
inhibitor  of   the  small  mitochondrial   ribosome  (28S)  

 

and, as a consequence, is an inhibitor of mitochondrial 
protein translation [1-4]. Indeed, in vitro and in vivo 
evidence supports the potential inhibitory effects of 
Doxycycline on cancer growth through inhibition of 
CSC propagation [1-5]. More specifically, we demons-
trated that Doxycycline inhibits CSC propagation, as 
assessed using the 3D mammosphere assay, with an IC-
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ABSTRACT 
 
Here,��we��devised��a��new��strategy��for��eradicating��cancer��stem��cells��(CSCs),��via��a��“synthetic�rmetabolic”��approach,
involving��two��FDA�rapproved��antibiotics��and��a��dietary��vitamin��supplement.��This��approach��was��designed��to
induce��a��“rho�rzero�rlike”��phenotype��in��cancer��cells.��This��strategy��effectively��results��in��the��synergistic��eradication
of��CSCs,��using��vanishingly��small��quantities��of��two��antibiotics.��The��2��metabolic��targets��are��i)��the��large
mitochondrial��ribosome��and��ii)��the��small��mitochondrial��ribosome.��Azithromycin��inhibits��the��large��mitochondrial
ribosome��as��an��off�rtarget��side�reffect.��In��addition,��Doxycycline��inhibits��the��small��mitochondrial��ribosome��as��an
off�rtarget��side�reffect.� � � �Vitamin��C��acts��as��a��mild��pro�roxidant,��which��can��produce��free��radicals��and,��as��a
consequence,��induces��mitochondrial��biogenesis.��Remarkably,��treatment��with��a��combination��of��Doxycycline��(1
�…M),��Azithromycin��(1���…M)��plus��Vitamin��C��(250���…M)��very��potently��inhibited��CSC��propagation��by��>90%,��using��the
MCF7��ER(+)��breast��cancer��cell��line��as��a��model��system.��The��strong��inhibitory��effects��of��this��DAV��triple
combination��therapy��on��mitochondrial��oxygen��consumption��and��ATP��production��were��directly��validated��using
metabolic��flux��analysis.��Therefore,��the��induction��of��mitochondrial��biogenesis��due��to��mild��oxidative��stress,
coupled��with��inhibition��of��mitochondrial��protein��translation,��may��be��a��new��promising��therapeutic��anti�rcancer
strategy.��Consistent��with��these��assertions,��Vitamin��C��is��known��to��be��highly��concentrated��within��mitochondria,
by��a��specific��transporter,��namely��SVCT2,��in��a��sodium�rcoupled��manner.��Also,��the��concentrations��of��antibiotics
used��here��represent��sub�rantimicrobial��levels��of��Doxycycline��and��Azithromycin,��thereby��avoiding��the��potential
problems��associated��with��antibiotic��resistance.��Finally,��we��also��discuss��possible��implications��for��improving
health�rspan��and��life�rspan,��as��Azithromycin��is��an��anti�raging��drug��that��behaves��as��a��senolytic,��which��selectively
kills��and��removes��senescent��fibroblasts.����
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50 between 2-to-10 ��M, specifically in MCF7 cells, an 
ER(+) human breast cancer cell line [1, 2]. Importantly, 
quantitatively similar results were obtained with several 
other human breast cancer cell lines, such as T47D 
[ER(+)] and MDA-MB-231 (triple-negative).  
 
Recently, the Antibiotics for Breast Cancer (ABC) trial 
was conducted at The University of Pisa Hospital [5]. 
The ABC trial aimed to assess the anti-proliferative and 
anti-CSC mechanistic actions of Doxycycline in early 
breast cancer patients [5]. The primary endpoint of the 
ABC trial was to determine whether short-term (2 
weeks) pre-operative treatment with oral Doxycycline 
of stage I-to-III early breast cancer patients resulted in 
inhibition of tumor proliferation markers, as determined 
by a reduction in tumor Ki67 from baseline (pre-
treatment) to post-treatment, at the time of surgical 
excision [5]. Secondary endpoints were used to 
determine if pre-operative treatment with Doxycycline 
in the same breast cancer patients resulted in inhibition 
of CSC propagation and a reduction of mitochondrial 
markers. 
 
A pilot study of the ABC trial demonstrated that 
Doxycycline treatment successfully decreased the 
expression of CSC markers in breast cancer tumor 
samples. Post-doxycycline tumor samples demonstrated 
a statistically significant 40% decrease in the stemness 
marker CD44, when compared to pre-Doxycycline 
tumor samples [5].  
 
CD44 levels were reduced between 17.65% and 
66.67%, in 8 out of 9 patients treated with Doxycycline 
[5]. In contrast, only one patient showed a rise in CD44, 
by 15%. This represents a nearly 90% positive response 
rate. Similar results were also obtained with ALDH1 
[5], another marker of stemness, especially in HER2(+) 
patients. In contrast, markers of mitochondria, pro-
liferation, apoptosis and neo-angiogenesis, were all 
similar between the two groups. These results suggest 
that Doxycycline can selectively eradicate CSCs in 
breast cancer patients in vivo [5]. 
 
Given these promising results in the ABC pilot study, 
here we aimed to further potentiate the efficacy of 
Doxycycline, for patient benefit. Our preliminary in 
vitro results indicate that the inhibitory effects of 
Doxycycline on CSC propagation can be further 
potentiated, by employing a combination therapy 
strategy, with two additional pharmacological agents, 
namely i) Azithromycin and ii) Vitamin C. 
Azithromycin inhibits the large mitochondrial ribosome, 
as an off-target side-effect. Vitamin C acts as a mild 
pro-oxidant, which can produce free radicals and, as a 
consequence, induces mitochondrial biogenesis.  

This combination therapy was designed to stimulate 
mitochondrial biogenesis, while simultaneously 
inhibiting mitochondrial protein translation, resulting in 
functional ATP depletion. This occurs because inhibi-
tion of mitochondrial protein translation effectively 
blocks the production of proteins encoded by 
mitochondrial DNA (mt-DNA), which are absolutely 
required for OXPHOS, thereby creating a “rho-zero-
like” phenotype. Since Azithromycin is an established 
inducer of autophagy, this strategy should also stimulate 
mitophagy, to actively eliminate defective mito-
chondria. This functional property of Azithromycin may 
also have implications for aging (see Discussion).  
 
RESULTS 
 
Combining two complementary inhibitors of 
mitochondrial protein translation at a low-dose: 
Doxycycline and Azithromycin 
 
Here, we experimentally evaluated if the inhibitory 
effect of Doxycycline on mammosphere formation 
could be potentiated, by a combination with Azithro-
mycin. To this end, Doxycycline and Azithromycin 
were tested alone or in combination at low concen-
trations.  
 
Figure 1 shows that at low concentrations (0.1 ��M and 1 
��M) Doxycycline and Azithromycin alone had little or 
no effect on the inhibition of mammosphere formation. 
However, the combination of 1 ��M Doxycycline and 1 
��M Azithromycin exerted a very significant inhibitory 
effect on mammosphere formation.  
 
Note that in combination, Doxycycline and Azithro-
mycin display a marked increased efficacy in the 
inhibition of mammosphere formation, relative to when 
the drugs are used alone (the IC-50 for the combination 
is lower than for Azithromycin alone and lower than for 
Doxycycline alone, when both agents are used 
individually). These results suggest that a com-bination 
of Doxycycline and Azithromycin might have more 
therapeutic efficacy, than the two drugs used alone.  
 
To evaluate if the inhibitory effects on mammosphere 
formation of this double combination is related to 
mitochondrial function, we next examined the meta-
bolic profile of MCF7 cell monolayers pre-treated with 
the combination of 1 ��M Doxycycline and 1 ��M 
Azithromycin or with the same drugs alone for 3-days. 
Interestingly, the rates of both oxidative mitochondrial 
metabolism and glycolysis were significantly reduced 
by the DOX-AZI combination pre-treatment, as 
assessed using the Seahorse XFe96 analyzer. This 
resulted in significant reductions in respiration (basal 
and maximal), as well as reduced ATP levels (Figure 2).  
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Figure��1.��The��combination��of��low�rdose��Doxycycline��and��Azithromycin��inhibits��mammosphere��formation.
Note��that��this��combination��in��MCF7��breast��cancer��cells,��inhibited��3D��mammosphere��formation��with��greater��efficacy
than��the��two��drugs��alone.��*p��<��0.05;��***p��<��0.001;��****p��<��0.0001.��DOX,��Doxycycline;��AZI,��Azithromycin.����

 

Figure��2.��Combination��of��low�rdose��Doxycycline��and��Azithromycin��reduces��respiration��(basal��and��maximal)��and
ATP��levels.��The��metabolic��profile��of��MCF7��cell��monolayers��pre�rtreated��with��the��combination��of��1���…M��Doxycycline��and��1���…M
Azithromycin��for��3��days��was��assessed��using��the��Seahorse��XFe96��analyzer.��**p��<��0.01.��DOX,��Doxycycline;��AZI,��Azithromycin.��
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Similarly, both glycolysis and glycolytic reserve were 
decreased by the DOX-AZI combination (Figure 3). 
Finally, as seen in Figure 4, MCF7 cancer cells were 
shifted from a highly energetic profile to a meta-
bolically quiescent state. However, the combination of 1 
��M Doxycycline with 1 ��M Azithromycin is initially 
non-toxic  under  anchorage- independent   growth  con- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ditions (Figure 5).  
 
Taken together, these results indicate that the combina-
tion of low-dose Doxycycline with Azithromycin might 
be a more efficacious therapeutic option than Doxy-
cycline alone for the eradication of CSCs, by inhibition 
of mitochondrial function and glycolysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure��3.��Combination��of��low�rdose��Doxycycline��and��Azithromycin��reduces��glycolysis��and��glycolytic��reserve.The��metabolic
profile��of��MCF7��cell��monolayers��pre�rtreated��with��the��combination��of��1���…M��Doxycycline��and��1���…M��Azithromycin��for��3��days��was��assessed
using��the��Seahorse��XFe96��analyzer.��**p��<��0.01.��DOX,��Doxycycline;��AZI,��Azithromycin.��

Figure��4.��The��Doxycycline�rAzithromycin��combination��shifts��MCF7��cancer��cells��from��a��highly��energetic��state��to��a��meta�r
bolically��quiescent��state.��We��examined��the��metabolic��profile��of��MCF7��cell��monolayers��pre�rtreated��with��the��combination��of
Doxycycline��(1���…M)��and��Azithromycin��(1���…M)��for��3��days,��using��the��Seahorse��XFe96��analyzer.��*p��<��0.05.��DOX,��Doxycycline;��AZI,��Azithromycin.��
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Combining two inhibitors of mitochondrial protein 
translation, with a pro-oxidant:  Doxycycline and 
Azithromycin Plus Vitamin C (DAV) 
 
Our results indicate that a combination of Doxycycline 
and Azithromycin is more efficacious than the 
individual antibiotics in inhibiting CSCs propagation. 
Thus, we sought to test the hypothesis that a triple 
combination of Doxycycline, Azithromycin and 
Vitamin C could more potently inhibit CSC propaga-
tion. We have previously shown that Vitamin C alone 
inhibits CSC propagation with an IC-50 of ~1 mM [6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Importantly, simultaneous treatment with 1 ��M 
Doxycycline, 1 ��M Azithromycin and 250 ��M Vitamin 
C very potently inhibited CSC propagation by ~90% 
(Figure 6). Thus, near complete ablation of 3D tumor-
sphere forming ability was achieved at very low 
concentrations of these two antibiotics, suggesting that 
this DAV triple combination targets CSCs at a 
vulnerable weak point.  
 
Next, we evaluated the potential inhibitory effects of the 
DAV triple combination on mitochondrial function, by 
determining the metabolic profile of MCF7 cell 
monolayers pre-treated with a combination of 1 ��M 
Doxycycline, 1 ��M Azithromycin and 250 ��M Vitamin 
C for 3-days. Remarkably, the rate of oxidative mito-

chondrial metabolism was reduced by >50% and ATP 
levels were drastically reduced (by >90%), as assessed 
using the Seahorse XFe96 analyzer. Overall, this resulted 
in significant reductions in both basal and maximal 
respiration (Figures 7 and 8).  In contrast, glycolysis 
was increased, while glycolytic reserve was decreased 
by the DAV triple combination (Figures 7 and 8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, as seen in Figure 9 and 10, treatment with 250 
��M Vitamin C alone, significantly increased both 
mitochondrial metabolism and glycolysis in MCF7 
cancer cells. These observations are consistent with the 
idea that Vitamin C alone acts as a mild pro-oxidant and 
stimulates mitochondrial biogenesis, driving increased 
mitochondrial metabolism and elevated ATP 
production. This interpretation is consistent with our 
experimental data directly showing that the inclusion of 
two inhibitors of mitochondrial protein translation with 
Vitamin C, blocks and completely reverses this Vitamin 
C induced increase in mitochondrial oxidative 
metabolism (Figures 11 and 12).  
 
Taken together, our evidence supports a novel 
combined metabolic strategy to better eradicate CSCs. 
More specifically, we demonstrate that the inhibitory 
effects of Doxycycline on the CSC population can be 
potentiated by combination with another FDA-approved 
antibiotic, Azithromycin, and a dietary supplement, 
namely Vitamin C (a mild pro-oxidant).   

Figure��5.��The��Doxycycline��(1� � �…M)��plus��Azithromycin��(1
�…M)�� combination�� is�� initially�� non�rtoxic�� under
anchorage�rindependent��growth��conditions.��MCF7��cells
were��first��treated��with��the��combination��for��48��hours,��as
monolayers,��and��then��they��were��trypsinized��and��re�rseeded
onto��low�rattachment��plates��for��12��hours,��before��they��were
subjected��to��a��live/dead��assay.��Note��that��the��combination��has
no��effect��on��the��number��of��live��cells,��indicating��that��it��is��non�r
toxic��under��anchorage�rindependent��growth��conditions.��Never�r
theless,��the��combination��effectively��inhibits��the��propagation��of
CSCs.����DOX,��Doxycycline��(1���…M);��AZI,��Azithromycin��(1���…M).��

 Figure�� 6.�� MCF7�� 3D�� mammosphere�� formation�� is
extremely��sensitive��to��inhibition��by��combined��treat�r
ment��with��Doxycycline��[1���PM],��Azithromycin��[1���PM]��
and��Vitamin��C��[250���PM]��(D+A+VitC).� � � � Bar��graphs��are��
shown�� as�� the�� mean��±�� SD,�� t�rtest,�� two�rtailed.�� Note�� that��
approximately��90%��inhibition��was��observed��with��the��triple��
combination.��****p��<��0.0001.��
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Figure��8.��Combining��low�rdose��Azithromycin��and��Doxycycline��with��Vitamin��C��(DAV),��dramatically��inhibits��metabolism:��Bar
graphs.��Note��that��the��rate��of��oxidative��mitochondrial��metabolism��was��reduced��by��>50%��and��ATP��levels��were��drastically��reduced��by
>95%,��as��assessed��using��the��Seahorse��XFe96��analyzer.��This��resulted��in��significant��reductions��in��both��basal��and��maximal��respiration.��Note
also��that��glycolysis��was��increased,��while��glycolytic��reserve��was��decreased��by��the��triple��combination.��***p��<��0.001;��****p��<��0.0001.��

Figure�� 7.�� Combining�� low�rdose�� Azithromycin�� and
Doxycycline��with��Vitamin��C��(DAV),��dramatically��inhibits
metabolism:��Seahorse��profiles.��The��metabolic��profile��of��MCF7
cell��monolayers��pre�rtreated��with��the��triple��combination��(1� � � …M
Doxycycline,��1���…M��Azithromycin��and��250���PM��Vitamin��C)��for��3��days
was��assessed��using��the��Seahorse��XFe96��analyzer.� � � � Note��that��the
DAV��triple��combination��inhibits��oxidative��mitochondrial��meta�r
bolism�� (measured�� by�� OCR)�� and�� induces�� glycolytic�� function
(measured��by��ECAR).����
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This new DAV therapeutic strategy should provide for 
the more efficient eradication of CSCs. We aim to test 
this hypothesis in future clinical trials.  
 
Evaluating the temporal Effects of pre-treatments on 
the efficacy of the DAV triple combination, using 
CSC propagation as a read-out 
 
We devised a system to test whether it was required for 
all three components of the DAV triple combination to 
be administered at the same time, by using a pre-
treatment strategy prior to initiating the 3D mammo-
sphere stem cell assay.  
 
Briefly, MCF7 cells, grown as monolayer cultures, were 
first pre-treated with either  Vitamin C  alone  (250 ��M), 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or Doxycycline Plus Azithromycin (D + A; 1 ��M each), 
for a period of 7 days. Then, MCF7 cells were harvested 
with trypsin and re-plated under anchorage-independent 
growth conditions, in the presence of various com-
binations of Vitamin C, Doxycycline and Azithro-
mycin.  
 
Figure 13 shows that 7 days of pre-treatment with either 
Vitamin C alone or Doxycycline Plus Azithromycin (D 
+ A), rendered the DAV triple combination significantly 
less effective. Therefore, it appears that to achieve 
maximal impact, all three components of the DAV 
triple combination of Doxycycline (1 ��M), Azithro-
mycin (1 ��M) and Vitamin C (250 ��M), should be 
administered at the same time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure��9.��Low�rdose��Vitamin��C��alone��increases��both��mitochondrial��metabolism��and��glycolysis:��Seahorse
profiles.����The��metabolic��profile��of��MCF7��cell��monolayers��pre�rtreated��with��250���PM��Vitamin��C��alone��for��3��days��was��assessed
using��the��Seahorse��XFe96��analyzer.��Note��that��treatment��with��250���…M��Vitamin��C��significantly��increased��both��mitochondrial
metabolism��and��glycolysis��in��MCF7��cancer��cells.��These��observations��are��consistent��with��the��idea��that��Vitamin��C��acts��as��a
mild��pro�roxidant��and��stimulates��mitochondrial��biogenesis,��driving��increased��mitochondrial��metabolism.����
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Mechanistically, it appears that these pre-treatments 
“pre-conditioned” MCF7 cells to the effects of the DAV 
triple combination.  This may be due to their ability to 
induce oxidative stress, driving an anti-oxidant 
response.  
 
DISCUSSION 
 
In this report, we provide evidence supporting a novel 
“synthetic-metabolic” approach to target CSCs, via a 
triple combination therapeutic strategy, which includes 
two clinically approved drugs and one essential vitamin. 
This therapeutic strategy drives the near complete 
elimination of CSC propagation, but only uses very 
minute amounts of these compounds. More speci-fically, 
this approach involves the simultaneous inhibition of two 
key targets, namely the large and small mito-chondrial 
ribosomes. Because mitochondria originally evolved 
from bacteria over 1.45 billion years, they still share 
certain conserved features related to protein translation. 
As a consequence, Azithromycin specifically blocks the 
function of the large mito-ribosome (39S), as an off-
target effect.  Similarly, Doxycycline inhibits the small 
mito-ribosome (28S), also as an off- target effect.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In contrast, Vitamin C functions as a mild pro-oxidant, 
producing free radicals. Here, we show that a triple 
combination of Doxycycline (1 ��M), Azithromycin (1 
��M) and Vitamin C (250 ��M) effectively blocked CSC 
propagation by ~90% (summarized in Figure 14). In this 
context, we used the ER(+) breast cancer cell line, 
namely MCF7, as an established model system for 
monitoring and quantitating the 3D propagation of 
CSCs.  Finally, we directly validated and confirmed that 
this DAV triple combination therapy potently inhibited 
mitochondrial oxygen consumption (OCR) and 
increased glycolytic flux (ECAR), as predicted.  Based 
on our current metabolic findings, we propose that this 
triple combination is a feasible and novel anti-cancer 
strategy for targeting CSCs.  
 
Cancer:  DAV combination therapy for targeting 
mitochondria in CSCs. 
  
 
Vitamin C is generally considered to be an anti-oxidant. 
However, depending on its relative concentration and 
cellular localization, Vitamin C can also act as a pro-
oxidant, via the  production  of  free  radicals  (Figure 15).  

Figure��10.��Low�rdose��Vitamin��C��alone��increases��both��mitochondrial��metabolism��and��glycolysis:��Bar��graphs.
The��metabolic��profile��of��MCF7��cell��monolayers��pre�rtreated��with��250���PM��Vitamin��C��alone��for��3��days��was��assessed��using
the��Seahorse��XFe96��analyzer.��Note��that��treatment��with��250�� �…M��Vitamin��C��significantly��increased��basal��respiration,��ATP
production��and��maximal��respiration.����Also,��note��that��treatment��with��250���…M��Vitamin��C��significantly��increased��glycolysis
and��glycolytic��reserves,��while��decreasing��glycolytic��reserve��capacity.��*p��<��0.05;��**p ��<��0.01;��***p��<��0.001;��****p��<��0.0001.
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The ascorbate radical is normally very stable, but it 
becomes more reactive especially in the presence of 
metal ions, including iron (Fe), allowing the ascorbate 
radical to become a much more powerful pro-oxidant. 
Therefore, we speculate that as mitochondria are par-
ticularly rich in iron, they could become a key target of 
the pro-oxidant effects of Vitamin C, driving mitochon-
drial oxidative stress and new mitochondrial biogenesis.  
 
Importantly, Vitamin C is highly concentrated within 
mitochondria [7-11]. For example, when U937 cells (a 
human leukaemia cell line) were incubated for only 15 
minutes in media containing 3 �PM Vitamin C, it was 
very efficiently transported to the mitochondria, reaching 
a level of 5 mM – being concentrated ~1,700-fold [8]. 
Mitochondrial transport of Vitamin C is accomplished by 
the sodium-coupled Vitamin C transporter 2 (SVCT2) [7-
10], also known as SLC23A2, although other novel 
mitochondrial transporters have been suggested [11].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This mitochondrial targeting of Vitamin C may directly 
explain the effects we observed here of the triple 
combination on CSCs, as we have previously shown 
that CSCs have a significantly increased mitochondrial 
mass [12, 13] and this contributes to their ability to 
undergo anchorage-independent growth [14, 15]. 
Hence, the use of inhibitors of mitochondrial protein 
translation, together with Vitamin C, would ultimately 
prevent CSC mitochondria from fully recovering from 
the pro-oxidant effects of Vitamin C, as these target 
cells would be unable to re-synthesize new functional 
mitochondria (Figure 15). Thus, under these meta-
bolically restricted conditions, cancer cells would be 
expected to undergo “frustrated” or “incomplete” 
mitochondrial biogenesis.  This assertion is directly 
supported by the Seahorse flux analysis data shown in 
Figures 11 and 12, revealing i) reduced mitochondrial 
metabolism, ii) increased compensatory glycolytic 
function, and iii) severe ATP depletion.  

Figure��11.��Direct��side�rby�rside��metabolic��comparison��of��low�rdose��Vitamin��C��with��the��DAV��triple��combination:
Seahorse��profiles.��Note��that��low�rdose��Vitamin��C��increases��oxidative��mitochondrial��metabolism,��while��the��DAV��triple��combination
results��in��severe��ATP��depletion.��Also,��note��that��low�rdose��Vitamin��C��and��the��DAV��triple��combination��both��increase��glycolysis.����
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Figure��12.��Direct��side�rby�rside��metabolic��comparison��of��low�rdose��Vitamin��C��with��the��DAV��triple��combination:��Bar
graphs.��Note��that��low�rdose��Vitamin��C��increases��basal��respiration,��ATP��production��and��maximal��respiration,��while��the��DAV
triple��combination��decreases��all��three��of��these��parameters.��Also,��note��that��low�rdose��Vitamin��C��and��the��DAV��triple��combination
both��increase��glycolysis,��while��decreasing��glycolytic��reserve��capacity.��*p��<��0.05;��**p��<��0.01;��***p ��<��0.001;��*** *p��<��0.0001.��

Figure��13.��Effect��of��various��pre�rtreatments��on��the��efficacy��of��the��DAV��triple��combination.��Briefly,��MCF7��cells,��grown��as
monolayer��cultures,��were��first��pre�rtreated��with��either��Vitamin��C��alone��(250���…M),��or��Doxycycline��Plus��Azithromycin��(D��+��A;��1���…M��each),
for��a��period��of��7��days.��Then,��MCF7��cells��were��harvested��with��trypsin��and��re�rplated��under��anchorage�rindependent��growth��conditions,��in
the��presence��of��various��combinations��of��Vitamin��C,��Doxycycline��and��Azithromycin.��Note��that��7��days��of��pre�rtreatment��with��either
Vitamin��C��alone��or��Doxycycline��Plus��Azithromycin��(D��+��A),��rendered��the��DAV��triple��combination��significantly��less��effective.����Therefore,��to
achieve��maximal��impact,��we��conclude��that��all��three��components��of��the��DAV��combination��of��Doxycycline��(1���…M),��Azithromycin��(1���…M)
and��Vitamin��C��(250���…M),��should��be��administered��together��at��the��same��time.����MFE,��mammosphere��formation.����
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Based on the mechanism(s) underpinning the strong 
effectiveness of the triple combination, other pro-
oxidants could also be potentially substituted for 
Vitamin C. As many current chemotherapeutic agents, 
as well as targeted radiation, all kill cancer cells, via 
their pro-oxidant actions, then combined inhibition of 
mitochondrial protein translation could be used as an 
add-on to conventional therapy and would be predicted 
to improve their efficacy. However, Vitamin C clearly 
has fewer side effects and a better safety profile than 
most standard chemotherapeutic agents.  Additional 
experimentation will be required to further test this 
intriguing hypothesis.  

 

Figure��14.��Summary��diagram��highlighting��the��mechanism(s)��of��action��related��to��the��triple��combination��of
Azithromycin,��Doxycycline��and��Vitamin��C.��This��approach��effectively��results��in��the��synergistic��eradication��of��CSCs,��using
vanishingly��small��quantities��of��antibiotics.��It��is��important��to��note��Doxycycline��and��Azithromycin��are��not��direct��OXPHOS
inhibitors,��but��instead��are��inhibitors��of��mitochondrial��protein��translation.��The��2��metabolic��targets��are��the��large��mito�rribosome
and��the��small��mito�rribosome.��Azithromycin��inhibits��the��large��mitochondrial��ribosome��as��an��off�rtarget��side�reffect.��In��addition,
Doxycycline��inhibits��the��small��mitochondrial��ribosome��as��an��off�rtarget��side�reffect.��Vitamin��C��acts��as��a��mild��pro�roxidant��and��can
stimulate��the��production��of��free��radicals,��driving��mitochondrial��biogenesis,��secondary��to��mitochondrial��oxidative��stress��and��the
anti�roxidant��response.��Vitamin��C��is��also��thought��to��act��as��an��inhibitor��of��the��glycolytic��enzyme��GAPDH��(Glyceraldehyde��3�r
phosphate��dehydrogenase).��However,��here,��we��did��not��observe��any��inhibition��of��glycolysis,��when��Vitamin��C��was��tested��alone.����

Figure��15.��Anti�rmitochondrial��therapy.����Vitamin��C��can��act��as��a��
pro�roxidant,��via��the��production��of��free��radicals.��The��ascorbate
radical��is��normally��very��stable,��but��becomes��highly��reactive��in��the��
presence��of��metal��ions,��including��iron��(Fe).��As��mitochondria��are��
rich��in��iron,��they��could��become��a��key��target��of��the��pro�roxidant��
effects�� of�� Vitamin�� C,�� sequentially�� driving�� first�� mitochondrial��
oxidative��stress��and��then��mitochondrial��biogenesis.��However,��the��
use��of��inhibitors��of��mitochondrial��protein��translation,��together��
with��Vitamin��C,��would��ultimately��prevent��CSC��mitochondria��from��
fully��recovering,��leading��instead��to��CSC��eradication.��Additional��
experimentation��will��be��required��to��further��test��this��hypothesis.����



www.aging�rus.com�� 2213�� AGING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Previous studies have shown that Vitamin C by itself 
increases mitochondrial ATP production by up to 1.5-
fold, in the rat heart, under conditions of hypoxia [16]. 
In addition, Vitamin C is a positive regulator of endo-
genous L-carnitine biosynthesis, an essential micro-
nutrient that is required for mitochondrial beta-
oxidation [17, 18]. As such, these findings are consis-
tent with our current results showing that Vitamin C 
alone is indeed sufficient to increase mitochondrial ATP 
production, by up to 2-fold, in MCF7 cells (Figure 16).  
 
Aging: Improving health-span and life-span 
 
We believe that the DAV triple combination therapy 
that we describe here may also have implications for 
improving health-span and life-span, as aging is one of 
the most significant risk factors for the development of 
many human cancer types [19, 20]. Moreover, we have 
previously demonstrated that Azithromycin, by itself, is 
an FDA-approved drug, with remarkable  senolytic  acti- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vity, that targets and removes senescent fibroblasts, 
such as myo-fibrobasts, with great efficiency approach-
ing nearly 97% [21]. The accumulation of pro-inflam- 
matory senescent cells is thought to be the primary 
cause of many aging-associated diseases, such as heart 
disease, diabetes, dementia and cancer, to name only a 
few [21]. Since cancer-associated fibroblasts (CAFs) 
are senescent myo-fibroblasts, with tumor promoting 
activity, this triple combination approach with Azith-
romycin may also effectively target the glycolytic tumor 
stroma of aggressive and metastatic cancers, especially 
those bearing the metabolic hallmarks of the “Reverse 
Warburg Effect” [22-28]. 
 
CONCLUSIONS 
 
In conclusion, Phase II clinical trials will be necessary 
to validate the potential therapeutic efficacy of the DAV 
triple combination, for eradicating CSCs, in breast 
cancer patients.  

Figure��16.��Vitamin��C��vs.��the��DAV��triple��combination:��a��mechanistic��side�rby�rside��comparison.��Left��panel:��When��used��as��a
single��agent,��Vitamin��C��can��act��as��a��pro�roxidant��and��induce��mitochondrial��biogenesis,��driving��increased��mitochondrial��protein��synthesis
and��elevated��ATP��production.��Right��panel:��In��contrast,��the��DAV��triple��combination��would��preferentially��inhibit��the��synthesis��of��proteins
that��are��encoded��by��mitochondrial��DNA��(mt�rDNA),��leading��to��a��strict��depletion��of��essential��protein��components��that��are��absolutely
required��for��maintaining��OXPHOS.��In��the��absence��of��these��required��OXPHOS��components,��this��would��result��in��abnormal��mitochondrial
biogenesis��and��severe��ATP��depletion.��As��predicted,��we��observed��dramatic��ATP��depletion��experimentally.��Therefore,��Vitamin��C��amplifies
the��effects��of��Doxycycline��and��Azithromycin,��by��driving��mitochondrial��biogenesis,��thereby��diluting��out��the��pre�rexisting��population��of
mt�rDNA��encoded��proteins.��In��summary,��this��strategy��was��designed��to��create��a��“rho�rzero�rlike”��phenotype.��Also,��since��Azithromycin��is��an
established��inducer��of��autophagy,��this��approach��should��stimulate��mitophagy,��to��actively��eliminate��defective��mitochondria.����
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MATERIALS AND METHODS  
 
Cell lines and reagents 
 
MCF7 cells, an ER(+) human breast cancer cell line, was 
originally purchased from the American Type Culture 
Collection (ATCC), catalogue number HTB-22. Doxy-
cycline, Azithromycin and Ascorbic Acid (Vitamin C) 
were all obtained commercially from Sigma-Aldrich, Inc. 
 
Mammosphere formation assay 
 
A single cell suspension was prepared using enzymatic 
(1x Trypsin-EDTA, Sigma Aldrich, #T3924), and 
manual disaggregation (25 gauge needle) [12-15]. Cells 
were plated at a density of 500 cells/cm2 in 
mammosphere medium (DMEM-F12 + B27 + 20 ng/ml 
EGF + PenStrep) under non-adherent conditions, in 
culture dishes pre-coated with (2-hydroxyethylmetha-
crylate) (poly-HEMA, Sigma, #P3932), called “tumor-
sphere plates”. Vehicle alone (DMSO) control cells 
were processed in parallel. Cells were grown for 5 days 
and maintained in a humidified incubator at 37°C. After 
5 days of culture, 3D mammospheres >50 ��m were 
counted using an eye piece (“graticule”), and the 
percentage of cells plated which formed spheres was 
calculated and is referred to as percent mammosphere 
formation efficiency (MFE) and was normalized to one 
(1 = 100% MFE). 
 
Metabolic flux analysis 
 
Real-time oxygen consumption rates (OCR) and 
extracellular acidification rates (ECAR) rates in MCF7 
cells were determined using the Seahorse Extracellular 
Flux (XFe96) analyzer (Seahorse Bioscience, USA) 
[29-31]. Briefly, 1.5 x 104 cells per well were seeded 
into XFe96 well cell culture plates, and incubated 
overnight to allow cell attachment. Then, cells were 
treated with antibiotics and/or Vitamin C for 72h. 
Vehicle-alone control cells were processed in parallel. 
After 72 hours of incubation, cells were washed in pre-
warmed XF assay media (or for OCR measurement, XF 
assay media sup-plemented with 10mM glucose, 1mM 
Pyruvate, 2mM L-glutamine and adjusted at 7.4 pH). 
Cells were then maintained in 175 µL/well of XF assay 
media at 37°C, in a non-CO2 incubator for 1 hour. 
During the incubation time, we loaded 25 µL of 80 mM 
glucose, 9 µM oligomycin, and 1M 2-deoxyglucose (for 
ECAR measurement) or 10 µM oligomycin, 9 µM 
FCCP, 10 µM rotenone, 10 µM antimycin A (for OCR 
measurement), in XF assay media into the injection 
ports in the XFe96 sensor cartridge. Measurements were 
normalized by protein content (SRB assay). Data sets 
were analyzed using XFe96 software and GraphPad 
Prism software, using one-way ANOVA and Student’s 

t-test calculations. All experiments were performed in 
quintuplicate, three times independently. 
 
Live/dead assay for anoikis-resistance 
 
Following monolayer treatment with either Doxycyline 
alone, Azithromycin alone or the combination for 48 
hours, the CSC population was enriched by seeding 
onto low-attachment plates [32]. Under these 
conditions, the non-CSC population undergoes anoikis 
(a form of apoptosis induced by a lack of cell-substrate 
attachment) and CSCs are believed to survive. The 
surviving CSC fraction was then determined by FACS 
analysis. Briefly, 1 × 104 MCF7 monolayer cells were 
treated with antibiotics or vehicle alone for 48h in 6-
well plates. Then, cells were trypsinized and seeded in 
low-attachment plates in mammosphere media. After 
12h, the MCF7 cells were spun down. Cells were rinsed 
twice and incubated with LIVE/DEAD dye (Fixable 
Dead Violet reactive dye; Invitrogen) for 10 minutes. 
Samples were then analyzed by FACS (Fortessa, BD 
Bioscence). The live population was then identified by 
employing the LIVE/DEAD dye staining assay. Data 
were analyzed using FlowJo software. 
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