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Abstract 
A numerical study of convective heat transfer in an annular pipe solar collector 
system is conducted. The inner tube contains pure water and the annular region 
contains nanofluid. Three-dimensional steady-state incompressible laminar 
flow comprising water-based nanofluid containing a variety of metallic nano-
particles (copper oxide, aluminium oxide and titanium oxide nano-particles) is 
examined. The Tiwari-Das model is deployed for which thermal conductivity, 
specific heat capacity and viscosity of the nanofluid suspensions is evaluated 
as a function of solid nano-particle volume fraction. Radiative heat transfer is 
also incorporated using the ANSYS solar flux and Rosseland radiative models. 
The ANSYS FLUENT finite volume code (version 18.1) is employed to 
simulate the thermo-fluid characteristics. Mesh-independence tests are 
conducted. The influence of volume fraction on temperature, velocity, pressure 
contours is computed and visualized. Copper oxide nanofluid is observed to 
achieve the best temperature enhancement. Temperature contours at cross-
sections of the annulus are also computed.  

Keywords: Thermal convection; nanofluid; annulus; ANSYS FLUENT; finite 
volume; metallic nano-particles; Temperature contours; Velocity; Pressure; Solar 
collector. 

�1�R�P�H�Q�F�O�D�W�X�U�H
Cp  specific heat capacity 
k thermal conductivity 
kr  radiative conductivity    
n  refractive index  
Qc thermal conduction flux 
Qrad  radiative flux term    
T  denotes temperature  
Vf  volume of fluid    
Vnp nano particles volume    

�ÏT  temperature gradient 
��f  dynamic viscosity of base fluid 
��nf dynamic viscosity of nanofluid  
�! density 
�-  volume fraction 
�%�L�J�B nanofluid specific heat   
�é�B base fluid density    
�é�J�B nanofluid density 
�é�O nanoparticle density  

1. Introduction  

Motivated by cleaner and more sustainable energy resources in the 21st century, engineers have 
intensified efforts in studying and developing more efficient renewable energy designs. While 
many different options exist, solar energy remains the most promising owing to the vast 
quantities of heat received daily in many parts of the world. The current energy utilization 
globally is a fraction of the total solar radiation reaching the earth as noted by Kalogirou [1]. 
Solar collector design continues to undergo refinements and is being implemented on large 
scales in many continents. A wide spectrum of solar collectors has been implemented of which 
solar thermal absorption collectors (including concentrated solar power plants) are the most 
popular and absorb solar radiation directly via heating a working fluid which then drives a 
turbine connected to electrical generator units. These are the most widely deployed in 
commercial and domestic applications and include parabolic troughs, solar flat plate panels, 
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solar air heaters and solar towers and evacuated tube solar collectors, hybrid annular collectors 
etc. �,�Q���D�O�O���W�K�H�V�H���V�\�V�W�H�P�V�����D�V���R�S�S�R�V�H�G���W�R���S�K�R�W�R�Y�R�O�W�D�L�F���V�\�V�W�H�P�V�����W�K�H���³�U�H�F�H�L�Y�H�U�´���F�R�P�S�U�L�V�H�V���F�R�Q�G�X�L�W�V��
carrying the working fluid for thermal transfer. Depending on geographical locations different 
thermal collector designs are employed.  

Laboratory and experimental testing of new solar devices is critical to their subsequent 
deployment. However, this can be a time-consuming and expensive endeavour. To improve 
predictions of projected efficiency, in parallel with field testing, theoretical and computational 
models currently provide the only feasible strategy and a relatively inexpensive method for 
optimization. Over the past four decades numerous different solar collector types have been 
studied with thermal fluid dynamic models. Lobo et al. [2] used numerical simulation is used 
to analyse the performance of an annular spaced cylindrical solar collector, comprising a 
transparent glass tube, mirrored over a segment of the circumference and engulfing the 
absorber tube for both an evacuated annular space and an air-filled one. Badran [3] reported 
both theoretical and experimental results for a novel tilted cylindrical-type solar collector 
comprising two steel cylinders with water filling the annular gap and the outside cylinder 
coated in plastic film glazing, with the ends of the cylinder being insulated. He considered 
strong solar flux cases with the annular gap heated and circulated via the thermo-syphonic 
driving force and achieved a maximum thermal efficiency of 85%. Bhutka et al. [4] used 
Meteonorm software to investigate the performance of a solar parabolic absorption collector, 
computing heat gain and energy generation and benchmarking with the actual data of a 1 MW 
Solar Thermal Plant and a 50 MW Parabolic Trough Power Plant. Further studies include 
Tiedeman [5] (who considered integral and conventional solar water heating collectors), 
Boonchom et al. [6] (helix tube solar collectors), Reddy [7] (double rectangular solar integrated 
enclosures with transparent insulation materials (TIM) coated with phase-change material 
(PCM)), Bhargava [8] (wall losses in a tubular solar collector/water heater), Ortega et al. [9] 
(interzonal heat transfer in fin-modified solar collector walls) and Bég et al. [10] (finite 
difference simulation of radiative-convective viscous flow in porous media annular hybrid 
solar collectors) and Bég et al. [11] (thermo-solutal convection boundary layers on titled solar 
collector plates with Soret and Dufour multi-diffusive phenomena). These studies were all 
confined to Newtonian fluids. However, both thermal convection and efficiency can passively 
be enhanced by modifying flow geometry and boundary conditions e.g. inlet and wall 
conditions (as exemplified in refs. [2]-[10]) or alternatively by enhancing working fluid 
thermophysical properties.  

In the 1990s, Choi [12] and co-workers in the USA developed a novel approach to increasing 
efficiency of fluids deployed in heat transfer operations. They introduced nanofluids. 
Nanofluids are a very successful family of engineered fluids, which contain well-dispersed 
nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. 
gold, silver, copper, aluminium etc) significantly improves the thermo-physical properties of 
the host fluid and generally results in a considerable boost in thermal conductivity, density, and 
viscosity of nanofluid compared with the original base (host) fluid. This modification in 
fundamental thermal properties has profound implications in influencing the convective heat 
transfer process. An impressive range of applications of nanofluids have been explored in the 
last decade or so and these aspects in addition to fabrication and different types of nanofluids 
(carbon nanotubes, nano-shells, nano-particles, nano-wires etc) are lucidly reviewed in Das et 
al. [13]. Wang and Majumdar [14] have focused specifically on heat transfer characteristics. 
Recently nanofluids have been utilized in peristaltic nano-pumps in medical engineering [15], 
pharmaco-dynamic delivery systems [16], petroleum drilling operations [17] and smart coating 
systems for offshore applications [18]. Two popular mathematical models have been developed 
in recent years for simulating nanofluid transport phenomena. These are the two-component 
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laminar four-equation non-homogeneous equilibrium model of Buongiorno [19] and the 
volume fraction model of Tiwari and Das [20]. The former features thermophoretic forces and 
Brownian motion dynamics as the key contributors to thermal conductivity enhancement and 
includes mass, momentum, energy and species conservation. The latter focuses more on the 
type and properties of nano-particles and permits the computation of nanofluid properties for 
specific metallic (e.g. zinc or copper oxide) or non-metallic (e.g. diamond, silicate) nano-
particles. In the Tiwari-Das model the volume fraction is engineered to be up to 10 % which 
enables mechanical behaviour like the base fluid and nanoparticle contribution is simulated 
through volume fraction instead of in a separate species conservation equation. Both models 
have received extensive attention in recent years. For example, the Buongiorno model has been 
deployed in coating flows [21], biofuel cells [22] and bio-nano-polymer manufacturing fluid 
dynamics [23]. The Tiwari-Das model has been utilized in peristaltic thermal nano-pumps [24], 
nano-polymer fabrication dynamics [25], electro-kinetic microfluidics [26] and chemical 
engineering mixing processes [27].  

In recent years nanofluids have received extensive attention in solar energy collector studies. 
Many excellent reviews have been communicated on various systems by Elsheikh et al. [28] 
(e.g.  solar collectors (SCs), solar thermoelectric devices, solar water heaters, solar-geothermal 
combined cooling heating and power system (CCHP), photovoltaic/thermal (PV/T) systems 
etc), Muhammad et al. [29] (on stationary solar collectors), Abdin et al. [30] (nanofluid doped 
solar collectors, fuel cells, photocatalysis and solar photovoltaics, Tegart [31] (who has 
considered both solar nanotechnology and other renewables) and Wang et al. [32] 
(spectrophotometery of dispersion stability of Chinese ink-based nanofluid solar collectors). 
Recent experimental studies of solar nano-doped collectors include Kiliç et al. [33] (on titanium 
dioxide/water nanofluid flat plate solar collectors) and Sharafeldin and Gróf [34] (Cerium 
oxide-water nanofluid flat-plate solar collectors at three different volume fractions of 0.0167%, 
0.0333% and 0.0666%). Numerical studies of nanofluid-based solar collectors have utilized a 
wide range of computational methodologies. MeteGenc et al. [35] presented a time-dependent 
model to evaluate the thermal inertia of each component of Aluminium oxide-nanofluid flat 
plate solar i.e. glass, trapped air, absorber and working fluid and computing the mass flow rates 
at different flow Reynolds numbers and volumetric concentrations. Further studies include 
Yousefi et al. [36], Haghshenas et al. [37] (multiphase nanofluid tubular collectors), Colangelo 
et al. [38] (Aluminium oxide diathermic oil nanofluids), Meibodi et al. [39] and Mahian et al. 
[40] (SiO2/Ethylene Glycol-water nanofluid flat plate solar collectors, Bianco et al. [41] 
(turbulent Aluminium oxide water nanofluid pipe collectors), Al-Nimr et al. [42] (nano-doped 
copper oxide two-layer solar ponds) and Mahian et al. [43] (mini-channel titanium dioxide 
water collectors). The complex geometry of many solar collectors is often best addressed with 
computational fluid dynamics (CFD) software. Notable among such commercial finite volume 
codes is ANSYS FLUENT. This code has been used by the authors in numerous multi-physical 
fluid dynamics and heat transfer studies in recent years including Newtonian viscous natural 
convection in two-dimensional solar thermal absorbers with different radiative flux models 
[44], film cooling of turbulent heat transfer [45], mass transfer following de-icing of 
commercial aircraft wings [46], three-dimensional gas turbine blade film cooling [47] and 
rocket mini-channel cooling and turbulent convective heat transfer [48]. ANSYS FLUENT 
(version 18.1) allows incorporation of the Tiwari-Das model via a multi-phase physics 
capability. Computations are conducted with the pressure-based solver. Three-dimensional 
steady state flow is studied. We employ the SIMPLE algorithm available in the ANSYS 
FLUENT CFD code. The current study addresses convective heat transfer in an annular pipe 
solar collector system comprising an inner tube containing pure water and an annular region 
containing metal-water nanofluid. Three different metallic nano-particles (copper oxide, 
aluminium oxide and titanium oxide nano-particles) are examined. Via the Tiwari-Das model 
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the thermal conductivity, specific heat capacity and viscosity for each metal-water nanofluid 
suspension is calculated as a function of solid nano-particle volume fraction. Radiative heat 
transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The 
ANSYS FLUENT finite volume code [49] is employed to simulate the thermo-fluid 
characteristics. Mesh-independence tests are conducted. Extensive visualizations of the 
influence of volume fraction on temperature, velocity, pressure contours are presented.   

2. Computational thermo-fluid dynamic mathematical model 
The solar collector geometry to be studied is illustrated in Figure 1 in an (x,y,z) coordinate 
system. It comprises two concentric cylinders, the inner composed of copper and the outer 
composed of glass.  The copper tube has inner diameter 22mm, thickness 3 mm and is of 1m 
in length and contains flowing water. This inner copper tube is submerged in metallic nano-
fluid confined in the annular space between the copper tube and an external glass tube with 
internal diameter of 51 mm and wall thickness of 2.25 mm with the same length (1m). There 
is no heat transfer though the top wall (adiabatic end condition). No slip boundary conditions 
are assumed on all walls of the cavity are considered as impermeable. The physical properties 
of the fluid assumed constant. The physical model is shown in Figure 1.  

 

Figure 1. Geometrical and physical model for annular nanofluid solar collector. 

The three-dimensional models of heat and fluid flow in the solar collector tube are designed in 
ANSYS FLUENT computational fluid dynamics software. Laminar, steady-state, 
incompressible flow is considered with forced convective heat transfer. The annular nanofluid 
is the absorber fluid and the Tiwari-Das nano-particle volume fraction model is deployed [20], 
which is described in due course. The fundamental equations for steady viscous, 
incompressible laminar flow are the three-dimensional time-independent Navier-Stokes 
equations, which in a Cartesian coordinate system, take the following form. 
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Forced convection takes place in the regime and the appropriate energy conservation equation 
is 
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Here, �Ù�à L
�Þ

�� �¼�Û
��is the thermal diffusivity, which is a measure of thermal inertia. ANSYS 

FLUENT [50] provides a solar load model that can be used to calculate the radiation effects 
from the sun's rays that enters the computational domain. The Solar load is available in the 3D 
solver only and can be used to model both steady and unsteady flows. Two options are available 
for the model: Solar Ray Tracing and DO irradiation. Solar Ray Tracing is used in this 
simulation due to its highly efficient method and practical means of applying solar loads as 
heat sources in the energy equations. This study focuses on the heat absorption capability of 
various types of nanofluids, where the sun radiation is fixed in the z-direction along the pipe 
with the intensity of 877 W/m2. The solar calculator utility in ANSYS FLUENT (solar load 
model) is turned off. Hence, the simulation can be easily recreated as a laboratory experiment. 
The solar load model's ray tracing algorithm can be used to predict the direct illumination 
energy source that results from incident solar radiation. This approach utilizes a beam that is 
modelled using the sun position vector and illumination parameters, applies it to any or all wall 
or inlet/outlet boundary zones specified, performs a face-by-face shading analysis to determine 
well-defined shadows on all boundary faces and interior walls and finally computes the heat 
flux on the boundary faces that result from the incident radiation. The solar ray tracing model 
includes only boundary zones that are adjacent to fluid zones in the ray tracing calculation. In 
other words, boundary zones that are attached to solid zones are ignored. The resulting heat 
flux that is computed by the solar ray tracing algorithm is coupled to the ANSYS FLUENT 
calculation via a source term in the energy equation (Qrad). The heat sources are added directly 
to computational cells bordering each face and are assigned to adjacent cells in the following 
order: shell conduction cells, solid cells, and fluid cells. The solar ray tracing algorithm also 
accounts for internal scattered and diffusive loading. The reflected component of direct solar 
irradiation is tracked. A fraction of this radiative heat flux, called internally scattered energy is 
applied to all the surfaces participating in the solar load calculation, weighted by area. 
However, Solar Ray Tracing is not a participating radiation model. The model does not deal 
with emission from surfaces, and the reflecting component of the primary incident load is 
distributed uniformly across all surfaces rather than being local to the surfaces reflected. Since 
surface emission is also an important factor in this study, the Rosseland radiation model will 
be implemented in conjunction with Solar Ray Tracing. The Rosseland radiation model 
assumes that the intensity is the black-body intensity at the gas temperature. Since the radiative 
heat flux has the same form as the Fourier conduction law, it is possible to write 

�3 L �3�ÖE�3�å      (6) 

L F�:�GE�G�Í �;�Ï�6     (7) 

�G�å L �s�x�ê���J�6�6�7     (8) 

The appropriate substitution for radiative solar flux is made in the energy equation (5) to 
compute the temperature field. The Rosseland model has the advantage (compared with more 
complex alternative models (e.g. �&�K�D�Q�G�U�D�V�H�N�K�D�U�¶�V��discrete ordinates, the Trauggott P1 
differential or Schuster-Schwartzchild two flux models as elucidated by Modest [51]) in that 
supplementary transport equation for the incident radiation do not have to be solved and this 
greatly accelerates computational speed and significantly less memory is required. However, 
the Rosseland model can be used only for optically thick media. It is recommended for use 
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when the optical thickness exceeds 3. In ANSYS FLUENT the Rosseland model is only 
available for the pressure-based solver, which is adopted in the present computations. 
Regarding the nanofluid modelling, the Tiwari-Das model [20] is employed which allows 
different concentrations (volume fraction) and types of metallic nano-particles. In ANSYS, this 
�D�S�S�U�R�D�F�K���L�V���L�P�S�O�H�P�H�Q�W�H�G���D�V���D���³one-phase flow�´���P�R�G�L�I�L�F�D�W�L�R�Q��since the particles are very small. 
A nanofluid is defined in the ANSYS FLUENT workbench as a new fluid with a new density, 
viscosity, thermal conductivity and specific heat obtained as a function of a base fluid and 
nano-particle type and concentration (volume fraction), according to Brinkman [52], as used 
in [20]. The volume fraction can be estimated from 

�� L
�t�d�f

�t�d
     (9) 

The dynamic viscosity can be estimated from 

�J�•� ̂L
�œ�d

�:�5�?�®�;�.�ä�1
     (10) 

The effective density and heat capacity also can be estimated from 
�O�•� ̂L �:�sF �� �;�O� ̂E�� �O�•��    (11) 

���’�•�ˆ L
�:�5�?�®�;�:�¡�G�n�;�d�>�®�:�¡�G�n�;

�q�¡�l�d
    (12) 

The effective thermal conductivity of fluid can be determined by the Maxwell-Garnet relation 
which is adopted in Tiwari and Das [20].  

�O�l�d

�i�d
L

�i�q�>�6�i�d�?�6�®�:�i�d�?�i�q�;

�i�q�>�6�i�d�?�®�:�i�d�?�i�q�;
     (13) 

Here, knf =nanofluid thermal conductivity, kf = fluid thermal conductivity and kS = nanoparticle 
thermal conductivity. All calculated nanofluid properties (for the three different metallic nano-
particles studied i.e. copper oxide, aluminium oxide and titanium oxide) are shown in the 
Appendix. 

The transport equations (mass, momentum and energy) with nanofluid properties are solved 
subject to the boundary conditions in ANSYS FLUENT. 

At the inlet: Volume flow rate inlet of 0.002 kg/s 

At the outlet: Zero pressure outlet from one face. 

Heat flux: Heat is added as the sun radiation intensity of 877 w/m2 in solar load model. 

The following volume fractions are considered each for the CuO, Al2O3 and TiO2 nanofluids. 
0.01wt%, 0.05wt%, 0.1 wt%. In ANSYS FLUENT physics, gravity is set as 9.81 m/s2. 

3. Ansys fluent grid sensitivity analysis  
The annular solar collector mesh used a combination of unstructured grids (inner tube) and a 
structure grid (annulus) as shown in Figure 2. Hexahedral ���³�K�H�[�´�����H�O�H�P�H�Q�W�V�����I�L�Q�L�W�H���Y�R�O�X�P�H�V����
are used in this simulation, as the hex mesh can provide the same resolution of the flow physics 
as tetrahedron mesh but with significantly fewer elements required. It is also important that the 
model does not contain any sliding mesh as this is not compatible with the solar load model. 

Figure 3 illustrates the cross-section of the solar collector with mesh details. Figure 4 shows 
the grid sensitivity analysis. The largest elements used in case one can be considered as a coarse 
mesh with 103068 elements. On increasing the number of elements by 100000 (case two), the 
graph shows a variation indicating that the simulation is not convergent. Even though the 
difference between these two results is very small, nevertheless the heat convection is very 
sensitive to heat flux and cannot be ignored. The next part of the grid dependent study covers 
cases three, four and five. However, there is still some difference between the results of case 
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three and four. Further mesh refinement is therefore necessary and requires increasing the 
number of elements. Due to the limitation of student version of ANSYS software, the 
maximum number of elements available are 500,000. This forces the grid sensitivity study to 
stop at case five. Upon observation of cases four (325951 elements) and five (448836 
elements), these cases utilize a fine mesh, where the difference between the two values are 
infinitesimal and hence considered negligible. This shows that the simulation is convergent at 
case four with 448836 elements. This grid-independence study provides an appropriate grid 
size (case four) which is subsequently adopted for all further simulations and is of sufficient 
quality to guarantee mesh-independent and converged results i.e. the most accurate results 
possible with the minimum number of elements.  

 
Figure 2. ANSYS FLUENT 3-dimensional mesh of solar configuration (Mesh density Nodes: 479188, elements: 

443970). 

 
Figure 3. ANSYS FLUENT cross-sectional meshing details. 

4. ANSYS FLUENT SIMULATION RESULTS  
In the ANSYS simulations, Tw is the pipe wall temperature at a given location along the pipe 
and Tm is the mean temperature in the pipe at the location where Tw is defined. The ANSYS 
FLUENT results are depicted in Figures 5-13. Three different sets of results are visualized for 
the three metallic nano-particle cases i.e. Copper oxide, Aluminium oxide and Titanium oxide. 
In each of these three nanofluid cases, three different volume fractions are studied. Therefore 
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9 sets of computations are presented, three each for each different metallic nano-particle 
studied. We consider each set of three in turn. Volume fractions examined are �I = 0.01, 0.05 
and 0.1 i.e. 1%, 5% and 10%. Each set of figures illustrates respectively the temperature, 
temperature cross-section slice views, velocity and pressure distributions.  

 

Figure 4. ANSYS FLUENT grid independence study. 

Figures 5a-d to Figures 7a-d correspond to the Copper oxide case. Figures 5a-d correspond to 
�I = 0.01, Figures 6a-d to �I = 0.05 and Figures 5a-d to �I =0.1 respectively. To gain a perspective 
of the influence of volume fraction, one has to compare the respective plots with each other i.e. 
Figures 5a, 6a and 7a consider the temperature contours for copper oxide nanofluid with the 
three different volume fractions. Similarly, we compare Figures 5b, 6b and 7b (temperature 
cross-section slice views), then compare Figures 5c, 6c and 7c (velocity) and finally, Figures 
5d, 6d and 7d (pressure distributions). 

Figures 5a, 6a and 7a show a significant modification in temperature distributions as volume 
fraction is enhanced from �I = 0.01, to �I = 0.05 and finally �I =0.1. There is progressive heating 
from the base upwards of the annular region with increasing volume fraction. The blue zones 
are progressively eliminated, and green zones (higher temperature) extend further towards the 
upper adiabatic end. Red (maximum temperature zones) begin to appear at the highest volume 
fraction (Figure 7a). The increase in concentration of metallic nano-particles clearly enhances 
thermal conductivity of the nanofluid in the annular region and this intensifies thermal diffusion 
and heat transfer. Figures 5b, 6b and 7b (temperature cross-section slice views) provide a 
clearer visualization of the temperature at distinct locations in the annular space from the base 
of the solar collector to the top end (adiabatic end). There is a systematic evolution in contours. 
For the lowest volume fraction case, generally blue and green contours are prevalent (low 
temperatures) for the majority of the annular length. As volume fraction is increased, yellow 
and red zones are generated and become intensified towards the upper region of the annulus. 
Evidently therefore the enhancement in thermal conductivity encourages thermal diffusion and 
mobilizes a heating in the annulus indicating that more solar energy is captured, and that 
thermal efficiency is boosted (solar flux is fixed although it may be varied in the ANSYS 
specification). The presence of metallic nano-particles achieves an elevation in interfacial 
thermal conductivity and even in the absence of buoyancy forces (forced convection is 
considered) encourages significantly thermal absorption. These patterns are consistent with 
numerous other studies on metallic nanofluids including Moghadam et al. [53] and Maddah et 
al. [54]. Figures 5c, 6c and 7c illustrate the evolution in velocity through the annular space. A 
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less tangible influence is computed with increasing volume fraction. In all case high velocity 
zones arise at the inlet and outlet with slower zones in the interim sections. The primary 
influence on velocity is via the viscosity modification in the Tiwari-Das model. Although there 
is a slight intensification in velocity i.e. flow acceleration at the highest volume fraction (Figure 
7c), this is only identified in the extremity zones of the annular geometry. Finally, pressure 
distributions are depicted in Figures 5d, 6d and 7d. Generally intermediate pressure is clearly 
computed (green zones) through the main body of the annulus at any volume fraction. There is 
a slight pressure drop at the extremities (corresponding to acceleration in the flow); however, 
the dominant influence of metallic nano-particles (copper oxide) is on the temperature field as 
noted earlier in Figures 5a, b, 6a, b and 7a, b. Effectively, the enhanced heat absorbed at high 
volume fraction in the annular nanofluid space is transferred via the inner copper cylinder to 
the central space (pure water) leading to an elevation in solar thermal efficiency. 

 

 

Figure 5a. Temperature Contour for CuO nanofluid, 
�N��� ����������. 

 

Figure 5b. Temperature Contour Cross-sections for 
�&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ����������. 

 

Figure 5c. �9�H�O�R�F�L�W�\���&�R�Q�W�R�X�U�V���I�R�U���&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ��
0.01. 

 

Figure 5d. �3�U�H�V�V�X�U�H���&�R�Q�W�R�X�U�V���I�R�U���&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ��
0.01. 
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Figure 6a. Temperature Contour for CuO nanofluid, 
�N��� ����������. 

 

Figure 6b. Temperature Contour cross sections for 
�&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ����������. 

 

Figure 6c. �9�H�O�R�F�L�W�\���&�R�Q�W�R�X�U�V���I�R�U���&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ��
0.05. 

 

Figure 6d. �3�U�H�V�V�X�U�H���&�R�Q�W�R�X�U�V���I�R�U���&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ��
0.05. 

 

 
Figure 7a. Temperature Contour for CuO nanofluid, 

�N��� ��������. 

 
Figure 7b. Temperature Contour cross sections for 

�&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ��������. 
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Figure 7c. �9�H�O�R�F�L�W�\���&�R�Q�W�R�X�U�V���I�R�U���&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ��

0.1. 

 
Figure 7d. �3�U�H�V�V�X�U�H���&�R�Q�W�R�X�U�V���I�R�U���&�X�2���Q�D�Q�R�I�O�X�L�G�����N��� ��

0.1. 

Figures 8a-d to Figures 10a-c correspond to the Aluminium oxide nanofluid case, again at three 
different values of nano-particle volume fraction, viz �I = 0.01, �I = 0.05 and �I =0.1 respectively. 
Figures 8a, 9a, and 10a show a significant modification in temperature distributions as volume 
fraction is enhanced from �I = 0.01, to �I = 0.05 and finally �I =0.1. At lower volume fractions, 
there is a dominant blue zone throughout the main annular space with weak peripheral green 
zones (low temperatures). However, for the highest volume fraction, (Figure 10a) there is a 
marked growth in the green zone and emergence of yellow and very small red zones at the 
lower zone in the annulus, indicating that temperatures are increased, albeit weakly. 
Temperatures are, however, not as high as in the copper oxide cases (Figures. 5a, 6a and 7a) 
and this is probably attributable to the lower thermal conductivity of aluminium oxide 
compared with copper oxide. Inspection of the temperature cross-sections (Figures 8b, 9b and 
10b) confirms the intensification in temperatures, in particular, near the periphery of the glass 
tube in the upper zone of the annulus with an increase in volume fraction. Progressively we 
observe the emergence of yellow zones in the later cross-sections at �I =0.1 which are absent at 
lower volume fractions. Darker blue and green zones vanish with stronger aluminium oxide 
nano-particle concentrations. However again there are lower temperatures achieved at the 
equivalent volume fraction for aluminium oxide compared with copper oxide (Figures 5b, 6b, 
7b). Velocity is initially observed to be increased somewhat (Figures 8c, 9c) with increase in 
volume fraction from �I = 0.01 to �I = 0.05, especially in the inlet and outlet zones (blue slow 
zones are phased out with higher velocity green zones); however, with further elevation in 
volume fraction (Figure 10c) the trend is inhibited and there is a slight deceleration in flow 
near the upper zone of the annulus (inlet) and the re-emergence of blue zones. Negligible 
alteration in pressure is computed with an increase in volume fraction from �I = 0.01 to �I = 0.05 
(Figures 8d and 9d) and further numerical experiments revealed that greater volume fractions 
of aluminium oxide nano-particles to do not instigate any significant modification in pressure 
distributions. 
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Figure 8a. Temperature Contour for Al2O3 nanofluid, 
�N��� ����������. 

 

Figure 8b. Temperature Contour cross sections for 
Al 2O3 �Q�D�Q�R�I�O�X�L�G�����N��� ����������. 

 

Figure 8c. Velocity Contours for Al2O3 �Q�D�Q�R�I�O�X�L�G�����N��
= 0.01. 

 

Figure 8d. Pressure Contours for Al2O3 �Q�D�Q�R�I�O�X�L�G�����N��
= 0.01. 

       

 

Figure 9a. Temperature Contours for Al2O3 
�Q�D�Q�R�I�O�X�L�G�����N��� ������������ 

 

Figure 9b. Temperature Contour cross sections for 
Al 2O3 �Q�D�Q�R�I�O�X�L�G�����N��� ������������ 
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Figure 9c. Velocity Contours for Al2O3 �Q�D�Q�R�I�O�X�L�G�����N��
= 0.05. 

 
Figure 9d. Pressure Contours for Al2O3 �Q�D�Q�R�I�O�X�L�G�����N��

= 0.05. 

 

 

 

Figure 10a. Temperature Contours for Al2O3 
�Q�D�Q�R�I�O�X�L�G�����N��� ��������. 

 
Figure 10b. Temperature Contour cross sections for 

Al 2O3 �Q�D�Q�R�I�O�X�L�G�����N��� ��������. 

 

Figure 10c. Velocity Contours for Al2O3 �Q�D�Q�R�I�O�X�L�G�����N��� ��������. 
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Figures 11a-d to Figures 13a-d correspond to the Titanium oxide nanofluid case, again at three 
different values of nano-particle volume fraction, viz �I = 0.01, �I = 0.05 and �I =0.1 respectively.  
Figures 11a, 12a and 13a show a significant increase in temperature magnitudes as volume 
fraction is enhanced from �I = 0.01, to �I = 0.05 and finally �I =0.1. At lower volume fractions, 
there is a prevalent blue zone (lowest temperatures) throughout the majority of the annulus 
with subsequent green zones (intermediate temperatures) as we approach the upper end and 
lower peripheral yellow zones (higher temperatures). However, as volume fraction is increased, 
(Figure 12a) there is a marked development in the green zone which extends further towards 
the upper end and a thickening in the yellow peripheral streaks with some presence of high 
temperature (red micro-zones at the base of the annulus). The temperatures are further 
increased for maximum volume fraction (Figure 13a) and the green zone extends yet further 
upwards with some yellow areas at the tube walls. The temperature magnitudes exceed those 
computed at the same values of volume fraction for Aluminium oxide (Figures 8a, 9a, 10a) but 
are substantially lower than those obtained for Copper oxide (Figures 6a, 6a, 7a). This confirms 
the superior performance of Copper oxide in achieving thermal enhancement in the solar 
annular collector. Figures 11b, 12b and 13b (temperature cross-section slice views) also show 
that temperatures are markedly enhanced with increasing volume fraction of titanium oxide 
nano-particles, as we progress from the lower end of the annular region to the upper end. 
Stronger red (high temperature) and yellow zones (quite high temperature) appear to grow 
considerably. The magnitudes achieved are larger than those for the Aluminium oxide cases 
(Figures 8b, 9b and 10b). However, they are still somewhat less than those attained for the 
Copper oxide cases (Figures 5b, 6b and 7b). Apparently therefore higher nano-particle 
concentrations (volume fractions) of Copper oxide attain the best thermal performance since 
the best absorption of solar thermal energy is achieved. Intensified thermal convection currents 
are generated for this case. Titanium oxide is the next best option, whereas Aluminium oxide 
is the least successful option. These findings are important since they generalize previous 
studies in which a single metallic nano-particle was examined e.g. Copper oxide by Moghadam 
et al. [53] or two metallic nanofluids (silver oxide and aluminium oxide) by Maddah et al. [54]. 
Figures. 11c, 12c and 13c visualize the velocity contours again for three different volume 
fractions. No substantial modification is generated in the velocities for the Titanium oxide case.  
Finally, pressure distributions are depicted in Figures 11d, 12d and 13d and it is evident that 
no tangible change arises in the pressure field with a change in volume fraction of titanium 
oxide nano-particles, concurring with the observations of Maddah et al. [54]. Finally, in Figure 
14 we have presented residual iterations for the ANSYS FLUENT simulations for a sample 
case (Aluminium Oxide) indicating how excellent convergence is achieved and good accuracy 
is maintained.  
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Figure 11a. Temperature Contours for TiO2 

�Q�D�Q�R�I�O�X�L�G�����N��� ����������. 

 
Figure 11b. Temperature Contour cross sections for 

TiO2 �Q�D�Q�R�I�O�X�L�G�����N��= 0.01. 

 
Figure 11c. Velocity Contours for TiO2 �Q�D�Q�R�I�O�X�L�G�����N��

= 0.01. 

 
Figure 11d. Pressure Contours for TiO2 �Q�D�Q�R�I�O�X�L�G�����N��

= 0.01. 

 

 

 

Figure 12a. Temperature Contours for TiO2 
�Q�D�Q�R�I�O�X�L�G�����N��� ����������. 

 
Figure 12b. Temperature Contours cross sections for 

TiO2 �Q�D�Q�R�I�O�X�L�G�����N��� ����������. 
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Figure 12c. Velocity Contours for TiO2 �Q�D�Q�R�I�O�X�L�G�����N��
= 0.05. 

 
Figure 12d. Pressure Contours for TiO2 �Q�D�Q�R�I�O�X�L�G�����N��

= 0.05. 

 

 

Figure 13a. Temperature Contours for TiO2 
�Q�D�Q�R�I�O�X�L�G�����N��� ��������. 

 

Figure 13b. Temperature Contour cross sections for 
TiO2 �Q�D�Q�R�I�O�X�L�G�����N��� ��������. 

 

Figure 13c. Velocity Contours for TiO2 �Q�D�Q�R�I�O�X�L�G�����N��
= 0.1. 

 

Figure 13d. Pressure Contours for TiO2 �Q�D�Q�R�I�O�X�L�G�����N��
= 0.1. 
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Figure 14. Residual iterations for ANSYS FLUENT simulation (TiO2 �Q�D�Q�R�I�O�X�L�G�����N��� ����������. 

5. Conclusions 
A computational simulation has been presented for forced convective heat transfer in an 
annular pipe solar collector system under solar radiative heat flux. ANSYS FLUENT 18.1 
computational fluid dynamics software has been employed to analyse the three-dimensional 
steady-state incompressible laminar flow comprising water-based nanofluid containing a 
variety of metallic nano-particles (copper oxide, aluminium oxide and titanium oxide nano-
particles). The Tiwari-Das model which utilizes the Maxwell-Garnett approach has been 
employed to simulate nanoscale effects. This model provides accurate expressions for thermal 
conductivity, specific heat capacity and viscosity of the nanofluid suspensions as a function of 
solid nano-particle volume fraction and is easily implemented in the FLUENT material physics 
�R�S�W�L�R�Q�� ���X�Q�G�H�U�� �³�R�Q�H-�S�K�D�V�H�� �I�O�R�Z�´��. Radiative heat transfer has been included via the ANSYS 
solar flux and Rosseland radiative models. Mesh-independence tests have been included. The 
influence of volume fraction on temperature, temperature cross-sections, velocity and pressure 
contours has been computed. The present analysis has shown that: 

(i) Copper oxide nanofluid is observed to achieve the best temperature enhancement. 
Temperature contours at cross-sections of the annulus are also computed.  

(ii)  Titanium���2�[�L�G�H�� �D�F�K�L�H�Y�H�V�� �K�L�J�K�H�U�� �W�H�P�S�H�U�D�W�X�U�H�V�� �W�K�D�Q�� �$�O�X�P�L�Q�L�X�P�� �2�[�L�G�H�� �E�X�W�� �V�L�J�Q�L�I�L�F�D�Q�W�O�\��
�O�R�Z�H�U���W�H�P�S�H�U�D�W�X�U�H�V���W�K�D�Q���&�R�S�S�H�U���2�[�L�G�H�� 

(iii)  Temperature���F�U�R�V�V���V�H�F�W�L�R�Q�V�� �H�[�K�L�E�L�W�� �V�L�J�Q�L�I�L�F�D�Q�W���H�Q�K�D�Q�F�H�P�H�Q�W���L�Q�� �P�D�J�Q�L�W�X�G�H�V�� �Z�L�W�K�� �Y�R�O�X�P�H��
�I�U�D�F�W�L�R�Q���I�R�U���D�O�O���W�K�U�H�H���P�H�W�D�O�O�L�F���Q�D�Q�R���S�D�U�W�L�F�O�H�V�����D�O�W�K�R�X�J�K���W�K�H���E�H�V�W���S�H�U�I�R�U�P�D�Q�F�H���D�J�D�L�Q���L�V���Z�L�W�K��
�&�R�S�S�H�U���2�[�L�G�H�� 

(iv) There is flow acceleration for the Copper oxide case at the highest volume fraction although 
it is confined to the extremity zones of the annular geometry (inlet and outlet).  

(v) Velocities are initially increased with volume fraction for the Aluminium Oxide case but 
subsequently with maximum volume fraction they are reduced. 

(vi) ���3�U�H�V�V�X�U�H�V���D�U�H���D�O�V�R���U�H�G�X�F�H�G���V�R�P�H�Z�K�D�W���Z�L�W�K���L�Q�F�U�H�D�V�L�Q�J���Y�R�O�X�P�H���I�U�D�F�W�L�R�Q���I�R�U���W�K�H���&�R�S�S�H�U���R�[�L�G�H��
�F�D�V�H���D�Q�G���Q�R�W���D�O�W�H�U�H�G���V�L�J�Q�L�I�L�F�D�Q�W�O�\���I�R�U���H�L�W�K�H�U���7�L�W�D�Q�L�X�P���2�[�L�G�H���R�U���$�O�X�P�L�Q�L�X�P���2�[�L�G�H���F�D�V�H�V�� 

The present study constitutes the first of a more general examination of annular nanofluid solar 
direct absorption collectors. Currently experiments are being designed in the Thermofluid 
�'�\�Q�D�P�L�F�V���/�D�E�R�U�D�W�R�U�\���D�W���W�K�H���8�Q�L�Y�H�U�V�L�W�\���R�I���6�D�O�I�R�U�G�¶�V���0�H�F�K�D�Q�L�F�D�O���D�Q�G���$�H�U�R�Q�D�X�W�L�F�D�O���(�Q�J�L�Q�H�H�U�L�Q�J��
Department, to provide a compliment to the computational simulations and efforts in this 
regard will be communicated in the near future. Furthermore, alternative radiative heat transfer 
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models are being explored in ANSYS multi-physics and inclination of the annular solar 
collector is also an aspect of interest for future investigations. 

 

Appendix -Nanofluid Properties 
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