Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media: stability analysis
Gupta, Y, Rana, P, Beg, OA and Kadir, A
10.22055/JACM.2019.30144.1689

Title: Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media: stability analysis
Authors: Gupta, Y, Rana, P, Beg, OA and Kadir, A
Type: Article
URL: This version is available at:
http://usir.salford.ac.uk/id/eprint/51989/
Published Date: 2020

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Multiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis

Yogesh Gupta¹, Puneet Rana¹, Osman Anwar Bég², Ali Kadir³

¹Assistant Professor, Department of Mathematics, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307, Uttar Pradesh, India, Email(s): yogesh.gupta@jiit.ac.in, puneet.rana@jiit.ac.in
²Professor, Aeronautical and Mechanical Engineering, School of Computing, Science & Engineering, University of Salford, Newton Building, M54WT, UK. Email: o.a.beg@salford.ac.uk
³Senior Lecturer, Petroleum and Gas Engineering, School of Computing, Science & Engineering, University of Salford, Newton Building, M54WT, UK. Email: a.kadir@salford.ac.uk

Abstract. In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are also included. The numerical results show the existence of two branches of the solution for a selected range of the governing parameters. The physical significance of both branches of solutions is ensured by performing a stability analysis in which a linearized eigenvalue problem is solved. The multiple regression analysis with the help of MATLAB LinearModel.fit package has also been conducted to estimate the dependence of the parameters on Nusselt number.

Keywords: MHD, Nanofluid, Shrinking sheet, Dual solutions, Porous medium, Eigenvalues.

1. Introduction

Motivated by many industrial applications such as in materials and polymer processing, in the manufacturing of glass sheets and paper, in textile industries and many others, stretching and shrinking surfaces have gained so much interest among researchers. An early analysis of boundary layer flow over a stretching surface was presented by Crane [1]. In recent years, much attention has been paid to investigate fluid flow over a shrinking surface [2]. Fang [3] has studied the boundary layer flow over a nonlinear shrinking sheet. Fang and Zhang [4] derived exact solutions for magnetohydrodynamic flow over a shrinking sheet and investigated the range of magnetic field and suction parameters for the existence of the solutions whereas nonlinear study has been reported by Javed et al. [5]. The work has been extended to nanofluid after 2006 when the Buongiorno [6] formulated a new mathematical model for study transport phenomena in nanofluids. The extension has been reported by Rohni et al. [7], Zaimi et al. [8], Naramgari and Sulochana [9] on nanoparticle effects on shrinking sheet problem.

The no-slip boundary conditions are sometimes unrealistic and the above sources utilized the no-slip condition. However, partial slip between the fluid and moving surface (stretching/shrinking) sheet should not be neglected in case of nanoparticles. Uddin et al. [10] have investigated slip flow induced by a nanofluid sheet along with the impact of thermal radiation. Singh and Chamkha [11] analyzed vertical shrinking sheet with consideration of second-order slip.
Many researchers have extended this work to nanofluid for various configurations utilizing the magnetic field (Hsiao [12-15], Waqas et al. [16-17], Dhanai [18]), non-Newtonian base fluid (Rao et al.[19], Siavashi et al. [20], Dhanai et al.[21]), porous media (Izadi et al.[22], Bég et al.[23]), Entropy generation minimization (Rashid et al. [24], Khan et al. [25], Shukla et al. [26], Rana et al. [27], Rana et al. [28]) and the other possible extensions i.e. in Cattaneo-Christov (CC) heat flux with variable boundary layer thickness, heat source/sink and chemical reaction [29-33].

A new branch of the solution is reported in different boundary layer flow problem especially in shrinking surfaces with suction and non-unique solutions have been documented to specific ranges of governing parameters. Considering the slip effects, Ghosh et al. [34] and Rana et al. [35] reported the two branches of the solution with suction parameter without and with nanoparticles respectively. In porous, Merkin [36] studied the mixed convection and revealed the existence of multiple branches which later extended with slip conditions and Brinkman model assumption by Harris et al. [37]. The critical points (turning points) along with multiple solutions and stability analysis is investigated in different problems numerically using MATLAB building bvp4c solver (Awaludin et al. [38], Yasin et al. [39]) RKF-shooting method (Rana et al. [40-41]), homotopy analysis method (Rana et al. [42-43]) etc. The stability of results by constructing the eigenvalue problem predicts the physical realizable upper branch and non-realizable lower branch.

To the author’s best of knowledge, the present study which predicts the multiple solutions in transport phenomena of electrically-conducting nanofluid over a permeable shrinking sheet in a porous medium with partial slip has not been reported so far. The stability analysis for physical realizable branch and regression analysis (stable branch) is also performed. Multiple Regression Analysis (MRE) with the goodness of fit, is also shown for the upper branch for different sets of parameters.

Fig. 1. Physical model and coordinate system

2. Nanofluid Modeling

Buongiorno’s nanofluid 2D flow model for uniform porous bed is considered with flow induced by a permeable stretching/shrinking sheet taken along the x-axis (Fig. 1). The sheet shrinks with linear velocity $\tilde{u}_w = \chi U$ and $U = a\tilde{x}$ where a is positive constant and $\chi = \pm 1$ (stretching/shrinking). The wall mass transfer velocity is w_v such that only suction ($w_v < 0$) is considered here. A uniform magnetic field B is assumed to be imposed transverse to the plane of the hot sheet having a temperature of $T_e = T_{\infty} + AX^2$ and $T_{\infty} = DX^2$ is the temperature at the free stream where A and D are constant. Nanoparticle concentration at the sheet is controlled by a new revised boundary condition [18]. Darcy’s law with viscous dissipative heat is employed for the porous medium. Under these assumptions, the boundary layer equations may be written following [19]-[21] as:

$$\frac{\partial \tilde{u}}{\partial \tilde{x}} + \frac{\partial \tilde{v}}{\partial \tilde{y}} = 0$$

$$\tilde{u} \frac{\partial \tilde{u}}{\partial \tilde{x}} + \tilde{v} \frac{\partial \tilde{u}}{\partial \tilde{y}} = \nu \left(\frac{\partial^2 \tilde{u}}{\partial \tilde{y}^2} - \frac{\sigma_{nf} B^2}{\rho_{nf} \mu} \right) \tilde{u}$$

$$(\rho c)_m \left(\tilde{u} \frac{\partial \tilde{T}}{\partial \tilde{x}} + \tilde{v} \frac{\partial \tilde{T}}{\partial \tilde{y}} \right) = k_{nf} \left[\frac{\partial^2 \tilde{T}}{\partial \tilde{y}^2} + \frac{\rho c)_m}{D_T} \left(\frac{\partial \tilde{C}}{\partial \tilde{y}} \right) \left(\frac{\partial \tilde{T}}{\partial \tilde{y}} \right) + \frac{\mu}{\kappa} \tilde{u} \tilde{v} + \frac{\mu}{\rho_{nf} k_{nf}} \frac{\partial \tilde{T}}{\partial \tilde{y}} \right]$$

$$\tilde{u} \frac{\partial \tilde{C}}{\partial \tilde{x}} + \tilde{v} \frac{\partial \tilde{C}}{\partial \tilde{y}} = D_e \frac{\partial^2 \tilde{C}}{\partial \tilde{y}^2} + D_r \frac{\partial^2 \tilde{T}}{\partial \tilde{y}^2}$$

The imposed boundary conditions at the wall (sheet) and freestream are:

\[
\begin{align*}
\hat{u} &= -\overline{u}_w + \overline{u}_d, \quad \hat{v} = \overline{v}_w, \quad \hat{T} = \overline{T}_w + \overline{T}_d, \quad D_u \frac{\partial \overline{C}}{\partial y} + \frac{D_v}{\overline{T}_w} \frac{\partial \overline{T}}{\partial y} = 0 \quad \text{at} \quad \hat{y} = 0 \\
\hat{u} &= 0, \quad \hat{v} = 0, \quad \hat{T} = \overline{T}_\infty, \quad \hat{C} = \hat{C}_\infty \quad \text{as} \quad \hat{y} \to \infty
\end{align*}
\]

(5a)

(5b)

where \(\hat{u} \) and \(\hat{v} \) are the velocity components in the \(\hat{x} \) and \(\hat{y} \)-directions respectively, subscript \(nf \) is for nanofluids, the rest parameters have their usual meanings.

\[
\eta = \frac{y}{v_{ns}}, \quad \hat{u} = \alpha f(\eta), \quad \hat{v} = -\sqrt{\alpha v_{ns}} f(\eta), \quad \theta(\eta) = \frac{\hat{T} - \overline{T}_w}{\overline{T}_w - \overline{T}_\infty}, \quad \phi(\eta) = \frac{\hat{C} - \overline{C}_w}{\overline{C}_\infty}
\]

(6)

Equation (1) is thereby satisfied automatically and the governing Eqs. (2)-(4) transform to the following system of coupled, nonlinear, ordinary differential equations:

\[
\frac{d^3 f}{d\eta^3} + f \frac{d^2 f}{d\eta^2} - \left(\frac{df}{d\eta} + (M^2 + P) \right) \frac{df}{d\eta} = 0
\]

(7)

\[
\frac{1}{Pr} \frac{d^2 \theta}{d\eta^2} + Nb \frac{d\theta}{d\eta} \frac{df}{d\eta} + Nt \left(\frac{d\theta}{d\eta} \right)^2 + f \frac{d\theta}{d\eta} - 2 \frac{df}{d\eta} \theta + Ec \left(\frac{d^2 f}{d\eta^2} \right)^2 + P \left(\frac{df}{d\eta} \right)^2 = 0
\]

(8)

\[
\frac{d^2 \phi}{d\eta^2} + Sc \frac{d\phi}{d\eta} + Nt \frac{d^2 \theta}{Nb \eta^2} = 0
\]

(9)

The transformed boundary conditions assume the form:

\[
f(0) = \beta, \quad \frac{df}{d\eta} \bigg|_{\eta=0} = \chi + \frac{d^2 f}{d\eta^2} \bigg|_{\eta=0}, \quad \theta(0) = 1 + \delta \frac{d\theta}{d\eta} \bigg|_{\eta=0}, \quad Nb \frac{d\phi}{d\eta} \bigg|_{\eta=0} + Nt \frac{d^2 \theta}{Nb \eta^2} \bigg|_{\eta=0} = 0,
\]

(10)

Here prime denotes the differentiation with respect to \(\eta \) only and the emerging dimensionless thermo-physical parameters are defined as follows:

\[
M = \sqrt{\sigma_{ns} B^2 / \alpha n_{ns}} \quad \text{(magnetic field parameter),} \\
P = \mu / \alpha n_{ns} \quad \text{(permeability parameter),} \\
Pr = \nu / \alpha n_{ns} \quad \text{(Prandtl number),} \\
Sc = \nu_{ns} / D_u \quad \text{(Schmidt number),} \\
Ec = a^2 / \alpha A \quad \text{(Eckert number),} \\
Nb = (\rho c)_p D_L C_{\infty} / (\rho c)_d \quad \text{(Brownian motion parameter),} \\
Nt = (\rho c)_p D_L (\overline{T}_w - \overline{T}_\infty) / (\rho c)_d \quad \text{(thermophoresis parameter),} \\
\lambda = L \sqrt{a / \nu_{ns}} \quad \text{(velocity slip parameter),} \\
\delta = L \sqrt{a / \nu_{ns}} \quad \text{(thermal slip parameter).}
\]

The important physical quantities are skin friction \(C_f \) and local Nusselt number \(Nu_c \) which are defined as follows:

\[
C_f \quad \text{and local Nusselt number} \quad Nu_c \quad \text{which are defined as follows:}
\]

(11)

where \(Re = u_x / \nu_{ns} \) is local Reynolds number.

The closed-form analytical solution of Eq. (7) (shrinking sheet) can be assumed to be a form of \(f(\eta) = A + B \exp(-C \eta) \) using the first three boundary conditions of Eq. (10). After substituting this relation in Eq. (7), we get

\[
A = \beta - B, \quad B = 1/(C + AC^2) \quad \text{where the value of} \ C \ \text{can be obtained from the positive roots of the following cubic equation,}
\]

\[
AC^3 + (1-\beta)C^2 - (\beta + \lambda(M^2 + P_c)C + 1-M^2-P_c = 0
\]

(12)

Without slip conditions \((\lambda = 0) \), the above equation takes quadratic form and the solution is given by:

\[
C = \frac{\beta \pm \sqrt{\beta^2 - 4(1-M^2-P_c)}}{2} \quad \text{which} \ \beta^2 > 4(1-M^2-P_c) \quad \text{for multiple solutions}
\]
If $\beta^2 < 4(1 - M^2 - P)$ then there will be no solution and unique solution for $\beta^2 = 4(1 - M^2 - P)$. Hence, the exact solution takes the following form:

$$f(\eta) = \beta - \frac{1}{\beta \pm \sqrt{\beta^2 - 4(1 - M^2 - P)}} \eta + \frac{1}{\beta \pm \sqrt{\beta^2 - 4(1 - M^2 - P)}} \exp(-\frac{\beta \pm \sqrt{\beta^2 - 4(1 - M^2 - P)}}{2}) \eta)$$

(13)

$$f'(\eta) = -\exp(-\frac{\beta \pm \sqrt{\beta^2 - 4(1 - M^2 - P)}}{2})$$

(14)

3. Flow Stability Analysis

To test the stability of the steady flow solution satisfying the bvp (7)-(9), we write, following [18], [21]:

$$\eta = \frac{a}{v_{nf}} \dot{y}, \ u = a \ddot{x} \frac{\partial f(\eta, \tau)}{\partial \eta}, \ v = -\sqrt{a \nu_{nf}} f(\eta, \tau), \ \tau = at, \ \theta(\eta, \tau) = \frac{T - T_{\infty}}{T_{\infty} - T_{\infty}}, \ \phi(\eta, \tau) = \frac{C - C_{\infty}}{C_{\infty}}$$

(18)

It follows that Eqs. (15)-(17) can be written as:

$$\frac{\partial f}{\partial \eta} + f \frac{\partial f}{\partial \tau} - \left(\frac{\partial f}{\partial \eta} \right)^2 - (M^2 + P) \frac{\partial \theta}{\partial \tau} - \frac{\partial f}{\partial \tau} = 0$$

(19)

$$\frac{\partial^2 \theta}{\partial \eta^2} + Nb \frac{\partial \theta}{\partial \eta} + Pr \left[Ec \left(\frac{\partial f}{\partial \eta} \right)^2 + P_e \left(\frac{\partial \theta}{\partial \eta} \right)^2 + f \frac{\partial \theta}{\partial \eta} - 2 \frac{\partial f}{\partial \eta} \frac{\partial \theta}{\partial \tau} \right] = 0$$

(20)

$$\frac{\partial^2 \phi}{\partial \eta^2} + Sc \frac{\partial \phi}{\partial \eta} + Pr \frac{\partial \phi}{\partial \eta} \frac{\partial \theta}{\partial \tau} = 0$$

(21)

The associated transformed boundary conditions are:

$$f(0, \tau) = \beta, \ \frac{\partial f}{\partial \eta}(0, \tau) = \chi, \ \frac{\partial \theta}{\partial \eta}(0, \tau) = \delta, \ \frac{\partial \phi}{\partial \eta}(0, \tau) = \theta(0, \tau) = 1 + \delta \frac{\partial \theta}{\partial \eta}(0, \tau), \ Nb \frac{\partial \phi}{\partial \eta}(0, \tau) + Pr \frac{\partial \theta}{\partial \eta}(0, \tau) = 0$$

(22)

as $\eta \to \infty$, $\frac{\partial f}{\partial \eta}(\eta, \tau) = 0, \ \theta(\eta, \tau) = 0, \ \phi(\eta, \tau) = 0$.

To test the stability of the steady flow solution satisfying the bvp (7)-(9), we write, following [18], [21]:

$$X(\eta, \tau) = X_0(\eta) + e^{-\eta\tau}Y(\eta, \tau)$$

(23)

where $Y = P, Q$ and R are small disturbances relative to $X_0 = f_o, \theta_o$ and ϕ , respectively and α is eigenvalue. Substituting Eqn. (23) into Eqs. (19)-(22), we obtain the following linearized eigenvalue problem:

$$P''_o + f_o P''_o + f_o P''_o - 2 f_o P''_o - (M^2 + P) P''_o + \alpha P''_o = 0$$

(24)

$$\frac{1}{Pr} \left[Q''_o + Nb \left(\phi Q''_o + \theta'_o R'_o \right) + 2 Nt \theta'_o R'_o + f_o Q'_o + \theta'_o P'_o - 2 \theta'_o P'_o - 2 f'_o Q'_o + Ec \left[2 f'_o P''_o + 2 P, f'_o P''_o \right] + \alpha Q'_o = 0$$

(25)

$$R'' + Sc \left(\phi P''_o + f_o R''_o \right) + \frac{Nt}{Nb} Q''_o + \alpha R''_o = 0$$

(26)
The corresponding boundary conditions:
\[
P_o(0) = 0, \quad P'_o(0) = -\rho \omega \phi \psi'(0), \quad Q_o(0) = \delta Q'_o(0), \quad Nb R'_o(0) + Nt Q'_o(0) = 0
\]
as \(\eta \to \infty, \quad P'_o(\eta) = 0, \quad Q_o(\eta) = 0, \quad R_o(\eta) = 0, \quad \delta \eta \to 0.05(0.05)0.3,\]

\[
\lambda = 3.0 (high value of suction parameter), \quad Pr = 6.8 \quad (water-based nanofluid), \quad Ec = 0.01 (this value is generally very low for boundary layer flow), \quad \lambda = 0.1 (boundary layer slip), \quad \delta = 0.1 (thermal slip) and \quad P = 0.01 (the permeability parameter value is very low). \]

4. Numerical Results and Discussion

The influence of governing parameters on skin friction \(f''(0) \) and the rate of heat transfer at the surface \(\{ -\theta'(0) \} \) are investigated and numerical results [24] are tabulated and presented graphically. The default values of involving parameters are taken as \(\chi = -1 \) (shrinking case), \(M = 0.1 \) (for low magnetic field, <<1 Tesla), \(Ec = 0.01 \) (this value is generally very low for boundary layer flow), \(Pr = 6.8 \) (water-based nanofluid), \(Sc = 10 \) (generally >>1 for nanofluid), \(Nb = Nt = 0.1 \) (value is very less for different nanofluid), \(\lambda = 0.1 \) (boundary layer slip), \(\delta = 0.1 \) (thermal slip) and \(P = 0.01 \) (the permeability parameter value is very low). Dual solutions are considered, therefore solid and dashed lines represent the first and second solution respectively. The numerical results of flow equation for shrinking sheet have been compared with the exact analytical results of Fang and Zhang [4] in Table 1 and the result follows a certain relation (First solution +Second solution=value of suction). In order to verify the results of the thermal equation \(\{ -\theta'(0) \} \), the limiting case is compared with the refs. [44, 45] in Table 2 and a good agreement is reported. We have determined the smallest eigenvalues \(\alpha \) for eigenvalue (EV) problem (Eqs. 24-27) for some values of the thermophysical parameters and results are documented in Table 3 predicts the stable behavior for the upper branch. The numerical results of the local Nusselt number are calculated and presented in Table 4. The different range of numerical values in Table 5, has been explored for both the branches of solution for different sets of slip parameters which also reveals the considerable dependence of Nusselt number (Heat Transfer) on Eckert number. The simple linear multiple regression estimations \(Nur_e \) of the Nusselt number is obtained using \textit{LinearModel.fit} package in MATLAB considering the impact of velocity slip \(\lambda \), thermal slip \(\delta \), Brownian motion parameter \(Nb \) and thermophoresis parameter \(Nt \). Using a total of 576 observations \(\{ \lambda = \delta = 0.05(0.05)0.2, \quad Nb = Nt = 0.05(0.05)0.3 \} \), the linear regression estimations can be as \(Nur_e = Nur + C_1 \lambda + C_2 \delta + C_3 Nb + C_4 Nt \) keeping default values of other parameters. The coefficients of \(Nur_e \) are shown in Table 6 which shows the dominant behavior of thermal slip. Thus, the suitable values of controlling parameters play a key role to understand the transport phenomena in current porous media model. Heat transfer (Nusselt number) is independent of the \(Nb \) and a decreasing function of all the other controlling parameters.

<table>
<thead>
<tr>
<th>Table 1. Comparison of (f''(0)) for shrinking ((\chi = -1)) sheet flow equation (without slip and nanoparticles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Values of ({ -\theta'(0) }) for various values of (Pr) with (\lambda = \delta = 0 = Ec = Sc = \beta = M = 0, \chi = 1, \quad Nb = Nt = 10^{-6}).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pr)</td>
</tr>
<tr>
<td>0.72</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
</tr>
<tr>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Smallest eigenvalues for the upper and lower branch for other default parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda = 0.1)</td>
</tr>
<tr>
<td>(\beta)</td>
</tr>
<tr>
<td>3.0000</td>
</tr>
<tr>
<td>2.0500</td>
</tr>
<tr>
<td>1.9486</td>
</tr>
<tr>
<td>1.8893</td>
</tr>
<tr>
<td>(\lambda = 0.2)</td>
</tr>
<tr>
<td>(\beta)</td>
</tr>
<tr>
<td>3.0000</td>
</tr>
<tr>
<td>2.0500</td>
</tr>
<tr>
<td>1.8232</td>
</tr>
<tr>
<td>1.8129</td>
</tr>
</tbody>
</table>
Table 4. Numerical results of $(-\vartheta'(0))$ for the upper and lower branch with default values

<table>
<thead>
<tr>
<th>Nt</th>
<th>Pr</th>
<th>Upper branch</th>
<th>Lower branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>6.585995</td>
<td>6.525016</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>6.585998</td>
<td>6.514861</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>6.586001</td>
<td>6.349962</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>6.597811</td>
<td>6.526901</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>6.585998</td>
<td>6.514861</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>6.537769</td>
<td>6.465680</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Numerical results for heat transfer $(−\vartheta'(0))$ for different values of slip parameters.

<table>
<thead>
<tr>
<th>λ</th>
<th>δ</th>
<th>$Ec=0.0001$</th>
<th>$Ec=0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Branch</td>
<td>Lower Branch</td>
<td>Upper Branch</td>
<td>Lower Branch</td>
</tr>
<tr>
<td>0 0</td>
<td>18.867346</td>
<td>18.743265</td>
<td>18.771104</td>
</tr>
<tr>
<td>0 0.1</td>
<td>6.582183</td>
<td>6.567448</td>
<td>6.548162</td>
</tr>
<tr>
<td>0 0.2</td>
<td>3.972842</td>
<td>3.967470</td>
<td>3.952321</td>
</tr>
<tr>
<td>0.1 0</td>
<td>18.781777</td>
<td>18.781777</td>
<td>18.622525</td>
</tr>
<tr>
<td>0.1 0.1</td>
<td>6.606917</td>
<td>6.572011</td>
<td>6.585997</td>
</tr>
<tr>
<td>0.1 0.2</td>
<td>3.981773</td>
<td>3.969121</td>
<td>3.969174</td>
</tr>
<tr>
<td>0.2 0</td>
<td>19.216928</td>
<td>18.815031</td>
<td>19.176971</td>
</tr>
<tr>
<td>0.2 0.1</td>
<td>6.622846</td>
<td>6.575940</td>
<td>6.608899</td>
</tr>
<tr>
<td>0.2 0.2</td>
<td>3.987502</td>
<td>3.970543</td>
<td>3.979111</td>
</tr>
</tbody>
</table>

Table 6. Coefficients in Nur_c for default set of other parameters

<table>
<thead>
<tr>
<th>Pr</th>
<th>Nur_c</th>
<th>C_L</th>
<th>C_B</th>
<th>C_B'</th>
<th>C_T</th>
<th>RMSE (ϑ)</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.2959</td>
<td>0.6406</td>
<td>-3.2907</td>
<td>-0.0000</td>
<td>-0.5832</td>
<td>0.022</td>
<td>0.987</td>
</tr>
<tr>
<td>5</td>
<td>9.1229</td>
<td>-0.1085</td>
<td>-28.4184</td>
<td>-0.0036</td>
<td>-0.3822</td>
<td>0.357</td>
<td>0.952</td>
</tr>
<tr>
<td>6.8</td>
<td>11.0802</td>
<td>0.2684</td>
<td>-37.9973</td>
<td>-0.0000</td>
<td>-0.2973</td>
<td>0.564</td>
<td>0.934</td>
</tr>
<tr>
<td>10</td>
<td>13.2495</td>
<td>-0.0331</td>
<td>-48.3577</td>
<td>-0.0180</td>
<td>-0.1517</td>
<td>0.806</td>
<td>0.918</td>
</tr>
</tbody>
</table>

4.1. Effect of velocity slip and suction parameter

The partial slip in the nanofluid flow regime has its own importance due to nanoparticle fluid interaction. The suction parameter sometimes plays a significant role in controlling the heat transfer, thus the impact of these parameters has been explored. Figure 2 illustrates the influence of the velocity slip parameter ($\lambda = \sqrt{\frac{a}{\nu'}}$), on the branches of the solution for stream function. Increasing velocity slip evidently enhances the upper branch solution whereas it diminishes the lower branch solution. Therefore in the absence of velocity (hydrodynamic wall) slip, the upper branch solution is minimized whereas the lower branch solution is maximized for this case. Generally, the upper branch solution exhibits a much steeper gradient near the sheet surface which is smoothed into a plateau as we progress into the boundary layer. The lower branch solution profiles at all velocity slip values are generally monotonic growths from a minimum at the wall (sheet surface) to a maximum in the free stream. Figure 3 depicts the collective effect of velocity slip parameter (λ) and mass transfer parameter (β) i.e. suction parameter on skin friction profiles. It is evident that the mass transfer parameter exert a substantial influence on the existence of dual solutions. With an increase in the velocity slip parameter, both upper and lower branch solutions are decreased. These trends confirm that the wall skin friction is reduced with increasing hydrodynamic slip at the wall. The values of β_c, critical points (turning points) are also decreased from 1.9794 to 1.8182 with the variation of the velocity slip parameter from 0 to 0.2. Beyond the critical points, no solution exists. Even the velocity slip parameter has some impact on heat transfer, which slightly suppresses its value from 5.2319 to 5.1355 (Nearly 1% reduction) shown in Fig. 4.

4.2. Effect of Eckert number and nanofluid parameter (Nt)

The dissipation due to the flow model does play a significant role which can't be neglected in the case of nanoparticles. From the regression analysis, we can interpret the insignificance of Brownian motion towards heat transfer management. So, we have studied the collective influence of Eckert number (Ec) and thermophoresis parameter (Nt) on the temperature evolution in the boundary layer (shown in Fig. 5). Both parameters generally enhance temperature values. Eckert number embodies the quantity of mechanical energy converted to heat via viscous dissipation. The supplementary thermal energy generated clearly heats the boundary layer and enhances temperatures and will also elevate thermal boundary layer thickness. The thermophoresis parameter quantifies the intensity of the thermophoretic migration of nanoparticles. With increasing values of this parameter, thermal diffusion is encouraged in the regime and energizes the flow. In all cases, the temperature profiles exhibit monotonic decay from the wall to the free stream and the variation in values at the wall ($\vartheta=0$) is associated with the non-isothermal conditions prescribed there.
Fig. 2. Upper and lower branches of stream function profiles with different velocity slip.

Fig. 3. Variation of skin friction $f''(0)$ with mass transfer parameter β and velocity slip parameter λ.

Fig. 4. The effects of velocity slip parameter λ and mass transfer parameter β on the rate of heat transfer at the surface $\{-\theta'(0)\}$.
4.3. Effect of thermal slip and suction parameters

The thermal slip parameter is required to properly analyze the realistic situation for heat transfer as the nanoparticles can be used as a controlling agent for many industrial applications. Figure 6 depicts the collective effect of thermal slip parameter, δ and mass transfer parameter, β on the rate of heat transfer at the surface $\{-\theta'(0)\}$. With greater thermal slip (thermal jump at the wall) the surface heat transfer rate is consistently decreased. The upper branch solution always exceeds the lower branch solution. With increasing suction ($\beta > 0$) both upper and lower branch solutions for heat transfer rate are generally elevated. The deceleration in the flow with suction effectively boosts heat transfer to the wall i.e. cools the boundary layer. The wall (sheet surface) is therefore cooled significantly as thermal slip increases (with associated heating of the nanofluid and greater thermal boundary layer thickness). Obviously, thermal slip consideration along with backflow arises due to shrinking sheet, can significantly change the heat transfer.

4.4. Effect of permeability and magnetic parameter

There are many applications related to the nanoparticle flow in porous media that require a detailed analysis of convective heat transfer. The porous media slows down the flow thus have high impact on heat transfer along with Lorentz force due to electrical conducting behavior of nanofluid (ions are the carriers). Even the permeability parameter plays a crucial role while dealing with nanoparticles. Thus, Fig. 7 depicts the variation in heat transfer with permeability parameter P_s, Magnetic parameter (M) which respect to mass transfer parameter. The correct response is therefore associated with the lower branch since greater permeability parameter (inversely proportional to regime permeability) leads to an increase in Darcian body force (porous media impedance) in the regime and this decelerates the flow.
manifesting with lower heat transfer. With increasing magnetic parameter (retarding force), there is an increment in Nusselt number for the upper branch solution whereas there is a decrement in the lower branch solution for Nusselt number. Generally, both solutions are quite sensitive to modification in the permeability parameter and Magnetic parameter. The streamline patterns are shown for different cases of stretching ($\beta = 0$) and shrinking ($\beta = 3$) parameters for default set of parameter in Fig. 8. The lower branch (unstable) shows the abrupt behavior due to higher value of suction which changes the flow motion. The impact is more pronounced with the utilization of nanoparticles.

![Streamline Patterns](image1)

Fig. 7. Variation of heat \(-\theta'(0)\) with permeability parameter P_e and Magnetic field parameter (M).

![Streamline Patterns](image2)

Fig. 8. Streamlines for the default set of parameter otherwise stated on the caption

5. Concluding Remarks

The effects of velocity slip, thermal slip and permeability of porous medium on time-dependent magneto-hydrodynamic over a permeable shrinking sheet have been studied numerically utilizing nanoparticles. A stability analysis is performed on the unsteady version of the transformed equations, and eigenvalues are determined to correspond to stable and unstable solutions. The main findings are listed below:

1. An adequate suction is required at the surface for the existence of both solutions. In the case of a shrinking sheet, the solution may not exist without the suction parameter.
2. The range of solution is increased by applying slip (velocity) condition but the imposition of thermal slip does not improve the range. Thus, the assumption of partial slip entirely changes the transport phenomena in nanofluids.
3. The stability analysis has demonstrated that the first solution is stable and thus physically reliable, while the second solution is not.
4. Skin friction is lower for the velocity slip condition and the wall rate of heat transfer is higher for larger values of the suction parameter in the absence of the thermal slip condition. The application of suction leads to enhancement of wall friction as well as heat transfer for the stable branch.
5. Magnetic field (Lorentz force) and permeability parameter both enhances the heat transfer in nanofluids for stable (realizable branch).
6. Multiple regression estimation (MRE) predicts the impact of important parameters on Nusselt number which shows the insignificance of Brownian motion.

Author Contributions

Y. Gupta planned and initiated the project and suggested the appropriate mathematical model for present nanofluid problem. P. Rana performed the stability analysis and developed the MATLAB codes. O. Anwar Bég conducted the numerical experiments and examined the validation of result. The manuscript was written through the contribution of all authors. All authors discussed the results, reviewed and approved the final version of the manuscript.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The authors received no financial support for the research, authorship and publication of this article.

References

[14] Hsiao, K. L., Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with

ORCid iD

Yogesh Gupta® https://orcid.org/0000-0002-9285-4526

Puneet Rana® https://orcid.org/0000-0002-9850-763X

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).