
������������	�����
���
��
	��
����������

��
���	��
�����	����������
�

�	��
�����������������	�
����������	���������	 �������	����	��	���!

"#$%"&#'(�)�����%#%#�##&

����� ������������	�����
���
��
	��
����������
���
���	��
�����	����������
�

����	
� �	��
�����������������	�
����������	���������	 �������	����	��	���!

��
� ����*��

��� +����,����������	,	��	-���	�.�����.((����$�	�
���$	*$� (��(������(/0&10(

�������������� %#%#

��������	������	��*����*������
���������	�*����������
��������,��������
��	�
���$� 2�����*���������
���
�����
������3��
	����	����������������������������
	���
������	,	��	-����������	���*	��-����	���
��4���	����	���*������
�������*�

��*�	�����,	����������������	�*����������$�5��	���*��* �����

	���*�����
���	���
�������*���������������*�����$

����
������
��
	��������*���������������*��	�����-
����������*����������	��
*���	*�����������������+�	
�	�.� ����6�	�
���$	*$� $

1

�*�O�U�F�M�M�J�H�F�O�U���B�H�F�O�U���G�P�S���G�P�S�N�B�M���N�P�E�F�M�M�J�O�H���P�G���U�F�N�Q�P�S�B�M���N�V�M�U�J���B�H�F�O�U��
�T�Z�T�U�F�N�T

Awais Qasim1, 2*, Zeeshan Aziz2,
Syed Asad Raza Kazmi1,
Adnan Khalid1, Ilyas Fakhir1
and Jawad Hassan3

1Department of Computer Science,
GC University, Lahore, Pakistan.
2School of Science, Engineering
and Environment, University of
Salford, Salford, UK.
3Lahore Garrison University,
Lahore, Pakistan.

*E-mail: awais@gcu.edu.pk

This paper was edited by
Ivan Laktionov.

Received for publication
December 10, 2019.

Abstract

Software systems are becoming complex and dynamic with the
passage of time, and to provide better fault tolerance and resource
management they need to have the ability of self-adaptation. Multi-
agent systems paradigm is an active area of research for modeling
real-time systems. In this research, we have proposed a new agent
named SA-ARTIS-agent, which is designed to work in hard real-time
temporal constraints with the ability of self-adaptation. This agent can
be used for the formal modeling of any self-adaptive real-time multi-
agent system. Our agent integrates the MAPE-K feedback loop with
ARTIS agent for the provision of self-adaptation. For an unambiguous
description, we formally specify our SA-ARTIS-agent using Time-
Communicating Object-Z (TCOZ) language. The objective of this
research is to provide an intelligent agent with self-adaptive abilities
for the execution of tasks with temporal constraints. Previous works
in this domain have used Z language which is not expressive to model
the distributed communication process of agents. The novelty of our
work is that we speci�ed the non-terminating behavior of agents
using active class concept of TCOZ and expressed the distributed
communication among agents. For communication between active
entities, channel communication mechanism of TCOZ is utilized. We
demonstrate the effectiveness of the proposed agent using a real-
time case study of traf�c monitoring system.

Keywords
Formal methods, Self-adaptation, Autonomic computing, Multi-agent
systems, Real-time systems, TCOZ.

Multi-agent system has been an active area of research
for specifying complex and adaptive systems. These
complex and adaptive systems when deployed in a
real-time domain have to work with hard temporal
constraints. An agent is de�ned as a computer
software system which works autonomously in an
environment to achieve its objectives (Jennings
et al., 1998). Such an agent with restrictive timing
constraints is called a real-time agent (RTA). The
correct functioning of these RTA agents does not
solely depend on whether they complete the task
rather than it depends on whether they complete the
task within the deadline or not. Previously, these RTA

agents have been classi�ed as hard real-time agents
and soft real-time agents in the study of Julian and
Botti (2004). In soft real-time agents, there is a slight
marginal period for the ful�llment of their temporal
restrictions. A multi-agent system with at least one
real-time agent is called a real-time multi-agent
system (RTMAS). This dynamism of real-time software
systems has led to a new category of software
systems called self-adaptive software system.
These self-adaptive systems possess the necessary
knowledge to adapt their behavior in response to
environmental context. In the studies of Tesar (2016),
Nair et al. (2015), De Lemos et al. (2013), it has been

2

argued that the development of autonomous physical
systems with real-time constraints is a challenging
task. Formal modeling corresponds to constructing
a mathematical representation of a software or a
hardware system using some level of abstraction.
Formal speci�cation provides an unambiguous and
precise meaning of the different entities of the system
leading to its enhanced understanding. Moreover,
with formal semantics a system’s domain functionality
can be validated using different formal methods
techniques like model checking. It has been argued
in the study of Filieri et al. (2014) that formal methods
should be used for the automated veri�cation of
safety critical and real-time systems to ensure their
correct functioning.

Multi-agent systems have been formally speci�ed
and veri�ed by many in the past but not self-adaptive
real-time multi-agent systems, according to our
knowledge. Reynisson et al. (2014) have formally
modeled real-time systems using an extension of the
Rebeca language. They used structural operational
semantics for modeling distributed systems with
temporal constraints. In the study of Chen (2012),
a new language named STeC (an extension of
process algebra) has been proposed for the formal
speci�cation of location-trigger real-time systems.
In the study of Logenthiran et al. (2012), a multi-
agent system approach has been presented for
the real-time operation of scheduling and demand
management in microgrids. Multi-agent systems
have been formally speci�ed and veri�ed using
modal mu-calculus and Timed-Arc Petri-nets in the
study of Qasim et al. (2015a, b, 2016). Lomuscio et al.
(2015) has presented a new model checker named
MCMAS for the formal veri�cation of multi-agent
systems. Their model checker can be used to verify
the epistemic, strategic, and temporal properties
of interest for these multi-agent systems. Konur et
al. (2013) have presented a new combined model
checking approach for eliminating the problem of
introducing new logics for the veri�cation of different
aspects of multi-agent systems like knowledge
and time, knowledge and probability, real-time and
knowledge, etc. This will help to reduce the problem
of having different model checking tools targeting
different aspects of multi-agent systems. In the study
of Sun et al. (2013), hierarchical real-time systems
have been formally modeled and veri�ed using an
extension of Timed CSP called Stateful Timed CSP.
Majorly, they solved the problem of veri�cation with
non-zeroness assumption. In the study of Weyns
et al. (2012), a framework for formal modeling of
distributed self-adaptive systems has been proposed
called FORMS, which provides different modeling

elements and a set of relationships guiding the
design of self-adaptive software systems. Herrero
et al. (2013) have proposed a real-time multi-agent
architecture for intrusion detection system called
RT-MOVICAB-IDS. Their architecture ensures
that the agent’s response (re�ex or deliberative)
conforms to temporal constraints of the system
in case of an intrusion. In the study of Guo and
Dimarogonas (2015), a cooperative motion and task
planning scheme for multi-agent systems has been
proposed. According to their scheme, the agent’s
tasks, categorized with hard or soft deadlines, are
speci�ed as linear temporal logic formulas. The
tasks with hard temporal constraints are always
executed within the deadline and the agent tries to
improve the result for soft deadline. In the study of
Varzaneh et al. (2018), a recommender system based
on association rules has been presented that detects
the similarities among the users through association
rules among voted items. Ettefagh et al. (2017)
extended the Kautz parametrization of the model
predictive control (MPC) method for linear time-
varying systems. They showed how Kautz network
can be used to maintain a satisfactory performance,
while the number of decision variables is reduced
considerably. Dammalage (2018) evaluated the
effects of site-dependent errors on C/A code
differential GPS correction accuracies by providing
special emphasis on the multi-path error. El Kholy
et al. (2015) presented an extension of computation
tree logic called RTCTLcc for the speci�cation of real-
time properties of multi-agent systems. They argued
that RTCTLcc can be used to formally model the
interaction among agents with temporal constraints.

However, up to our knowledge no real-time agent
with self-adaptive abilities has been proposed in the
past. For the speci�cation of self-adaptive real-time
multi-agent systems, there is a dire need of such an
agent. In this paper, we have proposed a formal real-
time agent having self-adaptive ability which can be
used for the formal modeling of any real-time multi-
agent system. Our self-adaptive real-time agent makes
use of the ARTIS agent architecture proposed in the
study of Botti et al. (1999) and MAPE-K feedback loop
proposed in the study of Kephart and Chess (2003).
For complex systems, formal speci�cations are
devised at conceptual design before the systems are
implemented in many areas of software engineering.
Such speci�cations describe the semantics of the
system being implemented without the concern for
implementation details and can be used as a basis
for the veri�cation and validation of the functionality
of the system. Hence, we provide a complete formal
speci�cation of our self-adaptive real-time agent

3

using Timed Communicating Object-Z (TCOZ). One
of the major reason for choosing TCOZ as a formal
speci�cation language is that we can utilize the
active class concept of TCOZ to express the non-
terminating behavior of autonomous agents.

The rest of this paper is divided as follows. In the
“Preliminaries” section, some preliminaries for the
entities description of ARTIS agent architecture are
explained. The “Proposed SA-Artis-agent” section
describes the proposed SA-ARTIS-agent and its
formal speci�cation using TCOZ. In the “Discussion
and future work” section, we provide future directions
of our proposed work. The “Conclusion” section
concludes the paper.

Preliminaries

Artis agent architecture

ARTIS agent architecture was proposed in the study
of Botti et al. (1999) and it is an extension of the
blackboard model that has been modi�ed to work
in environments with hard temporal constraints.
This agent guarantees that it will meet its temporal
constraints by the use of an off-line schedulability
analysis. Agents’ perception occurs through a set
of sensors and the systems response is exhibited
using a set of effectors. These perception and action
processes are real-time in nature. The agent has two
different categorization of processes, namely, re�ex
process and a deliberative process. Every ARTIS
agent has a number of internal agents (In-agent) that
provides the domain functionality. Every In-agent
is designed to solve a particular problem. Every In-
agent is characterized as critical or acritical. A critical
In-agent has a period and a deadline and the agent
must perform its operations within those deadlines.
In other words, it provides the minimum system
functionality. On the contrary, acritical In-agent
can utilize arti�cial intelligence techniques to better
achieve the system goal. Every In-agent has two
layers, namely, re�ex layer and real-time deliberative
layer. When a task arrives for execution, the In-agent
checks the deadline if it can provide a response via a
real-time deliberative layer. The real-time deliberative
layer provides an improved response as compared
to re�ex layer, hence it needs more time. The re�ex
layer only provides a minimal quality response. The
mandatory phase of an ARTIS agent consists of
re�ex layers of all the In-agents it has. Similarly, the
real-time deliberative layers of all In-agents make up
the optional phase of an ARTIS agent. A re�ex layer
is absent in a non-critical In-agents and only the
real-time deliberative layer is present. For real-time

environments, most of the In-agents are critical in
nature. Each In-agent has a set of beliefs comprising
the domain knowledge relevant to it. Each ARTIS
agent has a control module which controls the
execution of all the In-agents that belongs to it. It
is divided into two submodules, namely, the re�ex
server (RS) and the deliberative server (DS). Re�ex
server controls the execution of tasks with critical
temporal restrictions. Deliberative server controls the
execution of deliberative tasks.

Mape-K feedback loop

A self-adaptive system typically consists of a feedback
loop that deals with the architectural adaptation of
the system and a managed system, which provides
the domain functionality. Adaptation based on
architecture always requires a system to interact
with the environment, reason about its models
based on the stimulus received and then adapt
itself. The feedback loop is known as MAPE-K and
it was proposed in the study of Kephart and Chess
(2003). The MAPE represents the monitor, analyze,
plan, and execute phase, whereas the K represents
the knowledge, which consists of the models of the
system and the adaptation goals. MAPE-K feedback
loop-based self-adaptation ensures that the overall
system’s functionality is not affected by making a
clear distinction between the managed system and
the managing system. We refer the reader Kephart
and Chess’s (2003) study for details concerning the
MAPE-K feedback loop.

Proposed SA-Artis-agent

A self-adaptive system typically consists of a
managed system which provides the domain
functionality and a feedback loop which deals
with architectural adaptations of the system.
Architecture-based adaptation requires a system
to interact with the environment, reason about
its models based on the stimulus received and
then adapt itself. The feedback loop is known
as MAPE-K and it was proposed in the study of
Kephart and Chess (2003). The MAPE represents
monitor, analyze, plan, and execute phase, whereas
the K represents the models of the system, its
environment, and adaptation goals. We propose
a modi�cation of the ARTIS-agent named self-
adaptive-ARTIS-agent (SA-ARTIS-agent) which will
have the ability of self-adaptation. Figure 1 shows
the architecture of SA-ARTIS-agent. Each ARTIS
agent has a MAPE-K loop to continuously monitor
all the In-agents. In monitor phase, the system

4

continuously perceives the environment and after
any pre-processing of data it updates its models
and trigger the next phase, i.e. analyze. In analyze
phase, decision regarding whether the adaptations
are needed or not is made. In case an adaptation is
needed, it triggers the plan phase. In plan phase, a
set of tasks/actions are generated that are required
for the adaptation and then the execute phase is
triggered. In execute phase, all the planned tasks
are executed to perform self-adaptation. Knowledge
corresponds to models representing aspects of
the environment, system, and adaptation goals.
It should be mentioned that all the activities of
the system are considered as event triggered.
We will give a complete formal speci�cation of
the SA-ARTIS-agent in the next section. This is
because it has been advocated in the past that the
use of precise and unambiguous notation of formal
methods is bene�cial for self-adaptive systems
speci�cation (Iglesia and Weyns, 2015). Although the
basic SA-ARTIS agent will guarantee that it meets
its deadlines for the tasks it has been designed
to execute but if the designer decides to include
feature like communicating with agents of other
types then this may prevent this real-time behavior.

Our SA-ARTIS-agent will consist of the following
entities summarized as follows. Task represents any
task that will be executed by the agent. The task can
be executed to provide the domain functionality or
to adapt the agent. In-Agent will perform a speci�c
task for which it has been designed. A single
SA-ARTIS-agent may contain multiple In-agents,
each providing different functionality. SA-ARTIS-
Agent will provide the systems domain functionality
and will possess the necessary knowledge required
for adapting itself according to the goals. Monitor-
In-Agent will continuously monitor the environment
and communicate with all the other In-agents of
the system. In case an event of interest occurs
it will trigger the Analyze-In-agent and update
the Knowledge accordingly. Analyze-In-Agent
will be responsible for making the decisions if the
adaptation decisions are required. In case the
agent does need to adapt, it will trigger the Plan-
In-agent. Plan-In-Agent is responsible for planning
the necessary actions in case of adaptation and
triggering the Execute-In-Agent. Execute-In-Agent
will execute the adaptation actions of the generated
plans. Knowledge entity will serve as model
which the system can use to make the adaptation

Figure 1: Proposed SA-ARTIS-agent architecture.

5

decisions. It will be represented by domain models.
Control Module is responsible for the real-time
execution of the all the In-agents in the system.
Re�ex Server controls the execution of processes
with critical temporal restrictions. Deliberative Server
controls the execution of deliberative processes.

�7�&�2�=���V�S�H�F�L�ð�F�D�W�L�R�Q���R�I���6�$���$�5�7�,�6���D�J�H�Q�W

In this section, we will formally specify all the entities
of SA-ARTIS-agent as was described in the previous
section. We de�ne a passive class named Task to
represent any task in the system. Each task requires
a single resource for certain duration without which
it cannot execute. For brevity we have only handled
the case of one resource per task but the approach
can be extended for multiple resources per task. The
Re�exExecute operation models the execution of a
task when the agent executing it does not have extra
time to improve the result. The DeliberativeExecute
models the execution of a task when the task has
soft deadline. The variable length represents the
expected amount of time which the task will take to
execute. Here, length is considered as the deadline
before which the task should have been executed.
Margin represents additional time for soft deadline.
In case a margin is available for a task then the
DeliberativeExecute process will be executed. It
is important to mention here that a task can be
executed both to provide the domain functionality
and for adaptation. For the categorization of tasks
and agents, we de�ne two types as:

TaskType :: = REFLEX | DELIBERATIVE
AgentType :: = INAGENT | ARTISAGENT

Every InAgent is con�gured to solve a particular
type of problem. Here id represents the unique
identi�er of the InAgent. tasks represent the set of
tasks, which this agent has to execute. The attribute
alloc contains information about which resources
have been allocated to this agent. c represents
the single communication channel that this agent
will use to communicate with the other entities.
Here margin represents the time that will be used
to decide if a task should be executed on re�ex
server or deliberative server. We de�ne a new type
State to represent the current status of any agent
so here state represents the current state of this In-
agent. type represents the agent type, i.e. In-agent
or ARTIS agent. rModel represents the set of all
representations required for the adaptation.

Each SA-ARTIS-agent will manage multiple In-
agents providing the domain functionality. There
should be at least one In-agent for every ARTIS-
agent. Here id represents the unique identi�er of
this agent. agents represent the set of In-agent
that this agent manages. models represent the
set of domain models. tasks represent the set of
tasks which will then be delegated to the different
In-agents. c represents the single communication

6

channel that this agent will use to communicate
with the other entities. type represents the agent
type, i.e. In-agent or ARTIS-agent. state represents
the current state of this SA-ARTIS-agent. cm
represents the control module. The attributes
mAgent, aAgent, pAgent, eAgent correspond to
the Monitor-In-Agent, Analyze-In-Agent, Plan-In-
Agent, and Execute-In-Agent, respectively, which
will handle the adaptation. We use a function SUM,
which will return the sum of all the tasks of In-agents
that any ARTIS Agent has.

The Monitor_In_Agent will continuously perceive
the environment and after any pre-processing
of data it will update the models and trigger the
next, i.e. Analyze_In_Agent. aInAgent represents
the Analyze_In_Agent to whom this agent will
notify in case an event of interest occurs requiring
adaptation.

The Analyze_In_Agent will make decisions
regarding whether the adaptations are needed or
not. In case an adaptation is needed it will triggers
the Plan_In_Agent. pInAgent represents the Plan_In_
Agent to whom this agent will notify to plan for the
necessary adaptations. requiredResources represent
the resources that this agent needs to complete its
assigned tasks. availableResources are the resources
that has been assigned to this agent. At any time the
attribute rRequirement represents the situation of
resources for this agent. Resource requirement can
be divided into four classes, one in which the system
does not require additional resources, second in
which the system has more resources than it needs,
third in which the system needs more resources, and
fourth in which it is not possible to get a predictable
total of the system resources.

ResourcesRequirement :: = SATISFIED | OVERSAT-
ISFIED | UNSATISFIED | UNDETERMINED

