Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells

Furnell, L, Holliman, PJ, Connell, A, Jones, EW, Hobbs, R, Kershaw, CP, Anthony, RVE ORCID: https://orcid.org/0000-0002-6123-1676, Searle, J, Watson, T and McGettrick, J 2017, 'Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells' , Sustainable Energy & Fuels, 1 (2) , pp. 362-370.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

In situ degradation of multiple dyes (D35, N719, SQ1 and SQ2) has been investigated simultaneously using digital imaging and colour analysis. The approach has been used to study the air stability of N719 and squaraine dyes adsorbed onto TiO2 films with the data suggesting this method could be used as a rapid screening technique for DSC dyes and other solar cell components. Full DSC devices have then been tested using either D35 or N719 dyes and these data have been correlated with UV-vis, IR and XPS spectroscopy, mass spectrometry, TLC and DSC device performance. Using this method, up to 21 samples have been tested simultaneously ensuring consistent sample exposure. Liquid electrolyte DSC devices have been tested under light soaking including the first report of D35 testing with I�/I3 � electrolyte whilst operating at open circuit, short circuit, or under load, with the slowest degradation shown at open circuit. D35 lifetime data suggest that this dye degrades after ca. 370 h light soaking regardless of UV filtering. Control, N719 devices have also been light soaked for 2500 h to verify the imaging method and the N719 device data confirm that UV filtration is essential to protect the dye and I3 �/I� electrolyte redox couple to maintain device lifetime. The data show a direct link between the colour intensity and/or hue of device sub-components and device degradation, enabling “real time” diagnosis of device failure mechanisms.

Item Type: Article
Schools: Schools > School of Environment and Life Sciences > Ecosystems and Environment Research Centre
Journal or Publication Title: Sustainable Energy & Fuels
Publisher: Royal Society of Chemistry
ISSN: 2398-4902
Related URLs:
Funders: Engineering and Physical Sciences Research Council (EPSRC), Tata Steel, Welsh Government for Sêr Cymru
Depositing User: Dr Rosie Anthony
Date Deposited: 20 Apr 2020 08:39
Last Modified: 20 Apr 2020 08:45
URI: http://usir.salford.ac.uk/id/eprint/56795

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)

Downloads

Downloads per month over past year