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Abstract: The Internet of Things (IoT) is leading today’s digital transformation. Relying on a
combination of technologies, protocols, and devices such as wireless sensors and newly developed
wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent
applications in digital healthcare. IoT incorporates various kinds of hardware, communication
protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides
comfort to users but can lead also to a large number of security threats and attacks. In this survey
paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise,
we propose a new classification of security threats and attacks based on new IoT architecture. The IoT
architecture involves a physical perception layer, a network and protocol layer, a transport layer, an
application layer, and a data and cloud services layer. First, the physical sensing layer incorporates
the basic hardware used by IoT. Second, we highlight the various network and protocol technologies
employed by IoT, and review the security threats and solutions. Transport protocols are exhibited
and the security threats against them are discussed while providing common solutions. Then, the
application layer involves application protocols and lightweight encryption algorithms for IoT. Finally,
in the data and cloud services layer, the main important security features of IoT cloud platforms
are addressed, involving confidentiality, integrity, authorization, authentication, and encryption
protocols. The paper is concluded by presenting the open research issues and future directions
towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use
of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain
to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond.

Keywords: wearable and non-wearable devices; IoT; communication protocol; security attacks and
countermeasures; data analysis

1. Introduction

The Internet of Things (IoT) is considered to be a worldwide network of uniquely addressable
interconnected objects, using sensing features, employing communication protocols, exploiting
computational capability, and providing services and capacity to analyze data. IoT objects can
be doorbells, sensors, Digital Video Recorders (DVRs), light bulbs, electric switches, and home
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assistant devices. Juniper Research estimates there will be over 46 billion IoT-connected objects
by 2021, including devices, sensors and actuators, which represents an increase of 200% compared
to 2016 (https://www.i-scoop.eu/internet-of-things-guide/connected-devices-2021/). Near-Field
Communications (NFC) and Wireless Sensor and Actuator Networks (WSAN) associated with
Radio-Frequency IDentification (RFID) make up the core of the IoT network [1]. The convergence of the
Internet and sensor networks is fruitful, and is leading to a new paradigm called machine-to-machine
(M2M) communication over the Internet by enabling a very large number of autonomous and
self-organized devices [2]. The core concept of IoT is that every object in the network has many
capabilities, such as identifying, sensing, and processing data, therefore enabling communication with
a wide variety of other devices and services through the Internet to provide services to humanity.

IoT application domains fall into several categories, including utilities, transport and supply chain,
environment and agriculture, health, personal home, and manufacturing and industry [3]. Industry 4.0
is a new trend, introducing new technologies to the manufacturing field, such as IoT, cyber-physical
systems, big data, cloud computing, the semantic web, and virtualization [4]. As with any trend, many
cyber-physical attacks target manufacturers that use Industry 4.0 systems [5], such as the Maroochy
water services attack in Australia [6], the steel mill attack in Germany [7], the New York Dam attack [8],
and the Norwegian Hydro aluminum attack (www.bbc.com/news/technology-47624207) in 2000,
2014, 2016, and 2019, respectively.

IoT, being an emerging technology as well as having huge number of devices deployed and
connected to the Internet, represents a fertile field for attacker threats, and therefore new cyber-security
issues related to IoT have appeared. Many threats threatening IoT devices have been 2 defined,
including network, physical, environment, cryptanalysis, and software attacks [9]. Network attacks
include man-in-the-middle (MITM), replay, masquerade, and distributed denial of service (DDoS)
attacks [10]. To overcome these risks to IoT systems, communication protocols should be secure,
lightweight encryption algorithm should be implemented, IoT platform security features should be
enforced, and advanced techniques should be applied to filter and predict different security threats.

Security in IoT is of extreme importance, as any successful attack may paralyze a whole
manufacturing, transport, health system, etc. sector. IoT is a combination of devices, network protocols,
and technologies that each have their own vulnerabilities, which increases the attack surface across the
whole IoT network. In other words, several attacks against IoT have been inherited from underlying
technologies.

Contributions — There has been no standard until now for IoT architecture. However, different
architectures have been proposed for IoT, such as three-layer [11], middle-ware-based architecture [12],
service-oriented architecture (SOA) [13,14], four-layer [15], and five-layer [12].

Architecture previously proposed in the literature is highlighted in this paragraph. The basic
model is called three-layer architecture, and it is composed of perception, network, and application
layers [11,12,16]. Four-layer architecture covers perception, network, middleware, and application
layers [13,15,16]. The role of the middleware layer involves service management, data storage, and
service composition [15]. A proposed five-layer architecture includes objects, object abstraction, service
management, application, and business layers [12].

To add advanced features to IoT such as IoT data, machine-learning algorithms, and light
encryption algorithms, we propose in this paper a new IoT architecture, as shown in Figure 1. The
proposed IoT architecture is based on five layers, including a perception layer, a network/protocol
layer, a transport layer, and a data and cloud services layer. As shown in Figure 1, the physical layer
involves different sensors and IoT devices such as a Wireless Sensors Network (WSN), QR Codes,
Wireless Body Area Network (WBAN), Radio-Frequency IDentification (RFID) devices, etc.

https://www.i-scoop.eu/internet-of-things-guide/connected-devices-2021/
www.bbc.com/news/technology-47624207
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Figure 1. The proposed IoT architecture.

The network and protocol layer covers different wired and wireless network protocols involved
in an IoT system, such as Wi-Fi, ZigBee, Ethernet, Bluetooth, LTE, 5G, etc. The transport layer involves
TCP/IP, UDP/IP, and Transport Layer Security (TLS)/secure sockets layer (SSL) suite protocols.
For the application layer, we cover the various application protocols developed to meet the IoT
requirement in terms of low power consumption and small device capacity, such as Advanced
Message Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), and Message Queuing
Telemetry Transport (MQTT). Finally, the data and cloud services layer presents the main cloud-based
IoT frameworks.

In Table 1, common IoT attacks are highlighted. We also provide security control suggestions to
mitigate the harm to IoT devices caused by these attacks.

The paper focuses on analyzing security issues inherited by each layer component, while
presenting deployed security measures and mechanisms to defeat prominent attacks.
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Table 1. Common attack against IoT devices according to the new architecture.

Layer Common Attack Description Security Countermeasures

Data and Cloud services

Poisoning input of incorrect training data/labels to decrease the accuracy of classification/clustering process Data sanitization.

Evasion Generating an adversarial sample leading to evade system from detection spam and malware. Retraining learning models by classifier designers with adversarial samples.

Impersonate Unauthorized access based on deep neural network DNN algorithm. Defensive distillation on DNN.

Inversion Gathering information about ML models to compromise the data privacy. Differential privacy (DP) technique and data encryption.

Application

Mirai malware Gain access to IoT device by using a default Telnet or SSH account Disabling/changing default account of Telnet and SSH account.

IRCTelnet Forcing Telnet port to infect LINUX operating system of IoT device. Disabling Telnet port number.

Injection Untrusted data is sent to an interpreter as part of a command or query. Input validation control.

Transport

TCP flooding Sending many packets through TCP protocol to stop or to reduce his activities. A classifier based on SVM to detect and prevent DDoS TCP flooding attack.

UDP flooding Sending a large number of packets through UDP protocol to stop or to reduce his activities. A flow-based detection schema on router using a state machine and a hashing table.

TCP SYN flooding Tentative to open an externally connection without respecting to the TCP handshake procedure. SYN-Cookies consist on coding client SYN message to change the state in the server side.

TCP desynchronization Tentative to break the packet sequence by injection a packet with a wrong sequence number. Authentication for all packets in the TCP session.

Network/protocol

Man-in-the-middle Violate the confidentiality and integrity in data transfer. Intrusion-detection system (IDS) and virtual private network (VPN).

DDoS Making network resource unavailable for its intended use Ingress/Egress filtering, D-WARD, Hop Count Filtering and SYN-Cookies.

Replay Manipulate the message stream and reorder the data packets. Timeliness of Message.

Physical

Eavesdropping Infer information sent by IoT devices via network Faraday cage.

Cyber-physical Physically attacking a device Use of fault-detection algorithm to identify the faulty nodes.

RFID Tracking to disable tags, modify their contents, or imitate them Faraday cage.
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Application Mirai malware & Gain access to IoT device by using a default Telnet or SSH account
& Disabling/changing default account of Telnet and SSH account. IRCTelnet & Forcing Telnet port to
infect LINUX operating system of IoT device. & Disabling Telnet port number. Injection & Untrusted
data is sent to an interpreter as part of a command or query. & Input validation control Transport &
TCP flooding & TCP flooding consists of sending many packets through TCP protocol to stop or to
reduce his activities. & A classifier based on SVM to detect and prevent DDoS TCP flooding attack.
UDP flooding & UDP flooding consists of sending a large number of packets through UDP protocol to
stop or to reduce his activities. & A flow-based detection schema on router using a state machine and
a hashing table. TCP SYN flooding & TCP SYN flooding is a tentative to open an externally connection
without respecting to the TCP handshake procedure. & One effective solution is called SYN-Cookies
consist on coding client SYN message to change the state in the server side. TCP desynchronization &
TCP desynchronization is defined as a tentative to break the packet sequence by injection a packet
with a wrong sequence number. & Authentication is required for all packets in the TCP session.
Network/protocol & Resource exhaustion, flooding, replay and amplification & Vulnerability of
Transport Layer Security (TLS) to resource exhaustion, flooding, replay and amplification attacks &
Using DTLS instead of TLS Man-in-the-middle & When a hacker tries to violate the confidentiality and
integrity when two end-point transfer data. & Intrusion-detection system (IDS) and virtual private
network (VPN). DDoS & Is an attempt to make a machine or network resource unavailable for its
intended use & Ingress/Egress filtering, D-WARD, Hop Count Filtering and SYN-Cookies. Replay &
The intruder may manipulate the message stream and maliciously reorder the data packets to change
the meaning of the message & Timeliness of Message Physical sensing & Eavesdropping & Called
also sniffing or snooping attack, it occurs when someone tries to pick up information sent by IoT
devices via network Faraday cage is an effective solution for eavesdropping attack Cyber-physical &
When a sensor is physically attacked or compromised by cyber-attack Using a localized fault-detection
algorithm to identify the faulty nodes in WSN RFID Tracking & Is to disable tags, modify their contents,
or imitate them & Faraday cage is an effective solution for RFID tracking attack.

As shown in Table 1, common IoT attacks can be classified into 5 classes:

• Data and cloud services layer attacks include poisoning, evasion, impersonation, and inversion.
• Application layer attacks include Mirai malware, IPCTelnet malware, DDoS, and injection.
• Transport layer attacks include resource exhaustion, flooding, replay, DDoS attack, and

amplification attacks.
• Network and protocol layer attacks include man-in-the-middle, DDoS, and replay attacks.
• Physical sensing layer attacks include eavesdropping, cyber-physical, and tracking attacks.

A scenario to describe the realistic use of the proposed architecture could be an e-health
application, in which the perception layer captures a physical parameter via a sensor implemented in a
patient’s body. Then, the job of the network and transport layers is to send the data to the application
layer by selecting the suitable communication and lightweight encryption protocol based on power
processing and energy consumption of the IoT device. The application layer will select the appropriate
application protocol (i.e., MQTT, CoAP, or other) to communicate the data to the right user (i.e., doctor
or medical staff). Finally, the data will be stored in the cloud layer and will be useful for future data
analysis and prediction by using the appropriate machine-learning algorithm.

Existent Surveys — Internet of things security issues have attracted a lot of research, in which
several published survey papers have studied IoT architecture, applications, and security issues. The
survey authored by Al-Fuqaha et al. [12] covers the main IoT element-enabling technologies and the
principle common IoT standards. In [11], the authors address the security of IoT frameworks such
as AWS, Azure, and Calvin architecture. The authors in [16] provide a survey of the most common
architectures proposed for IoT e-health applications, smart society applications, and cloud service and
management solutions. Moreover, [4] addresses IoT in terms of the requirements of smart factories
to enable standard Industry 4.0 protocols in the next industrial revolution. Key IoT applications in
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industries are presented in [13] including the food supply chain, the iDrive system provided by the
BMW car company, and an environment monitoring system for firefighting based on RFID tags. Buton
et al. [17] introduced a security analysis of IoT based on an in-depth analysis of the use of WSNs, their
vulnerabilities and their major security threats. Recently, Hussain et al. [18] presented a review of
machine learning applied in IoT, and their main advantages and limitations.

Position of our paper — In this survey paper, we combine different aspects related to
IoT technologies in one compact IoT architecture, covering IoT physical devices and sensors,
communication and network protocols, a transport layer, an application layer, and data and cloud
services. This architecture is based on a modification of OSI architecture, considering the security
vulnerabilities and threats. In addition to existent OSI layers, we define a cloud and data layer,
which involves several publicly available IoT frameworks providing IoT data storage, processing, and
analysis. This architecture is extended to involve machine-learning applications that process data
and protect IoT components. Furthermore, we present a discussion of current challenges facing IoT
security solutions, such as the lack of standard encryption algorithms adapted for IoT devices. We
also explore the application of novel techniques to secure IoT, such as the use of Blockchain in IoT and
machine-learning models, as well as reviewing the potential of 5G network applications, and their
reliance on IoT.

Paper Organization — This survey is organized as follows. Section 2 presents the main
components of the physical sensing layer, and the related security threats and countermeasures.
The IoT network and communication protocols and their related security issues and solutions are
reviewed in Section 3. Section 4 introduces an overview of the transport layer protocol and its main
security countermeasures. The application layer protocols are studied in Section 5, detailing their main
security features. Section 6 reviews the well-known cloud-based IoT frameworks, while reviewing
the main security measures they are implementing. Finally, a discussion of open issues and research
opportunities is conducted in Section 7, before the survey paper is concluded in Section 8.

2. Physical Sensing Layer

2.1. Underlaying Technologies

The components of the physical sensing layer mainly involve but are not limited to QR codes,
sensors, RFIDs, WSANs, and WBANs. In the state of the art, RFID uses a universal unique identifier
called an Electronic Product Code (EPC) to identify objects in the IoT network. It supports various
applications in several areas, such as logistics and supply-chain management, aviation, food safety,
retailing, and public utilities. Likewise, the RFID system is characterized by its small size, very low
cost, and no limitation to battery life. The second element that defines the core of the IoT network is
WSAN, which can provide high radio coverage and communication paradigm, is peer-to-peer, while
wireless sensor networks support sensing, computing, and communication capabilities in a passive
system [1]. However, IoT benefits from the tracking capabilities offered by RFID tags [2]. WBAN
stands for the wireless body area network and is defined as a set of sensors implemented in a patient’s
body to capture health parameters, including temperature, blood pressure, and glucose rate. The
different sensors communicate the human vital signals to a health monitoring system via Bluetooth or
ZigBee protocol.

2.2. Security Threats and Solutions

RFID is described by ISO/IEC 18000. However, RFID suffers from weak privacy. In addition,
physical threats to RFID system disable tags, modify their content, and imitate them [19]. According
to [9], a Faraday cage, tag-killing, tag-blocking, and re-encryption are effective solutions for RFID
tracking attacks.

In the state of the art, the three kinds of attacks against the perception layer are eavesdropping,
cyber-physical, and RFID tracking. An eavesdropping attack, also called a sniffing or snooping attack,
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occurs when someone tries to pick up information sent by IoT devices via a network. A cyber-physical
attack happens when a sensor in a WSN is physically attacked or compromised by a cyber-attack
(called a faulty node). Various solutions have been proposed to overcome this attack, such as using
a localized fault-detection algorithm to identify the faulty nodes in WSN [20], using a decentralized
intrusion-detection system model for the WSN [21], and introducing a derived intrusion-detection
probability in both homogeneous and heterogeneous WSNs [22]. A RFID tracking attack attempts
to disable tags, modify their contents, or imitate them. Various security solutions are proposed
to overcome this attack, such as using a localized fault-detection algorithm to identify the faulty
nodes in the WSN [23], using a decentralized intrusion-detection system model for the WSN [21],
and introducing a derived intrusion-detection probability in both homogeneous and heterogeneous
WSNs [24]. Physical threats to the RFID system are disabling tags, modifying their content, and
imitating them [19]. According to [9], a Faraday cage, tag-killing, tag-blocking, and re-encryption are
effective solutions against eavesdropping and RFID tracking attacks. RFID is described by ISO/IEC
18000. In addition, a Faraday cage is one of the effective solutions for RFID consumer privacy
against eavesdropping and tracking attacks [9]. Since WBAN uses wired and wireless protocol to
communicate sensitive patient data, it can be vulnerable to malicious attacks such as eavesdropping,
spoofing, and tampering, leading to a compromise of the privacy of the protected health information
system [25]. Various solutions have been proposed in the literature to enforce access control and
security communication between WBAN and external users (i.e., doctors and medical staff) such as
the cyphertext policy attribute-based encryption (CP-ABE) where access is granted to the user who
has at least d out of n attributes of the patient-related data [26,35].

3. Network and Protocol Layer

3.1. Underlaying Technologies/Background

Communication protocols are a main component of the IoT systems, enabling the establishment
of communication and exchange of data between IoT devices and other distant parts of the network.
The network and protocol layer includes ZigBee [27], 3G/4G/5G wireless communication [28],
Wi-Fi [29], and Bluetooth [16]. In Table 2, we address the standard security feature (i.e., encryption
protocol and key length), and advantages and disadvantages for the most relevant data-link
communication protocols. Some research works divide IoT communication protocols into two
sub-layers—sensor-based network and gateway network [16].

The sensor-based network relies on different protocols used by devices to communicate between
each other. These protocols include but are not limited to Bluetooth, Bluetooth Low Energy (BLE),
Worldwide Interoperability for Microwave Access (WiMAX), Wi-Fi, ZigBee, etc. [27,29]. The gateway
network is responsible for routing data from/to a low-power lossy network (LLN) to/from the Internet
or a close-by Local Area Network (LAN). These protocols include Ethernet, 3G/4G/5G, 6LoWPAN,
etc. [28,30].

Table 2. Most relevant IoT communication protocols.

Communication Protocol Standards Encryption Protocol Energy Consumption Advantages Disadvantages

6LoWPAN IEEE 802.15.4 AES Low Low processing Lack of authentication

RPL IETF RPL AES Low Low processing Vulnerability to many attacks

NFC ISO/IEC 14443 RSA, DSA Low Simplicity of deployment Limited Range

Bluetooth IEEE 802.16 AES, ECDH Medium/Very Low (BLE) Low consumption Privacy/Identity Tracking

Wi-Fi IEEE 802.11i/e/g AES High Mobility and efficiency Limited reachability

Zigbee IEEE 802.15.4 AES Low Low-cost, low-energy devices one-time transmission of the unprotected key

WiMAX IEEE 802.16 RSA Medium Supports authentication Limited mobility

3G/4G/5G UMTS/LTE RSA, 3DES Medium Portability Battery limitation

Various basic communication protocols are used in IoT networks to ensure communication among
all objects for wired and wireless networks. Bluetooth is described by the IEEE 802.15.1 standard. In its
4.2 version, Bluetooth uses the Federal Information Processing Standard (FIPS)-compliant elliptic curve
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Diffie–Hellman (ECDH) algorithm for key generation (i.e., Diffie–Hellman key, or DH key). However,
Bluetooth suffers from easy privacy/identity tracking. Wi-Fi is described by the IEEE 802.11i/e/g
standard and it can support AES 128 key length. Mobility and efficiency are the most important benefit,
while limited reachability (i.e., in the range of 100 m) is the main disadvantage [12]. ZigBee presents
low-cost, low-energy devices, and one-time transmission of the unprotected key as an advantage
and a disadvantage, respectively [9]. WiMAX is described by the IEEE 802.16 standard, which is a
collection of wireless broadband standards. WiMAX provides data rates from 1.5 Mb/s to 1 Gb/s. NFC
technology was developed by Philips and Sony in 2002 to provide contactless communication [31].
NFC is a short-range half-duplex communication protocol. NFC relies on coupling between the
receiver and the sender. NFC works within a few centimeters under an operating frequency equal to
13.56 MHz. 3G and 4G mobile communication protocols are standardized by the universal mobile
telecommunications system (UMTS) and Long-Term Evolution (LTE), respectively. IPv6 over LoWPAN
(6LoWPAN) is a low-cost communication network allowing wireless connectivity between devices with
limited power and processing capability. A 6LoWPAN typically includes devices that work together
to connect the physical environment to real-world applications, e.g., wireless sensors. 6LoWPAN is
standardized by the IEEE 802.15.4-2003 standard (IEEE802.15.4).

3.2. Security Threats and Countermeasures

Several common attacks have been launched against IoT communication protocols in which the
attack can target most communication protocols such as eavesdropping against Bluetooth, NFC, Wi-Fi,
etc. [32]. Man-in-the-middle attacks and Denial of Service (DoS) attacks also can be launched against
various IoT communication protocols. To address different attacks, such as eavesdropping and replay
attacks, RSA and Diffie–Hellman algorithms are the emergent solution for LTE-advanced (LTE-A)’s
security features [33]. Some other attacks are dedicated to specific protocols, such as attacks against
Bluetooth that are defined as follows:

• Bluejacking: This is the use of Bluetooth for sending unsolicited messages to other enabled devices.
This attack exploits the Object Exchange (OBEX) protocol which is used by Bluetooth-enabled
devices for exchanging data and commands [34].

• Bluebugging: This is an attack where the attacker exploits devices by manipulating the devices
into compromising its own security, leading to unauthorized access of the device. The Bluebug
attack focuses on or uses AT Commands (ASCII Terminal) when performing attacks [36,37].

• Bluesmack: This is an attack that causes denial of service to Bluetooth devices. This attack sends a
Logic Link Control and Adaptation Protocol (L2CAP) ping request, which is similar to the ICMP
ping attack, leading to devices being knocked out after receiving an oversized packet, which in
turn leads to a DoS [38].

Since smart objects have a limited calculation capacity, restricted energy, and limited memory,
lightweight encryption algorithms are widely used in the IoT field, such as in RFID tags, sensors, and
healthcare devices [39]. Additionally, the lightweight concept for IoT is extended to lightweight
attribute-based encryption schema for cloud applications [40–42], lightweight collaborative key
management protocol [43], lightweight protocol for smart home authentication and key-session
exchange [44,45]. Many IoT protocols have been proposed for different ISO layers, such as link
layer (802.15.4, PLC), network layer (RPL, 6LoWPA), presentation layer (TLS, 802.1AR, 802.1X), and
application layer (CoAP) [46]. Since 6LoWPA takes advantage of the IEEE 802.15.4 standard for
low-rate wireless networks and IPv6, it provides low processing and a lack of authentication as an
advantage and a disadvantage, respectively [9]. RPL uses the Advanced Encryption Standard (AES)
protocol with key length of 128 [47]. RPL can support point-to-point communication and multi-cast
routing in lower power networks [46]. However, its vulnerability to many attacks, such as forwarding,
sinkhole, Sybil, Hello flooding, wormhole, black hole, and DoS, is the greatest disadvantage of RPL [9].
NFC is described by the ISO/IEC 14443 standard and it can support various cryptosystems including
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RSA, digital signature algorithm (DSA), and elliptical curve digital signature algorithm (ECDSA) with
a key length of up to 128 [48]. However, it presents a limited range between different active readers.
A common attack in the network layer is the man-in-the-middle (MIM) attack. Two effective solutions
for preventing MIM attacks are the use of an Intrusion-Detection System (IDS) and a Virtual Private
Network (VPN). With the increasing use of IoT, botnet infections targeting IoT devices have become a
noticeable threat. IoT devices suffered from a powerful botnet infection in 2016 due to the Mirai botnet
malware [49]. According to [50] the latter botnet could infect and take control of more than 49,000 IoT
devices distributed across 164 countries. Alhomoud el al. [49] identify botnets as a cluster of nodes
infected by the same malware, where each node can serve as a bot (derived from the word robot) and
is capable of performing certain actions or executing commands automatically, and mimicking human
activates. One of the most common uses of botnets is to launch DDoS attacks. DDoS is an attempt
to make a machine or network resource unavailable for its intended use to break the availability of a
system or the network. Ingress/Egress filtering, D-WARD, Hop Count Filtering, and SYN-Cookies are
DDoS attack countermeasures [23].

4. Transport Layer

4.1. Underlaying Technologies

The transport layer offers two services—a connection-oriented protocol, named TCP, for reliable
application, and connectionless protocol for unreliable applications. TCP uses TLS to ensure a
secure transport layer. However, UDP uses DTLS to secure the transport layer. By default, the
lightweight connectivity protocol MQTT does not include a security layer. Therefore, the user is
responsible for defining a security protocol, either TLS or SSL, and to enable a certificate and session
key management [17]. Likewise, TLS and SSL are vulnerable against various kinds of attacks such as
BEAST, CRIME, Heartbleed, and RC4. The basic form of MQTT, without a security protocol and with
the weakness of TLS and SSL, is called an MQTT exploit.

4.2. Security Threats and Solutions

One of the most important weaknesses of the transport layer in IoT is the vulnerability of the TLS
protocol to resource exhaustion, flooding, replay, and amplification attacks. A replay attack happens
when the intruder manipulates a message stream and maliciously reorders the data packets to change
the meaning of the message [27] . To protect IoT devices from a replay attack, setting the timeliness of
the message is an effective security control. A DDoS attack can be considered to be a network/transport
and application layer attack. The taxonomy of attacks against the transport layer caused by the DDoS
is classified into TCP flooding, UDP flooding, TCP SYN flooding, and TCP desynchronization. TCP
flooding and UDP flooding consist of sending many packets through the TCP and UDP protocol to
stop or to reduce its activities. TCP SYN flooding is can open an external connection without respecting
the TCP handshake procedure. TCP desynchronization, also called TCP hijacking, is defined as an
attempt to break the packet sequence by injecting it with a wrong sequence number. In the state of
the art, two solutions have been proposed to overcome the TLS issue. One is to use DTLS, and the
other is to use an end-to-end tunnel to protect a low = power and lossy network [27]. Recently, various
proposed solutions based on machine learning (ML) to detect DoS and DDoS have been proposed
in the literature, such as the unsupervised clustering model, the Linear Vector Quantization (LVQ)
model of Artificial Neural Network (ANN), and the Back-Propagation (BP) model of ANN. A pertinent
classifier based on Support Vector Machine (SVM) to detect and prevent DDoS TCP flooding attacks
upgrades the K-nearest, naive Bayes, and multilayer perceptron in terms of performance [51]. Finally,
one effective solution against the MQTT exploit is to secure the MQTT protocol by implementing the
attribute-based encryption through the elliptic curve [52].
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5. Application Layer

5.1. Underlaying Technologies

Our IoT architecture application layer includes application protocols. Various application
protocols have been developed to meet the IoT requirement in terms of low power consumption and
small device capacity such as Advanced Message Queuing Protocol (AMQP), Constrained Application
Protocol (CoAP), Data Distribution Service (DDS), and Message Queuing Telemetry Transport (MQTT).
MQTT is a specific application protocol that potentially enhances machine-to-machine communication
between a client and a server. MQTT protocols can work under various data-link layer protocols,
such as Ethernet and Wi-Fi. Additionally, they are characterized by being very lightweight and are a
very effective solution to exchanging small messages between a broker (i.e., a server) and nodes (i.e.,
clients). Currently, the most important challenge for MQTT is adaptation to emergent technologies,
such as LTE, 5G wireless, and mobile communications. Several advantages have been provided by
MQTT, such as routing for small, cheap, low-power and low-memory devices in low-bandwidth and
vulnerable networks [12]. MQTT was standardized in 2013, and presents three QoS levels. Likewise,
an extension of MQTT is called Secure MQTT (SMQTT), and was proposed to tackle security issues.
This extension is based on TCP/IP Internet suite protocol as depicted in Table 3. Many applications
use MQTT, such as healthcare and Facebook notifications.

Table 3. SMQTT stack protocol.

OSI Layer Protocol

Application SMQTT

Session SSL/TLS

Transport TCP

Network IPv4 and IPv6

Data-link Ethernet/Wi-Fi

5.2. Security Threats and Solutions

Mirai malware, IRCTelnet, and injection are the common IoT attacks in the application layer. Mirai
malware attack happens when a hacker tries to gain access to an IoT device by using a default Telnet
or SSH account [53]. Therefore, to stop these attacks, the default accounts of Telnet and SSH should
be disabled or changed. Likewise, IRCTelnet is based on forcing a Telnet port to infect the LINUX
operating system of an IoT device [54]. One security measure to prevent an IRCTelnet attack is to disable
the Telnet port number. According to the 2017 OWASP application security flaws review, the ten most
critical web application security risks are: injection, broken authentication, sensitive data exposure,
XML external entities (XXE), broken access control, security misconfiguration, cross-site scripting
(XSS), insecure deserialization, and using components with known vulnerabilities (www.owasp.org,
OWASP Top 10—2017 The Ten Most Critical Web Application Security Risks). Furthermore, injection
is defined as untrusted data that is sent to an interpreter as part of a command or query to bring
down the application using this data. An effective security control to prevent the user from entering
more or less than the required format, and to prevent a hacker from abusing an application system, is
input validation control [55]. SMQTT is proposed to improve MQTT security characteristics based on
lightweight encryption. Many papers have proposed various versions of MQTT to enhance security
features by adding encryption algorithms such as AES and Rivest–Shamir–Adleman (RSA) [56].
The security of the communication for SMQTT is provided through widespread SSL and transport
layer security (TLS) protocols. In the state of the art, many variations of TLS, such as wireless TLS
(WTLS) and datagram TLS (DTLS), are used in mobile communications and UDP-based applications,
respectively, to ensure data privacy and integrity. In this section, we highlight the security protocols
most used in IoT communication to ensure data confidentiality and privacy. Data confidentiality is

www.owasp.org
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guaranteed by encryption protocols. Additionally, data is sanitized, and privacy is preserved. Table 4
presents the most important lightweight encryption algorithms for IoT in terms of key size, average
execution time of 1000 iterations, and applications for both symmetric and asymmetric algorithms.
Symmetric cipher algorithms support message integrity checks, encryption, and entity authentication.
Additionally, asymmetric cipher algorithms provide non-repudiation and key management [57].

Table 4. Lightweight encryption algorithms for IoT.

Algorithm Key Size Execution Time Application

Symmetric
PRESENT 64 bits block with 80/128-bit length key 27.9 RFID

CELFIA 128 bits block with 80/128/192 bits length key - Used by Sony for Digital Right Management

Asymmetric
RSA 1764 Bytes 19.33 Authentication

Elliptic Curves 1272 Bytes 87.03 Pervasive Computing

PRESENT is a symmetric lightweight algorithm using a 64-bit block with 80/128-bit key
length [58]. In addition, CLEFIA is proposed in the ISO/IEC 29192-2 light cryptography standard,
the CRYPTREC project for the revision of the e-Government-recommended ciphers list in Japan, and
it is employed by the Sony Corporation for digital rights management [59]. Additionally, RSA and
elliptic curve (EC) are asymmetric lightweight algorithms. Moreover, RSA uses common public-key
cryptography algorithms, and EC is very useful in pervasive computing [60,61]. Furthermore, three
variants of EC algorithms are implemented—ECDAC for digital signature, ECIES for data encryption,
and ECDH for key exchange [46].

6. Data and Cloud Services Layer

The development of applications for IoT faces many challenges due to the complexity of
distributed computing, the involvement of different programming languages, and the variety of
communication protocols. Therefore, the development of IoT applications requires the management of
both hardware and software components, along with the handling of full infrastructure and delivery
of functional and non-functional requirements. These challenges have led to the emergence of
a cloud-based IoT programming framework launched by the major IoT stakeholders to provide
ready-to-use/develop IoT applications.

The cloud-based IoT frameworks introduce a set of rules and protocols aimed at organizing data
management and message exchange between the parties involved in the IoT network, such as devices,
the cloud system, and users. These frameworks enable a simplified high-level deployment of IoT
applications while hiding the complexity of the underlaying protocols.

In this section, we review the performance of the five main IoT frameworks based on public
clouds, namely Amazon AWS IoT, CISCO IoT Cloud Connect, Google Cloud IoT, Oracle IoT Ecosystem,
and Bosch IoT Suite. We have chosen these frameworks in the absence of a standardized framework,
as they are the best-known ones. We focus on reviewing the security features provided by these
frameworks as well as the inherited security threats by using public cloud architecture.

The cloud-based IoT frameworks are built on three main components: smart devices such as
sensors, tags, etc., the cloud servers providing storage and processing of IoT data, and the users
represented by the applications that access cloud-stored data and communicate with the devices. The
frameworks also include the protocols that are needed to communicate between all the entities.

In Table 5, we compare the security features provided by the selected IoT frameworks. Providing
a secure framework relies mainly on ensuring confidentiality, integrity, availability, authentication,
and access control [55].

To ensure secure communication while transferring and accessing IoT data, various protocols are
used by the aforementioned IoT frameworks, including Hypertext Transfer Protocol Secure (HTTPS),
IPsec, transport layer security (TLS), datagram transport layer security (DTLS), and MQTT over TLS.
Basically, SSL is used by AWS, Google Cloud and Oracle IoT Ecosystem.
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Table 5. Security Features of Cloud-based IoT frameworks.

Cloud-Based IoT Framework Confidentiality Integrity Access Control Authentication Secure Communication Encryption Protocol

AWS IoT SSL-protected, API endpoints SSL-protected, API endpoints Policy-based X.509 certificates SSL TLS

Google IoT ATLS ATLS Cloud IAM ACLs ATLS RSA 2048 HTTPS, SSL AES, 3DESTLS/S/MIME

Oracle IoT SSL PKI: Checksums Roles-based PKI : X.509 certificates, Kerberos SSL 3DES, TSDP

CISCO IoT IPsec IPsec Segment data based on destination X.509 certificates IPsec, TLS, MQTT over TLS TLS, AES, RSA

Bosh IoT WPA2 WPA2 No access control SSID/Password DTLS LWM2M

AWS IoT is composed of four components, namely the device gateway, the rules engine, the
registry, and the device shadows (https://docs.aws.amazon.com/iot-device-management/index.
html). The device gateway is an intermediate component enabling communication between devices
and cloud services via the MQTT protocol. The rules engine is responsible for processing the exchanged
messages to forward them to the AWS, the subscribed devices, or a non-AWS service. The registry unit
assigns an identifier to every connected device, while storing metadata to enable their tracking. The
device shadow is a virtual device image created and stored in the cloud, enabling the saving of the last
online state of the device and enforcement of future changes to the state once it goes online again. In a
nutshell, the framework enables the management of IoT devices using its shadow even when it is not
connected to the network.

To ensure confidentiality, integrity and availability, AWS proposes SSL-protected API endpoints
(https://docs.aws.amazon.com/iot-device-management/index.html). AWS security modules ensure
authentication and authorization. AWS authentication is based on X.509 certificates. On the other
hand, AWS authorization is based on identity and access management (users, groups, and roles).
Additionally, AWS Cognito identity modules are used to create unique user identities [11].

Google Cloud uses three kinds of encryption protocols to ensure the protection of data at the
application layer. These are AES, TLS and secure/multipurpose Internet mail extensions (S/MIME)
(http://cloud.google.com/security/encryption-in-transit). Likewise, Google cloud uses application
layer transport security (ATLS) to guaranty confidentiality, integrity and authentication among different
services. Also, Google Cloud suggests various access control options, such as cloud identity and access
management as well as access control lists (ACLs).

The Oracle IoT solution is based on transparent sensitive data protection (TSDP) to ensure
confidentiality and integrity. In addition, to improve data security, Oracle employs data masking and
sub-setting to comply with the payment card industry data security standard (PCI-DSS) (www.oracle.
com/technetwork/database/security/security-compliance).

CISCO IoT platform architecture is composed of four layers. These are an embedded systems
and sensors layer, a multi-service edge layer, a core layer, and a data center cloud layer. The core layer
includes IP/MPLS, security management, and network service. CISCO proposes an IoT/M2M security
framework. Strong authentication is well provided by using AES and RSA for digital signature and key
transport (www.cisco.com/secure-iot-proposed-framework, CISCO Kinetic Security Technical Paper).
To ensure secure data traffic and data management, The CISCO Cloud solution employs HTTPS over
IPsec, and SNMP over IPsec, respectively. Likewise, authorization and access control in CISCO IoT
Cloud Connect uses segment data based on destination.

The architecture of the Bosch IoT suite expects an identity management module for users,
roles, relations, and permissions. Regarding Bosch cross-domain applications (i.e., case of XDL120),
confidentiality and integrity are based on the Wi-Fi-protected access 2 (WPA2) provided by the standard
IEEE 802.11i/e/g white-listing of MAC addresses (https://www.digikey.co.uk/en/supplier-centers/
b/bosch-cds). Furthermore, XDL120 employs DTLS to ensure a secure communication of transmitted
sensor parameters and lightweight M2M (LWM2M) communication protocols.

In addition, cloud-based IoT frameworks provide access to machine-learning functions, enabling
the processing of collected IoT data.

Research has identified multiple applications of machine learning in IoT contexts. The taxonomy
of ML in IoT contexts for big data analysis is presented in Table 6. These ML models are categorized
into three categories—classification, regression, and clustering [62]. The ML classification family

https://docs.aws.amazon.com/iot-device-management/index.html
https://docs.aws.amazon.com/iot-device-management/index.html
https://docs.aws.amazon.com/iot-device-management/index.html
http://cloud.google.com/security/encryption-in-transit
www.oracle.com/technetwork/database/security/security-compliance
www.oracle.com/technetwork/database/security/security-compliance
www.cisco.com/secure-iot-proposed-framework
https://www.digikey.co.uk/en/supplier-centers/b/bosch-cds
https://www.digikey.co.uk/en/supplier-centers/b/bosch-cds
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includes K-Nearest Neighbors (KNN), Naive Bayes (NB), and SVM. The ML clustering family involves
K-means, a density-based approach to spatial clustering of applications with noise (DBSCAN), and the
Feed Forward Neural Network (FFNN). The ML regression family covers Linear Regression (LR) and
Support Vector Regression (SVR).

Table 6. Machine-learning trends for IoT.

Algorithm Complexity for Prediction Advantages Disadvantages IoT Applications

Classification

KNN O(np) Easy to update in online setting Unscalable to large data sets Smart Citizen, Smart Tourism

Naive Bayes O(p) Fast and highly scalable Strong feature independence assumptions Smart Agriculture, Spam filtering, Text categorization

SVM O(nsv p) Good for unbalanced data The lack of transparency of results Real-Time Prediction: Detection of Intrusion, attacks and malware.

Regression
Linear regression O(p) Processing under high rate Very sensitive to outliers Energy Applications, Market Prediction

SVR O(nsv p) Useful and flexible technique More complicated Intelligent transportation systems, Smart Weather

Clustering

K-means O(n2) Very fast and highly scalable Difficult to predict the number of clusters (K-Value) Smart Cities, Smart Home, Smart Citizen, Intelligent Transport

DBSCAN O(n2) fast and robust against outliers Performance is sensitive to the distance metric Smart Citizen, Smart Tourism

Feed Forward Neural Network O(n2) Non-linearity and robustness Longer time for training Smart Health

One important application of KNN clustering machine learning is to enable smart tourism and
tourist pattern tracking. Then main advantage of KNN is that the online settings are easy to update;
however, KNN is unscalable to large datasets. NB is applicable in many fields, such as spam filtering,
text categorization, and automatic medical diagnosis [63]. Due to applying Bayes’ theorem with
the “naive” assumption of independence between the features, Naive Bayes classification is fast and
highly scalable. The most important application of SVM is real-time prediction, which makes it
suitable for real-time intrusions and attack detection. In addition, SVM has the capability to deal
with high-dimensional datasets. Nonetheless, SVM suffers from a lack of transparency of results. LR
can process at a high rate [64], and this algorithm is useful in many applications, such as economics,
market analysis, and energy usage (to analyze and predict the energy usage of buildings, for example).
However, LR is very sensitive to outliers. SVR uses the same basic idea as SVM, a classification
algorithm, but applies it to predict real values rather than a class. SVR informs the presence of data
non-linearity, and a prediction model is provided. Additionally, SVR is a useful and flexible technique,
helping the user to deal with limitations pertaining to the distributional properties of underlying
variables (https://rpubs.com/linkonabe/SLSvsSVR). The applications of SVR include the forecasting
of financial markets, prediction of electricity prices, estimation of power consumption, and intelligent
transportation systems [65]. The K-means clustering algorithm is present in many IoT applications,
such as smart city, smart home, smart citizen, and air traffic control [66]. The most important benefits of
K-means includes the high scalability and speed. However, K-means presents various disadvantages
such as difficulty in predicting the number of clusters (K-Value), and sensitivity to scale. DBSCAN is an
effective ML clustering algorithm, especially for large datasets. In addition, DBSCAN is very suitable
for smart cities and for anomaly detection in temperature data applications [67]. Nonetheless, in the
case of a dataset with large differences in densities, the clustering process is not efficient. Likewise, the
performance of the model is sensitive to the distance metric used for determining whatever region is
dense [68]. FFNN is a neural network trained with a back-propagation learning algorithm. The major
advantages of FFNN are its adaptability without support of the user, non-linearity, and robustness.
FFNN suffers from having a high number of weights in the neural network and requiring a longer time
for training. The application fields of FFNN are smart health and chemistry (i.e., for the prediction of
multi-state secondary structures).

The Generative adversarial network (GAN) is a pertinent type of machine learning that is receiving
increased attention from researchers, based on two networks—generative network and discriminative
network. The first network is used to generate new candidates from a known dataset, while the second
serves as candidate evaluation. New emergent applications of GAN are applied in various fields,
such as semi-supervised salient object detection in cloud-fog IoT devices [69] and high-resolution
image generation [70]. On the other hand, the disadvantage of the Floor of Log algorithm associated
with KNN and SVM is a promising supervised technique based on compressed features for power
reduction of mobile devices running face-recognition applications [71].

https://rpubs.com/linkonabe/SLSvsSVR
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7. Open Research Issues and Future Directions

Ensuring a fully secure IoT network is still a challenge that can hold back complete adoption of
IoT application in daily life. There are multiple open issues and challenges to the provision of more
secure IoT networks that constitute great opportunities for researchers. The first deciding factor in
terms of security that will shape the future direction of IoT is the building of a standard architecture
to ensure secure and reliable communication from a perception layer until cloud layer-like TCP/IP
architecture in an Internet context. The second factor is the specification and selectin of the required
lightweight encryption algorithm that fulfils IoT device capacity in terms of processing power and
energy consumption. In this section, we review some future directions that will enable secure and
private IoT application by either developing dedicated solutions, or adopting novel application of
existing technologies.

7.1. The Lack of Standardized Lightweight Encryption Algorithms for IoT Applications

Efforts are being made to define a standard for lightweight encryption algorithms that
are designed for IoT applications. Many requirements need to be fulfilled as IoT devices are
resource-constrained devices. The main obstacles for proposing lightweight security algorithms
for all IoT applications are the limited capacity of IoT devices in terms of energy consumption,
processing power, and memory capacity. A minimum requirement for each lightweight security
algorithm should be defined, such as key size, energy consumption, and execution time. Several
encryption algorithms have been designed to suit IoT applications. Conventional algorithms have
been applied to secure IoT including tiny encryption algorithm (TEA), which provides lower memory
use and ease of implementation on both hardware and software scales [72]. AES has been also adopted
to provide secure communication between IoT devices [73]. Though an attribute-based encryption
algorithm requires high computation costs, several lightweight versions have been designed to suit
IoT applications, such as reduced computation algorithms [40,74], offloading heavy computations to
an edge [75], or cloud server [26].

7.2. Use of Machine Learning to Enhance Security in IoT

Recently, there has been an increased interest in targeting the use of machine-learning models to
secure IoT applications [76].

Meidan et al. proposed [77] a Random Forest model, which is a supervised machine-learning
algorithm, to extract features from network traffic data to detect unauthorized IoT devices.

Distributed Denial of Service (DDoS) attacks are increasing against IoT networks with the
emergence of various techniques such as botnets [78]. In [77], a machine learning-based DDoS
attack-detection mechanism is presented. This proposed solution enables the collection of IoT data,
extracting the features and binary classification of IoT traffic to detect malicious traffic that initiates a
DDoS attack. To build this mechanism, the authors used a variety of ML classifiers, namely random
forests, K-nearest neighbors, support vector machines, decision trees, and neural networks.

Machine-learning algorithms have been also used for intrusion detection [79]. Zhao et al. [80]
proposed a machine-learning-based intrusion-detection system that matches IoT characteristics
requiring real-time monitoring. The authors based their solution on a dimension-reduction algorithm
and a classifier. Principal Component Analysis (PCA) is used to decrease the size of the dataset
of features to be analyzed. Furthermore, SoftMax regression and K-nearest are the two neighbor
algorithms applied in the solution.

7.3. Blockchain in Smart IoT

Blockchain (BC) can be useful in many application fields, such as logistics and supply-chain
management, Industry 4.0, the food industry, smart grid, and wireless network virtualization, to add
more security features, to handle a large amount of data, and to support different components working
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together in a distributed decentralized network [81]. A decentralized BC platform can provide better
protection in terms of security and privacy compared to the classical centralized architecture [82].
However, decentralized consensus algorithms suffer from high energy consumption and computing
power, and cannot be implemented in IoT devices with limited resources and mobile edge servers. For
instance, various frameworks based on BC have been proposed by exploiting built-in cryptography
mechanisms and by combining a smart contract concept to enable the automated enforcement of
some conditions in the real world [83,84]. In 5G applications communication systems and beyond,
BC can enhance spectral efficiency and provide much better 5G traffic optimization while preserving
privacy when different IoT devices share a link condition [85]. Despite all the advantages offered by
BC technology and the related proposed frameworks based on it to improve security components,
to the best of our knowledge there is no proposed framework that can provide a complete secured
solution providing the confidentiality, integrity and availability (CIA) triad, preserving privacy, and
offering multi-factor or remote authentication. Therefore, we believe that securing BC-based solutions
for IoT is a big challenge for researchers in the future.

7.4. Securing 4G/5G and beyond Applications

Ferag and al. [86] presented a taxonomy of attacks against 4G/5G cellular networks based on
four classes, including attacks against privacy, attacks against availability, attacks against integrity and
attacks against authentication. Despite various countermeasures being provided to preserve privacy
and authentication based on cryptography methods, human factors, and intrusion-detection systems
to meet the security requirements for IoT in the 5G context, we believe that more research effort is
necessary to achieve this goal. Some security issues related to the 5G network need to be resolved, such
as the absence of a dataset for network intrusion detection in 5G scenarios. Furthermore, location and
identity privacy are not preserved for 5G fog radio access network (F-RAN) and 5G cloud radio access
network (C-RAN). Finally, recent research work regarding capacity extension of a massive MIMO
channel [87] using new waveforms to enhance the performance of a 5G mobile system and to raise
the number of connected IoT devices [88] needs to be enforced against privacy breaches and intrusion
attacks in the C-RAN and F-RAN architecture.

8. Conclusions

In this paper, an IoT five-layer architecture is proposed based on potential security threats
and countermeasures. Furthermore, the common attacks against IoT devices are exhibited, and
the required countermeasures are reviewed. Indeed, IoT trends include securing the most relevant
communication protocols, mitigating the security issues of the most important IoT platforms, and
applications of the most important machine-learning trends to mitigate and predict security threats and
risks. The main security features of IoT business platforms are addressed in terms of confidentiality,
integrity, access control, authentication, secure communication, and encryption protocols. Finally, open
research issues and future directions towards secure IoT devices and applications are discussed by
providing standardized lightweight encryption algorithms, using machine-learning and blockchain,
and enforcing security measures for 4G/5G mobile system applications and beyond.
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