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Quantifying and addressing the prevalence and bias
of study designs in the environmental and social
sciences

Alec P. Christiem et al?

Building trust in science and evidence-based decision-making depends heavily on the cred-
ibility of studies and their ndings. Researchers employ many different study designs that
vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we
empirically quantify, on a large scale, the prevalence of different study designs and the
magnitude of bias in their estimates. Randomised designs and controlled observational
designs with pre-intervention sampling were used by just 23% of intervention studies in
biodiversity conservation, and 36% of intervention studies in social science. We demonstrate,
through pairwise within-study comparisons across 49 environmental datasets, that these
types of designs usually give less biased estimates than simpler observational designs. We
propose a model-based approach to combine study estimates that may suffer from different
levels of study design bias, discuss the implications for evidence synthesis, and how to
facilitate the use of more credible study designs.

#A list of authors and their afiations appears at the end of the paper.
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he ability of science to reliably guide evidence-basedTo demonstrate the importance of study designs, we can use

decision-making hinges on the accuracy and credibility tife following decomposition of estimation error equaton

studies and their resuld. Well-designed, randomised
experiments are widely accepted to yield more credible results ) ) ) ] . .
than non-randomised,observational studieghat attempt to Ya 8Designbiap Modelling biag Statistical noiske
approximate and mimic randomised experimént®andomisa-  This demonstrates that even if we improve the quality of
tion is a key element of study design that is widely used acrgssdelling and analysis (to reduce modelling bias through a better
many disciplines because of its ability to remove confoundifghs-variance trade-8f) or increase sample size (to reduce sta-
biases (through random assignment of the treatment or impact@ftical noise), we cannot remove the intrinsic bias introduced by
interest). However, ethical, logistical, and economic constrairige choice of study design (design bias) unless we collect the data
often prevent the implementation of randomised experiments, 5 different way. The importance of study design in determining
whereas non-randomised observational studies have becqRelevels of bias in study results therefore cannot be overstated.
popular as they take advantage of historical data for new researcBor the purposes of this study we consider six commonly used
questions, larger sample sizes, less costly implementation, &3dy designs; differences and connections can be visualised in
more relevant and representative study systems or POPUWOHSFig. 1. There are three major components that allow us tange
Observational studies nevertheless face the challenge of accqyBte designs: randomisation, sampling before and after the
ing for confounding biases without randomisation, which has |q’|‘i’1pact of interest occurs, and the use of a control group.
to innovations in study design. ) ) Of the non-randomised observational designs, the Before-After

We de ne‘study desighas an organised way of collecting datazontrol-Impact (BACI) design uses a control group and samples

Importantly, we distinguish between data collection and statisti¢@fore and after the impact occurs (i.e., in thefore-periodand
analysis (as opposed to other autirsbecause of the beliefhe ‘after-period). Its rationale is to explicitly account for pre-
that bias introduced by aawed design is often much moregyisting differences between the impact group (exposed to the
important than bias introduced by statistical analyses. This Wahact) and control group in the before-period, which might
emphasised by Light, Singer & Wille(p. 5):“You cart x by gtherwise bias the estimate of the impmétue effe@1819
analysis what you bungled by desigh and Rubir: “Design  The BACI design improves upon several other commonly used
trumps analysiS.Nevertheless, the importance of study desigihservational study designs, of which there are two uncontrolled
has often been overlooked in debates over the inability @signs: After, and Before-After (BA). An After design monitors
researchers to reproduce the original results of published stucgﬁqmpact group in the after-period, while a BA design compares
(so-called‘reproducibility crised213) in favour of other issues the state of the impact group between the before- and after-
(e.g., p-hackintf and Hypothesizing After Results are Known operiods. Both designs can be expected to yield poor estimates of

Estimation errof/s GEstimator true causal effett

‘ ing 15 . . . )
HARKing ). the impacts true effect (large design bias; Equation (1)) because
Impact
occurs
Before \7 After Study design Synonyms Estimation of impact
Uncontrolled & Observational After Time Series, Change over time
Single-group in impact group
m Observational
Impact L e
Controlled & Observational Control-Impact Space-for-Time Comparison of
(Cl) Substitution (SfT) impact and control
m Impact vs groups after impact
Impact ._.> Reference,
Controlled
Non-randomised allocation H i
of experimental units \
Control —
Controlled & Randomised
Impact ._%
Randomised allocation 1 Randomised Randomised Difference in
of experimental units Before-After Controlled differences (DiD) or
\ Control-Impact Before-After covariance adjustment
| i (RBACI) using control and
Contro impact groups, before
and after impact.

-3 -2 -1 0 +1 +2 43
Time (t)

Fig. 1 Comparison of different study designs used to evaluate the effect of an impacA hypothetical study set-up is shown where the abundance of
birds in three impact and control replicates (e.g.elds represented by blocks in a row) are monitored before and after an impact (e.g., ploughing) that
occurs in year zero. Different colours represent each study design and illustrate how replicates are sampled. Approaches for calculating areestthmeat
true effect of the impact for each design are also shown, along with synonyms from different disciplines.
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changes in the response variable could have occurred withoutkhewledge gap, we take advantage of summaries for several
impact (e.g., due to natural seasonal changeslyig. thousand biodiversity conservation intervention studies in the
The other observational design is Control-Impact (Cl), whicBonservation Evidence datalfséwww.conservationevidence.
compares the impact group and control group in the after-periazbm) and social intervention studies in systematic reviews by the
(Fig. 1). This design may suffer from design bias introduced yampbell Collaboration www.campbellcollaboration.grgWe
pre-existing differences between the impact group and conttbén quantify the levels of bias in estimates obtained by different
group in the before-period; bias that the BACI design wasudy designs (R-BACI, R-CI, BACI, BA, and CI) by applying a
developed to account 21 These differences have many poshierarchical model to approximately 1000 within-study compar-
sible sources, including experimenter bias, logistical and enisoens across 49 raw environmental datasets from a rangadsf.
onmental constraints, and various confounding factors (variabM& show that R-BACI, R-Cl and BACI designs are poorly
that change the propensity of receiving the impact), but can tEpresented in studies testing biodiversity conservation and social
adjusted for through certain data pre-processing techniques sirlerventions, and that these types of designs tend to give less
as matching and strattatior?2, biased estimates than simpler observational designs. We propose
Among the randomised designs, the most commonly used arenodel-based approach to combine study estimates that may
counterparts to the observational Cl and BACI designs: Randndfer from different levels of study design bias, discuss the
mised Control-Impact (R-CI) and Randomised Before-Aftémplications for evidence synthesis, and how to facilitate the use
Control-Impact (R-BACI) designs. The R-Cl design, ofteaf more credible study designs.
termed‘Randomised Controlled Trial§RCTs) in medicine and
hailed as theégold standart#324, removes any pre-impact dif- Besults

ferences in a stochastic sense, resulting in zero design Piggalence of study designdVe found that the biodiversity-
(Equation (). Similarly, the R-BACI design should also havgynservation (conservation evidence) and social-science (Camp-
zero design bias, and the impact group measurements in i) collaboration) literature had similarly high proportions of
before-period could be used to improve thecancy of the jyervention studies that used CI designs and After designs, but
stansncgl estimator. No randomised equivalents exist of After gy, proportions that used R-BACI, BACI, or BA designs (Bjg.
BA designs as they are uncontrolled. _ There were slightly higher proportions of R-CI designs used by
It is important to briey note that there is debate over WQpiervention studies in social-science systematic reviews than in
major statistical methods that can be used to analyse data ¢k piodiversity-conservation literature (F&). The R-BACI, R-
lected using BACI and R-BACI designs, and which is superior@f and BACI designs made up 23% of intervention studies for

reducing modelling bid8 (Equation (1)). These statisticalyiogiversity conservation, and 36% of intervention studies for
methods are: (i) Differences in Differences (DiD) estimator; ardial science.

(ii) covariance adjustment using the before-period response,

which is an extension of Analysis of Covariance (ANCOVA) for . .

generalised linear models- herein termedcovariance adjust- N uence of different study designs on study results non-
ment (Fig. 1). These estimators rely on different assumptions fgndomised datasets, we found that estimates of BACI (with
obtain unbiased estimates of the impmdtue effect. The DiD covariance agjjustment) and ClI de5|gns.were very s'lmllar, while
estimator assumes that the control group response accuraffy Point estimates for most other designs often differed sub-
represents the impact group response had it not been exposeﬁt tlaII_y in their magnitude and sign. We founq similar rgsults in
the impact (parallel trend$826) whereas covariance adjustmenfa”dom'sed datasets for R-BACI (with covariance adjustment)

assumes there are no unmeasured confounders and linear m R-CI designs. For ~30% of responses, in both non-
assumptions hof#”. randomised and randomised datasets, study design estimates
From both theory and Equation (1), with similar sample sizediffered in their statistical signtance (i.e., p<0.05 versps
randomised designs (R-BACI and R-CI) are expected to be [8§05), except for estimates of (R-)BACI (with covariance
biased than controlled, observational designs with sampling in ffgustment) and (R-)CI designs (TallgFig.3). It was rare for
before-period (BACI), which in turn should be superior tdhe 95% condence intervals of different desigestimates to not

observational designs without sampling in the before-period (CQyerlap- except when comparing estimates of BA designs to (R-)
or without a control group (BA and After desig$). Between BACI (with covariance ad_Justment) a_nd (R-)CI d¢3|gns (Taple _
randomised designs, we might expect that an R-BACI desivas even rarer for estimates of different designs to have sig-
performs better than a R-Cl design because utilising extra d3tacantly different signs (i.e., one estimate with entirely negative
before the impact may improve the efency of the statistical CON dence intervals versus one with entirely positive dence
estimator by explicitly characterising pre-existing differenclervais; Tabld, Fig.3). Overall, point estimates often differed
between the impact group and control group. greatly in their magmtude and, to a Iesser extent, in their sign

Given the likely differences in bias associated with different StL}g%tweer? study designs, but did not differ as greatly when
designs, concerns have been raised over the use of poorly des@e nting for the uncertainty around point estimatescept in
studies in several sciertidiscipline$2%-35 Some disciplines, such€'ms of their statistical sigrzance.
as the social and medical sciences, commonly undertake direct
comparisons of results obtained by randomised and nobevels of bias in estimates of different study designg/e
randomised designs within a single st8fi§® or between multi- modelled study design bias using a random effect across datasets
ple studies (between-study comparis8rfd) to specically in a hierarchical Bayesian modeljs the standard deviation of
understand the inuence of study designs on researcitings. the bias term, and assuming bias is randomly distributed across
However, within-study comparisons are limited in their scope (e.datasets and is on average zero, larger valuesvdf indicate a
a single stud{?*3 and between-study comparisons can be cogreater magnitude of bias (see Methods). We found that, for
founded by variability in context or study populatiéfiOverall, we randomised datasets, estimates of both R-BACI (using covariance
lack quantitative estimates of the prevalence of different stuatjjustment; CA) and R-Cl designs were affected by negligible
designs and the levels of bias associated with their results. amounts of bias (very small values ¢fTable2). When the R-

In this work, we aim to rst quantify the prevalence of differentBACI design used the DiD estimator, it suffered from slightly
study designs in the social and environmental scienced] fas more bias (slightly larger values ¢f whereas the BA design had
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Literature very high bias when applied to randomised datasets (very large
100 Social Science: Campbell Colboratin— yalues of ; Table2). There was a highly positive correlation
. Byiodive,sityconsewa“on: between the estimates of R-BACI (using covariance adjustment)
Conservation Evidence database and R-ClI designs ([R-BACI CA, R-Cl] was close to 1; Talidp
Estimates of R-BACI using the DiD estimator were also positively
75 correlated with estimates of R-BACI using covariance adjustment

and R-CI designs (moderate positive mean values[RfBACI
CA, R-BACI DiD] and [R-BACI DiD, R-Cl]; Table2).

For non-randomised datasets, controlled designs (BACI and
ClI) were substantially less biased (far smaller valugstibén the
uncontrolled BA design (Tab®. A BACI design using the DiD
estimator was slightly less biased than the BACI design using
covariance adjustment, which was, in turn, slightly less biased
than the CI design (Tablg).

Standard errors estimated by the hierarchical Bayesian model
were reasonably accurate for the randomised datasets (gsee
Methods and Tabl@), whereas there was some underestimation
of standard errors and lack-ot-for non-randomised datasets.

Percentage of studies (%)
[9)]
o

25

Discussion
Our approach provides a principled way to quantify the levels of

After BA cl BACI R-Cl R-BACI | A v > .
| \ | | \ \ bias associated with different study designs. We found that ran-
| \ | domised study designs (R-BACI and R-Cl) and observational
Uncontrolled & Controlled & Controlled & BACI designs are poorly represented in the environmental and

Observational Observational Randomised social sciences; collectively, descriptive case studies (the After
Study design design), the uncontrolled, observational BA design, and the

Fig. 2 Percentage of intervention studies with different study designs in controlled, observational Cl design made up a substantially

the biodiversity-conservation and social-science literature. greater proportion of 'ntervem'on studies (FB). And %etl R-
Intervention studies from the biodiversity-conservation literature were BACI, R-Cl and BACI designs were found to be quaattly less

screened from the Conservation Evidence database 4260 studies) and biased than other observational deSIQnS'. . .
studies from the social-science literature were screened from 32 Campbell ,AS expected_ the R-Cl and R-BACI designs (using a. covar-lance
Collaboration systematic reviewsnE 1009 studies— note studies excluded a(_jIUStm_ent estimator) perfo_rmEd well; the R-BACI design using a
by these reviews based on their study design were still counted). D_'D es“mator perfqrmed slightly Iess_ We"’. probably because the
Percentages for the social-science literature were calculated for each d|ffe_r_encmg Of_ pl_’e—lmpa_ct data by this eStlmatc.)r may m.tmduce
systematic review (blue data points) and then averaged across all additional statistical noise compared to covariance adjustment,

32 systematic reviews (blue bars and black vertical lines represent meanWh'Ch controls fqr these d‘?‘ta using a Iaggeq regression variable.
and 95% Con dence Intervals, respectively). Percentages for the Of the observational des_lgns, the B_A design performed _Very
biodiversity-conservation literature are absolute values (shown as green poorly (both when ana_lysmg randomised and non-randomised
bars) calculated from the entire Conservation Evidence database (after data) as e)_(pea?d' being unconFrO”ed and therefore prone to
excluding any reviews). Source data are provided as a Source D&aBA sgvere design bia&, The, Cl de§|gn al_so tended to be more
before-after, Cl control-impact, BACI before-after-control-impact, R-BACI b'G}SQd tha}n the BACI design (usmg a DiD estimator) due to pre-
randomised BACI, R-CI randomised CI. existing differences between the impact and control groups. For
BACI designs, we recommend that the underlying assumptions of

Design 1 Design 2 No overlap (95%  >100% difference in Different signi cance Different Signi cantly different sign
Conf. Ints.) magnitude (P.E.) (95% Conf. Ints.) signs (P.E.) (95% Conf. Ints.)

Randomised (R-)

BACI DiD BACICA 0.01 0.68 0.27 0.32 0.00

BACI DIiD CI 0.01 0.69 0.27 0.32 0.00

BACI DIiD BA 0.01 0.68 0.29 0.34 0.00

BACICA CI 0.00 0.04 0.05 0.01 0.00

BACICA BA 0.16 0.82 0.33 0.47 0.06

(¢]] BA 0.16 0.82 0.30 0.47 0.07

Non-randomised

BACI DiD BACI CA 0.04 0.58 0.31 0.27 0.00

BACI DiD ClI 0.05 0.61 0.28 0.30 0.01

BACI DiD BA 0.04 0.61 0.22 0.25 0.01

BACICA CI 0.00 0.18 0.08 0.08 0.00

BACI CA BA 0.14 0.74 0.34 0.36 0.03

Cl BA 0.12 0.71 0.33 0.37 0.02

This shows the proportion of responses in which there were differences in the magnitude (by > 100%) and sign of estimates, and differences in theesigej sign and overlap between associated 95%

con dence intervals. For randomised datasets, BACI and Cl labels refer to R-BACI and R-ClI designs (dend®&dl Bhe 100% difference in magnitude criterion is set relative to the smaller estimatg.

BA before-after, BACI before-after-control-impact, Cl control-impact, DiD difference in differences, CA covariance adjustment, 95% Confeferts.to 95% con dence intervals, P.E. point estimate
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