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ARTICLE

Quantifying and addressing the prevalence and bias
of study designs in the environmental and social
sciences
Alec P. Christie et al.#

Building trust in science and evidence-based decision-making depends heavily on the cred-

ibility of studies and their� ndings. Researchers employ many different study designs that

vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we

empirically quantify, on a large scale, the prevalence of different study designs and the

magnitude of bias in their estimates. Randomised designs and controlled observational

designs with pre-intervention sampling were used by just 23% of intervention studies in

biodiversity conservation, and 36% of intervention studies in social science. We demonstrate,

through pairwise within-study comparisons across 49 environmental datasets, that these

types of designs usually give less biased estimates than simpler observational designs. We

propose a model-based approach to combine study estimates that may suffer from different

levels of study design bias, discuss the implications for evidence synthesis, and how to

facilitate the use of more credible study designs.

https://doi.org/10.1038/s41467-020-20142-y OPEN

#A list of authors and their af� liations appears at the end of the paper.
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The ability of science to reliably guide evidence-based
decision-making hinges on the accuracy and credibility of
studies and their results1,2. Well-designed, randomised

experiments are widely accepted to yield more credible results
than non-randomised,‘observational studies’ that attempt to
approximate and mimic randomised experiments3. Randomisa-
tion is a key element of study design that is widely used across
many disciplines because of its ability to remove confounding
biases (through random assignment of the treatment or impact of
interest4,5). However, ethical, logistical, and economic constraints
often prevent the implementation of randomised experiments,
whereas non-randomised observational studies have become
popular as they take advantage of historical data for new research
questions, larger sample sizes, less costly implementation, and
more relevant and representative study systems or populations6–9.
Observational studies nevertheless face the challenge of account-
ing for confounding biases without randomisation, which has led
to innovations in study design.

We de� ne‘study design’ as an organised way of collecting data.
Importantly, we distinguish between data collection and statistical
analysis (as opposed to other authors10) because of the belief
that bias introduced by a� awed design is often much more
important than bias introduced by statistical analyses. This was
emphasised by Light, Singer & Willet11 (p. 5): “You can’t � x by
analysis what you bungled by design…”; and Rubin3: “Design
trumps analysis.” Nevertheless, the importance of study design
has often been overlooked in debates over the inability of
researchers to reproduce the original results of published studies
(so-called‘reproducibility crises’12,13) in favour of other issues
(e.g., p-hacking14 and Hypothesizing After Results are Known or
‘HARKing’15).

To demonstrate the importance of study designs, we can use
the following decomposition of estimation error equation16:

Estimation error¼ Estimator� true causal effectð Þ

¼ Design biasþ Modelling biasþ Statistical noiseð Þ:
ð1Þ

This demonstrates that even if we improve the quality of
modelling and analysis (to reduce modelling bias through a better
bias-variance trade-off17) or increase sample size (to reduce sta-
tistical noise), we cannot remove the intrinsic bias introduced by
the choice of study design (design bias) unless we collect the data
in a different way. The importance of study design in determining
the levels of bias in study results therefore cannot be overstated.

For the purposes of this study we consider six commonly used
study designs; differences and connections can be visualised in
Fig.1. There are three major components that allow us to de� ne
these designs: randomisation, sampling before and after the
impact of interest occurs, and the use of a control group.

Of the non-randomised observational designs, the Before-After
Control-Impact (BACI) design uses a control group and samples
before and after the impact occurs (i.e., in the‘before-period’ and
the ‘after-period’). Its rationale is to explicitly account for pre-
existing differences between the impact group (exposed to the
impact) and control group in the before-period, which might
otherwise bias the estimate of the impact’s true effect6,18,19.

The BACI design improves upon several other commonly used
observational study designs, of which there are two uncontrolled
designs: After, and Before-After (BA). An After design monitors
an impact group in the after-period, while a BA design compares
the state of the impact group between the before- and after-
periods. Both designs can be expected to yield poor estimates of
the impact’s true effect (large design bias; Equation (1)) because
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Fig. 1 Comparison of different study designs used to evaluate the effect of an impact.A hypothetical study set-up is shown where the abundance of
birds in three impact and control replicates (e.g.,� elds represented by blocks in a row) are monitored before and after an impact (e.g., ploughing) that
occurs in year zero. Different colours represent each study design and illustrate how replicates are sampled. Approaches for calculating an estimate of the
true effect of the impact for each design are also shown, along with synonyms from different disciplines.
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changes in the response variable could have occurred without the
impact (e.g., due to natural seasonal changes; Fig.1).

The other observational design is Control-Impact (CI), which
compares the impact group and control group in the after-period
(Fig. 1). This design may suffer from design bias introduced by
pre-existing differences between the impact group and control
group in the before-period; bias that the BACI design was
developed to account for20,21. These differences have many pos-
sible sources, including experimenter bias, logistical and envir-
onmental constraints, and various confounding factors (variables
that change the propensity of receiving the impact), but can be
adjusted for through certain data pre-processing techniques such
as matching and strati� cation22.

Among the randomised designs, the most commonly used are
counterparts to the observational CI and BACI designs: Rando-
mised Control-Impact (R-CI) and Randomised Before-After
Control-Impact (R-BACI) designs. The R-CI design, often
termed‘Randomised Controlled Trials’ (RCTs) in medicine and
hailed as the‘gold standard’23,24, removes any pre-impact dif-
ferences in a stochastic sense, resulting in zero design bias
(Equation (1)). Similarly, the R-BACI design should also have
zero design bias, and the impact group measurements in the
before-period could be used to improve the ef� ciency of the
statistical estimator. No randomised equivalents exist of After or
BA designs as they are uncontrolled.

It is important to brie� y note that there is debate over two
major statistical methods that can be used to analyse data col-
lected using BACI and R-BACI designs, and which is superior at
reducing modelling bias25 (Equation (1)). These statistical
methods are: (i) Differences in Differences (DiD) estimator; and
(ii) covariance adjustment using the before-period response,
which is an extension of Analysis of Covariance (ANCOVA) for
generalised linear models— herein termed‘covariance adjust-
ment’ (Fig.1). These estimators rely on different assumptions to
obtain unbiased estimates of the impact’s true effect. The DiD
estimator assumes that the control group response accurately
represents the impact group response had it not been exposed to
the impact (‘parallel trends’18,26) whereas covariance adjustment
assumes there are no unmeasured confounders and linear model
assumptions hold6,27.

From both theory and Equation (1), with similar sample sizes,
randomised designs (R-BACI and R-CI) are expected to be less
biased than controlled, observational designs with sampling in the
before-period (BACI), which in turn should be superior to
observational designs without sampling in the before-period (CI)
or without a control group (BA and After designs7,28). Between
randomised designs, we might expect that an R-BACI design
performs better than a R-CI design because utilising extra data
before the impact may improve the ef� ciency of the statistical
estimator by explicitly characterising pre-existing differences
between the impact group and control group.

Given the likely differences in bias associated with different study
designs, concerns have been raised over the use of poorly designed
studies in several scienti� c disciplines7,29–35. Some disciplines, such
as the social and medical sciences, commonly undertake direct
comparisons of results obtained by randomised and non-
randomised designs within a single study36–38 or between multi-
ple studies (between-study comparisons39–41) to speci� cally
understand the in� uence of study designs on research� ndings.
However, within-study comparisons are limited in their scope (e.g.,
a single study42,43) and between-study comparisons can be con-
founded by variability in context or study populations44. Overall, we
lack quantitative estimates of the prevalence of different study
designs and the levels of bias associated with their results.

In this work, we aim to� rst quantify the prevalence of different
study designs in the social and environmental sciences. To� ll this

knowledge gap, we take advantage of summaries for several
thousand biodiversity conservation intervention studies in the
Conservation Evidence database45 (www.conservationevidence.
com) and social intervention studies in systematic reviews by the
Campbell Collaboration (www.campbellcollaboration.org). We
then quantify the levels of bias in estimates obtained by different
study designs (R-BACI, R-CI, BACI, BA, and CI) by applying a
hierarchical model to approximately 1000 within-study compar-
isons across 49 raw environmental datasets from a range of� elds.
We show that R-BACI, R-CI and BACI designs are poorly
represented in studies testing biodiversity conservation and social
interventions, and that these types of designs tend to give less
biased estimates than simpler observational designs. We propose
a model-based approach to combine study estimates that may
suffer from different levels of study design bias, discuss the
implications for evidence synthesis, and how to facilitate the use
of more credible study designs.

Results
Prevalence of study designs. We found that the biodiversity-
conservation (conservation evidence) and social-science (Camp-
bell collaboration) literature had similarly high proportions of
intervention studies that used CI designs and After designs, but
low proportions that used R-BACI, BACI, or BA designs (Fig.2).
There were slightly higher proportions of R-CI designs used by
intervention studies in social-science systematic reviews than in
the biodiversity-conservation literature (Fig.2). The R-BACI, R-
CI, and BACI designs made up 23% of intervention studies for
biodiversity conservation, and 36% of intervention studies for
social science.

In � uence of different study designs on study results. In non-
randomised datasets, we found that estimates of BACI (with
covariance adjustment) and CI designs were very similar, while
the point estimates for most other designs often differed sub-
stantially in their magnitude and sign. We found similar results in
randomised datasets for R-BACI (with covariance adjustment)
and R-CI designs. For ~30% of responses, in both non-
randomised and randomised datasets, study design estimates
differed in their statistical signi� cance (i.e., p < 0.05 versusp>
= 0.05), except for estimates of (R-)BACI (with covariance
adjustment) and (R-)CI designs (Table1; Fig.3). It was rare for
the 95% con� dence intervals of different designs’ estimates to not
overlap– except when comparing estimates of BA designs to (R-)
BACI (with covariance adjustment) and (R-)CI designs (Table1).
It was even rarer for estimates of different designs to have sig-
ni� cantly different signs (i.e., one estimate with entirely negative
con� dence intervals versus one with entirely positive con� dence
intervals; Table1, Fig.3). Overall, point estimates often differed
greatly in their magnitude and, to a lesser extent, in their sign
between study designs, but did not differ as greatly when
accounting for the uncertainty around point estimates– except in
terms of their statistical signi� cance.

Levels of bias in estimates of different study designs. We
modelled study design bias using a random effect across datasets
in a hierarchical Bayesian model;� is the standard deviation of
the bias term, and assuming bias is randomly distributed across
datasets and is on average zero, larger values of� will indicate a
greater magnitude of bias (see Methods). We found that, for
randomised datasets, estimates of both R-BACI (using covariance
adjustment; CA) and R-CI designs were affected by negligible
amounts of bias (very small values of� ; Table2). When the R-
BACI design used the DiD estimator, it suffered from slightly
more bias (slightly larger values of� ), whereas the BA design had
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very high bias when applied to randomised datasets (very large
values of� ; Table 2). There was a highly positive correlation
between the estimates of R-BACI (using covariance adjustment)
and R-CI designs (� [R-BACI CA, R-CI] was close to 1; Table2).
Estimates of R-BACI using the DiD estimator were also positively
correlated with estimates of R-BACI using covariance adjustment
and R-CI designs (moderate positive mean values of� [R-BACI
CA, R-BACI DiD] and� [R-BACI DiD, R-CI]; Table2).

For non-randomised datasets, controlled designs (BACI and
CI) were substantially less biased (far smaller values of� ) than the
uncontrolled BA design (Table2). A BACI design using the DiD
estimator was slightly less biased than the BACI design using
covariance adjustment, which was, in turn, slightly less biased
than the CI design (Table2).

Standard errors estimated by the hierarchical Bayesian model
were reasonably accurate for the randomised datasets (see� in
Methods and Table2), whereas there was some underestimation
of standard errors and lack-of-� t for non-randomised datasets.

Discussion
Our approach provides a principled way to quantify the levels of
bias associated with different study designs. We found that ran-
domised study designs (R-BACI and R-CI) and observational
BACI designs are poorly represented in the environmental and
social sciences; collectively, descriptive case studies (the After
design), the uncontrolled, observational BA design, and the
controlled, observational CI design made up a substantially
greater proportion of intervention studies (Fig.2). And yet R-
BACI, R-CI and BACI designs were found to be quanti� ably less
biased than other observational designs.

As expected the R-CI and R-BACI designs (using a covariance
adjustment estimator) performed well; the R-BACI design using a
DiD estimator performed slightly less well, probably because the
differencing of pre-impact data by this estimator may introduce
additional statistical noise compared to covariance adjustment,
which controls for these data using a lagged regression variable.
Of the observational designs, the BA design performed very
poorly (both when analysing randomised and non-randomised
data) as expected, being uncontrolled and therefore prone to
severe design bias7,28. The CI design also tended to be more
biased than the BACI design (using a DiD estimator) due to pre-
existing differences between the impact and control groups. For
BACI designs, we recommend that the underlying assumptions of

Table 1 Pairwise comparison of estimates obtained using different study designs.

Design 1 Design 2 No overlap (95%
Conf. Ints.)

>100% difference in
magnitude (P.E.)

Different signi� cance
(95% Conf. Ints.)

Different
signs (P.E.)

Signi� cantly different sign
(95% Conf. Ints.)

Randomised (R-)
BACI DiD BACI CA 0.01 0.68 0.27 0.32 0.00
BACI DiD CI 0.01 0.69 0.27 0.32 0.00
BACI DiD BA 0.01 0.68 0.29 0.34 0.00
BACI CA CI 0.00 0.04 0.05 0.01 0.00
BACI CA BA 0.16 0.82 0.33 0.47 0.06
CI BA 0.16 0.82 0.30 0.47 0.07
Non-randomised
BACI DiD BACI CA 0.04 0.58 0.31 0.27 0.00
BACI DiD CI 0.05 0.61 0.28 0.30 0.01
BACI DiD BA 0.04 0.61 0.22 0.25 0.01
BACI CA CI 0.00 0.18 0.08 0.08 0.00
BACI CA BA 0.14 0.74 0.34 0.36 0.03
CI BA 0.12 0.71 0.33 0.37 0.02

This shows the proportion of responses in which there were differences in the magnitude (by > 100%) and sign of estimates, and differences in the signi� cance, sign and overlap between associated 95%
con� dence intervals. For randomised datasets, BACI and CI labels refer to R-BACI and R-CI designs (denoted by‘R-’). The 100% difference in magnitude criterion is set relative to the smaller estimate.
BA before-after, BACI before-after-control-impact, CI control-impact, DiD difference in differences, CA covariance adjustment, 95% Conf. Ints.refers to 95% con� dence intervals, P.E. point estimate.
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Fig. 2 Percentage of intervention studies with different study designs in
the biodiversity-conservation and social-science literature.
Intervention studies from the biodiversity-conservation literature were
screened from the Conservation Evidence database (n= 4260 studies) and
studies from the social-science literature were screened from 32 Campbell
Collaboration systematic reviews (n= 1009 studies– note studies excluded
by these reviews based on their study design were still counted).
Percentages for the social-science literature were calculated for each
systematic review (blue data points) and then averaged across all
32 systematic reviews (blue bars and black vertical lines represent mean
and 95% Con� dence Intervals, respectively). Percentages for the
biodiversity-conservation literature are absolute values (shown as green
bars) calculated from the entire Conservation Evidence database (after
excluding any reviews). Source data are provided as a Source Data� le. BA
before-after, CI control-impact, BACI before-after-control-impact, R-BACI
randomised BACI, R-CI randomised CI.
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