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ABSTRACT

The water or steam injection in oil fields is a usual method for enhanced oil recovery in petroleum
engineering. The theroaviscous fingering instability is one of the main problems with complex
nature that decreases the efficiency of oil extraction. Agiube oil wells are the porous medium

with a level of anisotropy for permeability and diffusion. In this paper, themiddeviscous
fingering instability in anisotropic media has been investigated using both linear stability analysis
and CFD simulationFor stability analysis, the growth rate of disturbances is determined by
solving quasisteady state equations via shogtmethod. The CFD simulation is performed by
solving the governing equations of heat and mass transfer using a spectral ihetsbdwn that

the longitudinal direction permeability and the transverse direction dispersion have important
effect on the istability. The value of thermahg coefficient and the Lewis number have opposite
effects on the different types of displacements #ra considered. For the case of sweeping the
porous media via the cold fluid, increasing the Lewis number intensifeedetrel of flow
instability.

Keywords Thermal viscous fingering, Anisotropic media, Linear stability analysis, Spectral
method,Lewis number, Thermadag.
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Introduction

The displacement of liquids through porous media is so important in industrial sajoplec
especially in enhanced oil recovery (EOf¥afai and Tien, 1981, Whitaker, 1986, Alizadeh,
Karimi, Arjmandzadeh and Mehdizadeh, 2019, Yuan, Xu and Zhao, 282@ng them, fingering
instability represent aignificant topic of research. The viscous fingering is happened in porous
media when a low viscosity liquid displaces a high viscosity one. Theehfferof viscosity of

the two fluids involved in displacements is known to be the key factor associatedhisit
instability. However, the other characteristafshe permeable medium and flow may also affect

the severity of this instability. Viscous fingering appears in many environmental, geophysical and
industrial processes such as petroleum reservoirneagng (water flooding operations),
JURXQGZDWREQY FEWBRDAMDO HQJLQHHULQJ IOXLGL]JHG EHGV (]
(Homsy, 1987) In particular, miscible viscous fingering is known to be critical for EOR in
geological porous med{@&vang and Dag, 2009, Kong, Haghighi and Yortsos, 1992, Berg, Oedai,
Landman, Brussee, Boele, Valdez and van Gelder, 2010, Nilsson, Kulkarni, Gerberich, Hammond,
Singh, Baumhoff and Rothstein, 2013, Pei, Zhang, Gangland Wang, 2014\vherein one fluid

is injected to displace another fluid (e.g. crude oil) and the instability reduces the efficiency of this

process.

Many analytical, computational and experimental studies have been reported in literature about
the viscous fingering instability. The firghajor contribution in this area is the study of Kill952)
Subsequently this topic has stimulated considerable attention. Most studies communicated have
however focused on isothermal flows through isotropic media. For exahapl& Homsy(1988)
have used the spectral method to numerically simulate the viscous fingering problem. More

recently, Shokri, Kayhani, & Norouzi(2017) studied the effect of elasticity on miscible



displacement of neiNewtonian liquids. Yazdet al. (Yazdi and Norouzi, 2018, Norouzi, Yazdi
and Birjandi, 2018have investigated immiscible viscoelastic flows. These studies have identified
that the elastic property of vigelastic fluids can control the fingeginstability and successfully

increase the displacement efficiency.

Since natural and industrial porous media environments are rarely isotropic, the investigation
of flow through anisotropic porous media attradfeslattention of some researchers sihogore
realistically models actual systemdmmerman & Homsy(1991) used Hartley transforms to
numerically simuhite an unstable miscible displacement with anisotropic dispersion. They
observed some finger interaationechanisms which are not present in isotropic dispersion, i.e.
multiple coalescence and fading. More recently, Ghesmat and A28i@&)studied bhe influence
of anisotropy of dispersion on the Saffmaaylor instability. They reported that an anisotropic
velocity-dependent tensor has profound effeon the structure of the fingers, the sweep efficiency
and the relative contact area of displacemdéidrouzi & Shoghi{2014)studied the same problem
by considering anisotropic behaw for both permeability and dispersion. They showed that the
flow is stabilized by increasing the peeability ratio and decreasing the dispersion ratio of
anisotropic porous media. Henderson and PgtH7) modded the immiscible wateolil
displacement through the anisotropic and heterogeneous domain. They ométiparameter
equationto model the anisotropwpf heterogeneous watélboded petroleum reservoirs. Their
results showed that in some configuratiahg, anisotropy could stabilize the flow field which is
assistive in EOR via water flooding techniq@&hokri, Kayhani, & Norouzi(2018) simulated
viscoelastic fingering instability in anisotropic media with a Hartley transform and linear stability
analysis (LSA), highlighting t# influence of medium anisotropic characteristics on the fingering

instability.



In all the aforementioned studies, the flow has been assumed to be isothermal, i.e. the displacing
and displaced fluids have the same temperature and their viscosity isepdgdeéd on the
concentration. In some practical petroleum operations such a&testand steam floodir{gslam

and Azaiez, 2010Q)the fingering instability appeara nonrisothermal flows. This instability is
termed thermeviscous fingering instbility and the material modulus (especially the viscosity) is
depended on both concentration and temperature. In this instability, two fronts appear: the thermal
front and theconcentration front. The difference between the location and shape of thesedro

arisen from the difference of heat and mass transfer mechanisms in porous media.

Saghir, Chaalal, & Islar(R000)investigated the nehinear double diffusive convection, both
numerically (via a finite element technique) and experimentally. Sheorey aralidihar(2003)
numerically investigated the displacement of heavy crude oil by pressurized hot water through
porous media. Theresults indicated that the oil recovery process is reliably improved fer non
isothermal injection. Pritcha@004)described a stability analysis to investigate Saffffiaplor
instabilities of twefront (compodional and thermal fronts) systems, emphasizing that instabilities
on the compdsonal front dominate due to the large ratio of thermal to mass diffusion. Moreover,
Pritchard( 2009)investigated the fingering instabilifgr the scenarion which the viscosity at the
front is changed by two factors that diffuse with different rates in his another sgathm and
Azaiez ( 201(y, 201M) investigated the thermwascous fingering using both LSA and CFD
simulation. In these studies, the effect of mobility ratio and Lewis number have been studied in
detail. Mishra, Trevelyan, Almarcha, & De Wi010) studied the differential diffusion of
solutions on fingering instabilityslam and Azaie¢ 2011)modeled the thermal viscous fingering
in a radial geometry. They showed that the flow in radial geometry has some obvious deviations

from the retilinear geometry which is mostly related to the difference in velocity gredidmaiez



and Sajjadi(2012)investigated the stability of twoomponent displacements anhomogeneous
porous media, noting thahe different convection speeds of the component fronts significantly
alter the nstability characteristicsSajjadi and Azaie£2013)further studied tb nonrisothermal
displacement. They showed that by increasing the thermal diffusion rate in liquid phase, the lag
between therbnts is decreasedlorouzi, Dorrani, Shokri and B€g2018)investigated the effect

of viscous dissipation onighinstability, showing that increasing this parameter could stabilize the
flow field. Recently, Shabouei and Nakshatr@2®20)considered doubldiffusive effects orthe
miscible displacement. In their research, lih@tations of popular formulations used in viscous

fingering study withdoublediffusive effectsare investigated.

As elaborated earlier, most of previous works are limited to isotropic mddiazated by
providing a deeper insight into the characteristics of real porous media (which are typically
anisotropic), m the present studyhermal viscous fingering of miscible flows through anisotropic
porous media is investigated theoreticaBpth linear stability analysis (LSA) antcbmputational
fluid dynamics CFD) simulations are presented. Nonlinear simulations are carried out via a
spectral methadThe effects of different characteristics of the flow and media on the instability

are studied imletail.

MODELING

Problem Statement
In this paper, a horizontal flow through an anisotropic porous medium is stédszhematic
shape oftte problem is illustrated iRigure 1. The displacing liquid is entered to the domain with

a constant velocity and sweep the displaced ldaee, the subscribes 1 and 2 denotalibplacing



and displaced liquids, respectivelyince theporous media isansotropic, both onand offaxis
coordinates are deployed to simulate the permeability and dispersion characteristics of the
anisotropic media. HerelK and D are the dispersion and permeability of the damaFor
anisotropic domainsiK and D are usually measured along-axis. The onraxis is the principle
direction where nomliagonal components dk and D are zeo. A coordinate system for any
observer can be considered as araaft. In this paper, the illustrated andy-axis in Fig. 1 (the

main flow and lateral directions) is the @kis. It is supposed that we can reach fromaxit to

on-axis by rotation wh angle £ aroundz direction. The Darcy law is employed to model the

fluid flow and isvalid for viscousdominated scenarios at low Reynolds number. This law4n on

and offaxis coordinates can be expressed as:

W - (1)
T ]/2 |<_ O a \.©
® l_ v, = bt o« ®
qx2 on /C( 0 K22—|0n Wo
Wzlon
e
Q- ¥, /2& Ku KlZ« W
Y ooff ¢ KKy KZZ"off Do

e off (2)

where q is the flow flux, & is viscosity, p is pressure an(bl(i'j and K, ; are componentsf
permeability coefficient tensors in the-awis and off saxis, respectively. The rotation tensor is
introduced as:

cos o sita
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It follows that Eqn. (1) can be rewritten as:

9 B EKK on P £ %Py, “)

Equation (4) may further be rewritten as:

1 ) 5

Ot _/(3: OJ%/j( on ™ _|E opélﬁ ( )
Comparing equations (5) and (2), Egn. (6) can be deduced:

K off i OJJ-% on -Ia —|E (6)

For convenience, in following, the off and on subscript used to show tharmaffon axis are

omitted.

Based on Egns. (3) to (6), we have:

K, K, Kycos g Kgsif £ K, K, sin Ecos,

K
« -~ —~ . - . —~ «
Ky Kom K, K, sin Bigos £ K, siR £ K, cos & (7)
The same equation can be derived for diffusion as follows:

D, D,2 Dycos £ Dgsift £ D, D, sin, £cos,%
— - . — . — (<
D, D,n D, D, sin&/gos £ D,,siR ,ED,, co5 o 8)

Governing equations

The governing equations consist of tbentinuity, 'DUF\{V ODZ miQr@sskitdidft D

equations

"u O 9)
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whereu is velocity vector,p is pressure,k is viscosity, K is permeability, / is porosity,C is
the concentration). is dispersionT istemperaturand D; is the heat diffusion. The parameter

C is the ratio of the advancement rate of the temperature field to the concentration field. It is

designated as the therrag coefficient and defined as:

14C, (13)
/(f"Cpf (1 y s(Z ps

o

where Lis the density anis the specific heat capacity. Here, the subscfigtgls denote to

the fluid and solid phases.

Boundary conditions and initial conditions

In this gudy, the following boundary conditions acensidered:

ux Oyt U vx 0yt 0 cx Oyt ¢ Tx 0yt T (14)
ux Lyt U vx Lyt 0 ¢cx Lyt 0 Tx Lyt J @15
ucT X,y Ot u,cT xy Wt (16)

The initial conditions are prescribed as follows:
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wheref (x,y)denotes aandom functionL, 0, i.e. at the middle of the porous medium.

Scaling

The following dimensionless groups are used in the present study

(x Ut/ 1y) ' _(u U,v) ¢ t
Dey, /U u D 21U
C E, k _/(, p *:% y (19)
Cl /{ /{DCM/ K22
K’ 5_,D* D I 5
K22 DCll Tl TZ

Using Eq. (19), theondimensional form of Eqn. (9) to (12) can be derived as follows:

(20)
SRS TND =)
W pp ¢ (22)
W
— o T( @ e Dy (23)
t WX

cos £ pPsit £ (1/2)Q ,Dsin2,2 (24)

C

1/2)1 R)sin2 £ sik £ @25
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Rcog E sif (£ 1/2 ,D1sin2 & (25)
1/2 R 1sin2f Dsih  E cos , ¢

where [) Ku/K 2 and Ib D2/Du are the permeability and diffusion ratio, respectively.

The terms £ and £ are also the angle between the afid sm-axis coordinates for permeability

and diffusion.D; is assumed to be equal tee uD; where Le is the Lewis number. Here, a

Lagrangian moving frame with constant velocitylbis used to slve the problem. The following

correlations are employed to model the variation of viscosity with concentration and temperature:

K exp(£LC) 8 ) (26)
where £ and £ are two constants of above agjon of state that should be measured based on

viscometric data of any fluid for practical applications. The dimensionless boundary conditions

are:
u’ § Pe t,y,t 1 v £ Pe t,y,t 0,
© ? © ? 1 (27)
¢ % Pe t,y,t 1 7R Pe t,yt 1
© 2 1 © 2 1
u & Pe t,y,t 1 v £ Pe t,y,t 0,
© 2 © 2 1
(28)
¢ ¥ Pe t,y,t 0, T R Pe t,yt 0,
© 2 1 © 2 1
* * * * * * * * * * * 29
u',c, Yy Pe v uer Ry Pe. =9)
© 2A °1 © 2A

where Pe. UL/ D,/ is the Pedt numberand A L/W denotes the aspect ratio. The

dimensionless initiatonditions can be derived as:
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-1 Grand(y) Pe L (30)
Qurand(y) Pe tL

1 urand(y) wexp( x? 62) Pe [ (31)

‘v b0 * :
¢y ) urand (y) exp( x* G*) Pe tL

+HUMNA® LV D UDQGRP IXQFWLRQ WKDW JHR&UdDIW HANAMKH Y DO X
are the size and diffusion of the disturbance, respectively. For simplifici®star superscript

is removed fronthe next equations.

Numerical method

We used the stream functionl § and vorticity (£) relationships in 2D Cartesian coordinate

systems to simulate the thermal viscous fingering problem:

u —, v W (32)
y WX

;W w  w F@ (39)
W W xw  y'®

By applying the curl operation on the Eqg. (21) and then using the transformations, the final

equations are expressed as follows:
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R
W XV XQ
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L w Y&
- I
R 1 (p Dcos(2.5H vy LY X@
e T
W w Y& y w w
@ )cos?, &) E
W
(34)
w wecwl w 2c| ¢ w “c (35)
Y o X B WY Ay
s w W Iw§g Tw , 2 Tw?.-T7Tw? § (36)
W o we U3 N AR A Ay e
where
H, (RQcos £ sid E (37)
H, (Rsin" £ cog (E (38)
H, (1/2)Q ,)sin2, (39)
A (cog £ Ppsit LE (40)
A, (si”® £ pcog A (41)
A, L )sinD, (42)

This set of equations is solved using a psesjgkctral method. By applyy the modified Hartley
transformation, the PDEs become ordinary differential equations. In order to solve the problem via

the mentioned method, it needs to use the periodic boundamgditions. Actually, the
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concentration and temperature variables argadbdic in thex-direction. Following Manickam
and Homsy(1993) theseparameters may be divided into two parts at any times; a basic solution

and a disturbance component:

c(x,y,t) T xt c€x vy (43)

™, y,t) Txt @%b (44)

Here, the disturbances decay according to the specified boundaries of tiiefhaw. The base

state profiles are defined as:

_ 1 X (45)
C Xx,t 5(1 erf (ﬁ))

- 1 X (Ot (46)
T x,t 2(1 erf (—2\/L_et )

Now, we should find the disturbances to determine the total solutions. In this way, periodicity of
all boundary conditions ienforced. The time@narching in the parameters is achieved with the

popular and stablé™order Adans-Bashforth method.

LINEAR STABILITY ANALYSIS (LSA)

In order tostudy the problem via LSA, a basic solution is considered for solving the governing

equations as follows:

u, v, O (47)
w, H, (48)
W H, K
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Wi, (49)
t AlWx2

W oy W oA W (50)
W (o) XV A x v

K eBl @) EL & (51)

In the above equationd,, and A, are defined by Eqgns. (38) and (40), respectivédly, is

expressed as:

H, (Rsit E cod B*, 0$ , Ein | )EL/4)(, Dsin2 ? (52)
By considering disturbances in parameters of problem and subtracting the governing equations

that contain the disturbances from the governing equations of basic solution, we have:

_uowve (53)
wy
ﬂ HZ(—OU _/C) Hsl(—OVC 0 (54)
W H, H, H,
Pohtu 5 e o (59)
H4 H4 H4
WweC W wc, 2w cw (56)
— uec=2
W W A xw A yzwﬁ‘3 X W
2 2 2 (57)
WISy o 1 W A TR A I
W XV X W X*w Syt WX yg
KE KR CRy T (58)

H, , and A, ; are defined in equations (32) and (52)

Combining theEqgns. (53} (55), the following equation is obtained:
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59
Viu ¢ %N)CH 22uNC_uwg kvﬁ(':_' U wu ek o (59)

0T e T T ymowy g W oW W R kA W

We considered the following relationships for unknowns of linearized equations:

(Ca,c) qC,UT )(x)e ™" & (60)
In Eq. (60), V andk are the growth rate and wave number of disturbances, respectively. By

insertingequation (60) into the linearized equations, we have:

2 a |
ch(jj_z § 0 2ikH3 di %( ?( U
ax @odx 0x @ . yvx Z 61)
. 2 . 2
J_Jl( IE_Had_X k (‘,EHz %/4 Ik«—.TEa& k Tl'Ez )i/(z
d? . d? dc (62)
Vt, A— AKk? ik— C
Y A dx& dx
(63)

2 a
'—eﬂi(—z (01 ASLeikdiX ") Aleke T L%;E

RESULTS AND DISCUSSION
Linear stability analysis (LSA)

A sixth order shooting method is employed to solve the eigenvalue system specified by Eqgns. (61
63). Here, the largest possible eigenvalues that producedemorsolution are computed. The

numerical domain&s been selected to be sufficiently large tearine these eigenvalues. Except

some especial cases, the results are presentBé.at 1000, A 2, Le 1, . E; 15

0075 t, 01, , D, 1and , E, O . For verification, the growth rate of



16

disturbance of a neisothermal movement through isotropic porous media is depicteijime

2. The results of msent study is illustrated by a continuousland the results dfslam and
Azaiez, 2010pare shown via a dashed line with squares>gi. sand circles for>¢ L t. Here,

Le O1land £ 1. Based on the figure, the results of present study have a good agreement
with the work of Islam and Azaigislam and Azaiez, 2010 onfidence in the present stability

analysis is therefore justifiably high.

In order to investigate the influence of anisotropic parameters of porous media on the thermo
viscous fingering, thevariation of the growth rate in terms of the wave number for different

parameters of the porous medium is plottedures 3and4 illustrate the growth rate at different

anisotropic permeability ratios /2 ) and different anisotropi permeability angles £ ),

respectively. Increasingy and decreasingk lead to more stable flows. The effectsthé

dispersiorratio ( L3 ) and thedispersiorangle( £ ) on the stability characteristics are shown in
Figures 5and®6, respectively. These parameters exert a stabilizing effect and the growth rates

decrease by increasing and £ .

Numerical simulation

Here, the results of the CFD modeling are presented to show how the different dimensionless

parametergharacterizing the flow displacement influence the fingering instakiitgept some

especial cases, the CFD simulations ameechtPg. 1000, A 2, Le land O 0.75.

Contours of results

In the followings, the concentration and temperaturee@aours ¢ andT) were depicted as time

sequences. Indlly, the instability is started via inserting a fluctuation at interfaces between two
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liquids. The fingeilike patterns are rapidly created and grown in the domain. As mentioned before,

the main factor on fingerinmstability is a difference between thisscosity of two liquids. The
temperature and concentration dependency of viscosity are also adjustedamygl £ (refer to

Eqg. (26))and their values may be positiwenegative. When higher viscosity fluglahead of the

front, these parameters are positive and are therefore associated with instability. For negative
values of these parameters, the conditions are the opposite. For clarity, the results of this section

are ordered in three groups: Hand £ '10,2) £ '0and £ Oand3) £ Oand £ !0.

Positive concentration antemperature mobility ratios

In what follows, a holiquid with low viscosity sweeps a cold one with higher value of viscosity.

This means that we havé !0 and £ !0. Unless specified otherwise, the problem is simulated
for £ 15 and £ 1.5. Figure 7 shows isecontours of concentration and temperature at

O 0.75and O 1. In this figure, 2 1.8, 2 09and £ £ /8. Whenthethemal

lag coefficient is less than ortbe heat transfer between the body of porous media and the liquids

is considerable. So, the speed of progression of the thermal front is declined and as a result, this
front lags behind the concentration froRtr O 1, there is no Bkat dissipation and both fronts
progress together possessing the same structure. As a result, there is a complete interaction
between the two fronts. Since both fronts have a destabilizing effect, it is normal tthatcase

of complete interaction QO 1), the flow is more unstable. Close inspection of the contours
indicates that the coalescence mechanism is recognizable. In this mechanism (which is specified
E\ FLUFXODUYV S D Wk deviatedtsl the Ineig@bdiihy ¥ne and merged together.

Another mechanism that existed in this figure is thespptting. Here, one finger is divided into
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two fingers (see the case &t 300). Figure 8 shows the influnce otLewis number on
distributions of concentration and temperature. Hele, 1.8,  09and £ £ /8.
HigherLewis number physically means that the heat diffuses quicker than the species (solute) and
the two fronts attain thermal equilibrium faster. For the cases inhwiie temperature of
displacing liquid is more than the temperature of displaced one, treferasi thermal energy
causes a reduction in the viscosity of the displaced liquid (this acts in favor of stability). Therefore,
at higher Lewis number, the flosw more stable. SinceD 1, the thermal front isveaker than the
concentration front. Whehe !1, it becomes weaker and its destabilizing effect decretisaay

be inferred that there is a wavy thermal fronteasl of a fingering thermal front.

Figure 9 depicts the effect of) on the thermeviscous fingering. The other parameters are
considered asf} 1l and £, 0. The ratio of the permeability @ig the longitudinal

direction to the permeability along the traesse direction is named a& . In order to achieve
finger growth, the primary disturbances should diffuse in perpendicular to the fluid flow direction.

Therefore, ahigher values of 2 , the favorable condibins for growing fingers become limited.

It can be seen that the fingers on both fronts fpr 2.4 are smaller thanf) 1.2. The ise

contours of the fiw displacements for 1,  E, 0 andtwo values of 23 (i.e. 0.3 and

0.7)are depicted ifrigure 10. Thedispersion ratio is defined as dispersioihe lateral direction

to that in the logitudinal one. In this figure, a largeimber of fingers is withessed. The transversal
dispersion equalizes the fronts of the fingers. At low values of this parameter, the hydrodynamic
mechanisms of spreading and shielding have been weakentéd spreaithg mechanism, the
fingers are formedcsthat their width is increased and their number is reduced. In the shielding

PHFKDQLVP VRPH ¢(¢QJHUV VKLHOG WKH GHYHORSPHQW RI

W
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procedure a bigger finger. Therefore, at lowewnealof £ , thenumber of fingers is higher. An
interesting phenomenon which is observed relates to the anchoring of the tip of the finger in the

case of L2 0.3. This isshown via a square far 600. At £ 0.7, there is a more intensified

interaction of fingers in the transverse direction than £r 0.3. Therefore, at the last time of
simulation, few numbers of fingers with more width can be seen in contours.decancluded

that the flowis stabilized by increasind? .

Figure 11 illustrated the influence of permeability anglé on the thermeviscous fingering
contours. As £ increases, the permeability in the longinal direction K ,,) decreases whereas

the permeability in the transverse directidf,) increses. As mentioned before, the reduction
in the longitudinal permeability and elevation in transverse permealgiitiits in a more unstable

flow. Therefore, it follows that the flow through the porous medium wijth £ /6 is more stable
than that for , £ /3. Having a close look at the contours reveals that the fingers are isatalle

lower values of & .

Positive concentration ratio and negative temperature mobility ratio

For £ !0and £ O, a liquid with lower temperature and viscosity sweeps a hot liquid with

higher viscosity. In this condition, the temperature gradient stabilizes the flow fidddt

concentration gradient has a reverse effect and intensify the hydrodynamic instbknilégs

specified otherwise, the results are presented for 3 and £  1.5. Figure 12 shows the

influence of Con a flow displacement withe !0and £ 0. Here, 1.8, 3 0.9 and
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E E IS. The flow is stabilized by growing¢, which could be attributed to the stronger

interactions between two fronts and increasing the positive influence of temperature gradient on

the flow stability.

Figure 13 shows the isecontours for two Lewis numbers af !0 and £ 0. The other

parameters are 1.8, 2 09and § £ /8. Here, higheiLe means the displacing

liquid cools the warmer displaced liquid faster. Therefore, the viscosity of displaced liquid
increases and the factor of instability becomes stronger. As a result, the flow is destabilized by
growing Le in theseconditions and the thermal front morphs into a strong wavy shape, instead of

the form of discrete weak narrow fingers. Theesmtours ot andT are shown irFigure 14 for

L 12and [, 2.4where; land , E, 0. Similarto the previous case (i.e. positive
concentration and temperature mobility ratiog}, does not have much effect on the structure of
the fingers. However, it is also apparent in ttése that the fingers seem to be shortened by
increasing £ . The effect of £} on the thermeviscous fingering ishown inFigure 15. Here,

) land  E, 0. For this senario, the number of fingers is very high and in fact exceeds

the number computed iRigure 10 which has same porous medium properties. The fingers are

narrower for lower £} and it is seen the flow is stabilized by growing this paster.

Negative concentration mobility ratio and positive temperature mobility ratio

Here, a liquid with high temperature and viscosity sweeps a cold liquid with lower viscosity.
In the absence demperature gradientshis displacement is stable. Howevieemperature

gradients have a destabilizing effect on fldwnless specified otherge, the concentration

mobility ratio and temperature mobility ratio are fixed&@s 1.5 and £ 3. For these
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conditions, inFigure 16, the flow displacements withO 0.75and O 0.85 are compared

with one other. The parameters of the porous medium are prescrib@d ak8, £ 0.9

and 5 £ /8. Unlike the former scenarios, sormackward fingers are creat in the

concentration distribution. Additionality, increasing leads to a more unstable flow. As
mentioned, temperature gradients have a destabilizing effectoan Therefore, as the
temperature front is closer to the concentration front (higldgrthe temperature gradient
instability impacts more strongly the concentration front. A 0.75 andt 600, the tip

splitting mechanism can be seen for concentration front. Then, two new brafiolyers
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coalescence mechanism follows thegpitting mechanism. With greasing instability, the

fingers interaction mechanisms are observed in the concentration front. The coalescence

mechanisnwas showrvia squares fot  700.

Figure 17 depicts the contours afandT at Le l1andLe 5. Here, 2 1.8 £ 0.9 and

£ E /8. In the case ofLe 5, there are no major fingers in the concentration and

temperatue contours. Indeed, heat tréarsbetween liquids leads to a depletion in the viscosity of
the displaced fluid. Therefore, the flow becomes more stable at higher Le, owing to the enhanced
heat transfer. At high Lewis numbers, tdestabilizing effectof temperaturegradientsL V

V L J © D véakehed.

Figure 18. depicts the influence dp on thec andT for two different values of.2 and 2.4The

other parameters of porous medium dge 1 and £, 0. Here, by increasg £} , the
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fingers tend to advance in a straight line, i.e. they grow in the path with lighmeability and

the bending of fingers is minimized.

Figure 19 shows the effect off3 on displacements withe 0 and £ !0 through a porous
mediumwithJ land , £, 0.Asinthe earlier cases analyzed, the intensity of instability

is reduced by increasind] . Here, the interesting point is appearance ebfifitting mechanism
in contours of concentration. This was shown &iaircle att 800. Based on the figure, the

intensity of instability is high in the case d  0.3.

TransverselyAveraged Profiles

Examining flow characteristic profiles averaged over one dimension is a common too
study of unstable miscible displacements. In this section, the transvaveshged diagram
of c and T were reportedFigure 20 shows the influence ofC on thec and T averaged
profiles. Here,[, 1.8, 3, 0.9, § £ /S andt 450. The profiles are marke
by C and 7 related to the averaged concentration and temperature, respectively.
decreases, the front dfmarches with increasingly deldyehind of the front o€. This is

due to the decreasing the velocity of thermal difusion(U; @O ) and increasing th

heat transfer between the solid and fluids phases. Basedigtine 203 the concentratior

gradients intensify the instability, wheraghe temperature gradients exert a stabilizing ef
at £ 3and £ 1.5. Therefore, when the two fronts are closer, the flow is more s

and the intensity of peaks in the unstable concentration profiles decreases. The co
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for Figure 20b are opposite, i.e.£ 1.5and £ 3. Here, the temperature gradier
have a destabilizing effect. Therefore, the peaks appear on the temperature averagec
For . E; 1.5, both factors have a destabilizing effect. Therefanore peaks ar

created when they match eacheit( O 1) and when they are away from each other,

intensity of instability decreases.

Mixing length
Another useful tool to characterize and quantify the mixing zone is thagriemgth. It is defined

as the distance of the zone where the transveesaaged concentration changes from 0.99 to

0.01.Figure 21 shows the history of mixing length for diffmt C and three cases: (af 3
and £ 15 (). £ 15and £ 3, and (c) . E; 1.5. Here, as withFigure 20,

D 18 0L 09 £ E 8. Incases (band (c), the temperature gradients intensify the
fingering instability. Therefore, the thermal front progresses faster and the flow becomes more
unstable. Hence, the mixing length increases by growtrig these case However, \laen £ is

negative, such as in case (a{, acts to stabilize the flow and the mixing length decreases by

growing this parameter. The influencelaf on the mixing length is shown iigure 22. Here,

p 18, 03 09 £ £ [S8and O 0.85 By growingLe, the effect of £ on the flow
decreases. Therefore, whefris negative and it has a stihng effect, the highekewis number

leads to a more unstable flow. Therefore, in case (a), the mixing length is reduced by drewing

and in cases (b) and (c), the opposed trend is $&guare 23 depicts the influence of the

pemeability ratio( 2) for L3 1,  E, 0. Based on the results, the mixing length is
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reduced by growingl? for all cases. As mentioned, increasingpkemeability in théongitudinal
direction acts in favor of stability. When comparing the results for differgnin Figure 24, it
becomes clear that the intensity of instability is increased by growfngnd the flow regime

exhibits a higher mixing length at highe£ in all cases.

Sweep efficiacy

In fingering instability analysis, it is important to quantify how effective the displacement is and
how different the fluid and porous media parametersenite the displacement. For example, in
enhanced oil recovery, an important consideration is beainjected fluid could extract a larger
amount of oil of the reservoir and therefore a means of measuring this ability is essential. This is
termed the sweegfficiency. In petroleum engineering, this is defined as the percentage of a well
which is sweptvia an injected liquid. In numerical simulations, following Ghesmat and Azaiez
(Ghesmat and Azaiez, 2008he sweep efficiency is calculated as thBo of amount of grids

with ¢ t0.5 to the amount of grids placed behind the frdntFigure 25, the effect of C on the

sweep efficiency is shown. Herel 1.8, L 09, £ [E /8. As expected and in
consistency with the earlier results, whef is negative (case a)( has a stabilizing effect and

the sweep efficiency increases by increasigHowever, when£& ! 0( cases b and c), increasing
Cleads to a reduction in the sweep efficierieigure 26depicts the diagrams of sweep efficiency
versus the dimensionless time for different values Lef Here, 1.8, L 0.9,
E £ IS and O 0.85. It can be seen that increagihe causes a reduction in the sweep

efficiency for case (a) and increasing sweep efficiency for cases (b) and (c). For case (b), the sweep
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efficiency is close to one, especially at highez . This is due tdahe uniform progression of the

concentration front. Ifrigures 27and28, the sweep efficiency is displayed as a function/pf
and £, respectively. In general, increasing these parameters leads to ingrédssisweep

efficiency. However, it is evident that in the presence of stabilizing gradients, the effécoaf

the sweep efficiency is too weak.

Conclusiors

In this paper, the effect of anisotropy of porous media on thermabggcmering instability been

investigated via both LSA and CFD approaches. The principal results have shown that:

(i) When £is negative and temperature gradieats to stabilize the flowincreasingLe

leads to a more stable flow.

(ilWhen £'is positive and temperature gradients have a destabilizing effecact to

destabilize the flow.

(i) For ((thermatlag coefficient), the treshis completely opposite to that computed for the

influence ofLe.

(iv) In all cases, the flow is stabilized by increasidg, £} and & and decreasingk .

This implies that the longitudinal direction permeability and the transverse direction dispersion

exert a significant controllg effect on the thermal viscous fingering instability.
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Data Availability Statement

All data modelsand code that support the findings of this study are available from the

corresponding author upon reasonable request.
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Fig. 2. Instability characteristics for neisothermal viscous fingering instability: comparison
between the results of the present study and thoséaof and Azaie20103.
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Fig. 8. The effect ofthe Lewis number(Le) on the concentration artémperature contours (
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Fig. 9. The effect ofthe permeability ratiq £) ) on the conentration and temperature contours
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Fig. 10.The effect ofthedispersion ratiq £3 ) on the concentration and temperature contours
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Fig. 11.The effect of permeability angl( & ) on the concentration and temperature contours
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Fig. 12. The effect of the thermdag coefficient () on the concentration and temperature

contours (€ 3and £ 1.5).
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Fig. 13.The effect otheLewis numbei Le ) on the concentration and temperature contours

(E 3and £ 15)
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Fig. 14.The effect ofthe permeability réio ( £) ) on theconcentration and temperature contours

(£ 3and £ 1.5).
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Fig. 15.The effect ofthedispersion ratiq £3 ) on the concentration and temperature corgtou

(£ 3and £ 1.5).
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Fig. 16. The effect of the thermdag coefficient () on the concentration and temperature

contours (£ 15and £ 3).
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Fig. 17. The effect ofthe Lewis number(Le) on the concentration and temperature contours (

E 1l5and £ 3).
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Fig. 18.The effect otthe permeability ratiq £2 ) on the conentration and temperature contours

(£ 15and £ 3).
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Fig. 19. The effect ofthe dispersion ratid £ ) one theconcentration and temperature

contours (£ 15and £ 3).
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Fig. 20.a. The effect of the thermd&g coefficient () on the concentration and temperature

averaged profilesc 3and £ 15

Fig. 20.b. The effect of the thermdhg coefficient () on the concentration and temperature

averaged profilesc 1.5and £ 3
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Fig. 20.c The effect of the thermdag coefficient () on the concenation and temperature

averaged profiles. £E; 1.5.

Fig.21.a. The effect of the thermdag coefficient (¢) on the mixing length £ 3 and

E 15
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Fig.21 b. The effect ofthe thermalag coefficient (() on the mixing lengthE 1.5 and

E 3

Fig.21.c. The effect of the thermdhg coefficient () on the mixing length . £; 1.5.



Fig. 22.a. The effect ottheLewis numbel Le ) on the mixing length £ 3 and £

47

15

Fig. 22b. The effect otheLewis numbel Le ) on the mixing lengthE  1.5and £ 3,



Fig. 22c. The effect otheLewis numbe( Le ) on the mixing length . £; 1.5.

Fig. 23.a. The effect othe permeability ratiq 2 ) on the mixing lengthE 3 and &

48

1.5
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Fig. 23b. The effect ofthe permeability ratiq £ ) on the mixing length&

15and £ 3.

Fig. 23c. The eftct ofthe permeability ratiq £ ) on the mixing length.

E. 15
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Fig. 24a. The effect ofthe permeability angle( &) on the mixing length £ 3 and

E 15

Fig. 24b. The effect ofthe permeability angl€ & ) on the mixing length£ 1.5 and

E 3
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Fig. 24c. The effect othe permeability angl¢ £ ) on the mixing length . £; 1.5.

Fig. 25a. The effect of the thermdag coefficient (C) on the sweep efficiencys 3 and

E 15,
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Fig. 25b. The effect of the thermdhg coefficient () on the sweep efficiencys 1.5 and

E 3.

Fig. 25c. The effect of the thermdag coefficient ( () on the sweep efficiency. E£; 1.5
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Fig. 26a. The effect ofthe Lewis numbe( Le ) on the sweep efficiencys 3 and £ 1.5.

Fig. 26b. The effect otheLewis numbel Le ) on the sweep efficiencyc

15and £ 3.
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Fig. 26c¢. The effect otheLewis numbel Le ) on the sweep efficiency. £; 1.5.

Fig. 27a. The effect ofthe dispersionratio ( [}) on the sweep efficiency £ 3 and

E 15.
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Fig. 27b. The effect ofthe dispersionratio ( ) on the sweep efficiencye 1.5 and

E 3.

Fig. 27c. The efect ofthedispersiomratio ( £} ) on the sweep efficiency. £; 1.5.
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Fig. 28a. The effect ofthe dispersionangle ( £) on the sweep efficiencyE 3 and

E 15,

Fig. 28b. The effect ofthe dispersionangle( &) on the sweep efficiencys 1.5 and

E 3.



Fig. 28c. The effect othedispersiorangle( &) on the sweep efficiency . £,

1.5.
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