Drought neutralises plant–soil feedback of two mesic grassland forbs

Fry, EL, Johnson, GN, Evans, AL ORCID: https://orcid.org/0000-0003-2912-6339, Pritchard, WJ, Bullock, JM and Bardgett, RD 2018, 'Drought neutralises plant–soil feedback of two mesic grassland forbs' , Oecologia, 186 , pp. 1113-1125.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview

Abstract

Plant–soil feedbacks (PSFs) describe the effect of a plant species on soil properties, which affect the performance of future generations. Here we test the hypothesis that drought alters PSFs by reducing plant–microbe associations and nutrient uptake. We chose two grassland forb species, previously shown to respond differently to soil conditioning and drought, to test our hypothesis. We conditioned unsterilised grassland soil with one generation of each species, and left a third soil unconditioned. We grew a second generation consisting of each combination of plant species, soil, and drought in a full factorial design, and measured soil microbial community and nutrient availability. Scabiosa columbaria displayed negative PSF (smaller plants) under non-droughted conditions, but neutral under drought, suggesting that drought disrupts plant–soil interactions and can advantage the plant. Photosynthetic efficiency of S. columbaria was reduced under drought, but recovered on rewetting regardless of soil conditioning, indicating that PSFs do not impede resilience of this species. Sanguisorba minor showed positive PSFs (larger plants), probably due to an increase in soil N in conspecific soil, but neutral PSF under drought. PSF neutralisation appeared to occur through drought-induced change in the soil microbial community for this species. When S. minor was planted in conspecific soil, photosynthetic efficiency declined to almost zero, with no recovery following rewetting. We attributed this to increased demand for water through higher demand for nutrients with positive PSF. Here we show that drought neutralises PSFs of two grassland forbs, which could have implications for plant communities under climate change.

Item Type: Article
Schools: Schools > School of Environment and Life Sciences
Journal or Publication Title: Oecologia
Publisher: Springer
ISSN: 0029-8549
Related URLs:
Funders: Natural Environment Research Council (NERC)
Depositing User: AL Evans
Date Deposited: 12 Jan 2021 09:32
Last Modified: 28 Aug 2021 11:13
URI: http://usir.salford.ac.uk/id/eprint/59332

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)

Downloads

Downloads per month over past year