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Interactions between hosts and their resident microbial communities are a
fundamental component of fitness for both agents. Though recent research
has highlighted the importance of interactions between animals and their
bacterial communities, comparative evidence for fungi is lacking, especially
in natural populations. Using data from 49 species, we present novel evi-
dence of strong covariation between fungal and bacterial communities
across the host phylogeny, indicative of recruitment by hosts for specific
suites of microbes. Using co-occurrence networks, we demonstrate marked
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variation across host taxonomy in patterns of covariation
between bacterial and fungal abundances. Host phylogeny
drives differences in the overall richness of bacterial and
fungal communities, but the effect of diet on richness was
only evident in the mammalian gut microbiome. Sample
type, tissue storage and DNA extraction method also
affected bacterial and fungal community composition, and
future studies would benefit from standardized approaches
to sample processing. Collectively these data indicate fungal
microbiomes may play a key role in host fitness and suggest
an urgent need to study multiple agents of the animal micro-
biome to accurately determine the strength and ecological
significance of host–microbe interactions.

1. Introduction
Multicellular organisms support diverse microbial com-
munities critical for physiological functioning, immunity,
development, evolution and behaviour [1 –3]. Variability in
host-associated microbiome composition may explain asym-
metries among hosts in key traits including susceptibility to
disease [4,5], fecundity [6] and resilience to environmental
change [7]. Although the microbiota is a complex assemblage
of bacteria, fungi, archaea, viruses and protozoa, the over-
whelming majority of research has focused solely on the
bacterial component [8,9]. Although relatively well documen-
ted in soils and plants [10–13], relatively few studies have
examined the dynamics of non-bacterial components of
the microbiome in animal hosts (but see [14–16]), especially
in non-model or wild systems. As such, our current under-
standing of host–microbe interactions is skewed by a
bacteria-centric view of the microbiome. Although not well
understood, there is growing evidence that the fungal micro-
biota, termed the ‘mycobiome’, may drive diverse functions
such as fat, carbon and nitrogen metabolism [17,18], degra-
dation of cellulose and other carbohydrates [19], pathogen
resistance [20], initiation of immune pathways and regulation
of inflammatory responses [9,21], and even host dispersal [22].

Host phylogeny has repeatedly been shown to be
an important predictor of bacterial microbiome structure
in multiple vertebrate clades, a phenomenon known as
‘phylosymbiosis’ [23–27]. This phenomenon often reflects
phylogenetic patterns in life-history traits, such as diet, physi-
ology or spatial distribution [23 –27]. However, evidence of
phylosymbiosis, and its drivers, in other microbial kingdoms
or domains is lacking. Addressing this major gap in our know-
ledge is crucial as we likely underestimate the strength and
importance of coevolution between animal hosts and their resi-
dent communities, particularly in the context of cross-kingdom
interactions within the microbiome [28].

Here, we used ITS and 16S rRNA gene amplicon sequen-
cing to characterize fungal and bacterial communities of
primarily gut and faecal samples from 49 host species
across eight classes, including both vertebrates and invert-
ebrates (electronic supplementary material, table S1). We
predicted that both fungal and bacterial microbiomes
would demonstrate strong signals of phylosymbiosis across
the broad host taxonomic range tested. Specifically, we pre-
dicted that patterns of phylosymbiosis within microbial
kingdoms will also drive significant positive covariance in
patterns of microbial community structure between microbial
kingdoms within individual hosts, suggestive of evolutionary
constraints that favour co-selection of specific bacterial
and fungal communities in tandem. We also used network
analysis to identify key bacteria–fungi associations while
quantifying variation in the composition and structure of
bacteria–fungi networks across host taxonomic groups.
Finally, we tested the prediction that cross-kingdom phylo-
symbiosis may be partially driven by similarity in host
dietary niche across the 32 bird and mammal species sampled.
2. Results
(a) Fungal and bacterial microbiome div

with host phylogeny
Our data revealed consistent patterns in fungal and bacterial
alpha-diversity across host taxonomic groups. Bacterial com-
munity alpha-diversity was generally greater than, or similar
to, fungal community alpha-diversity at the host species level
(figure 1a), although two species exhibited greater fungal
diversity than bacterial (great tit, tsetse fly; figure 1a). Compari-
sons between microbial richness values within individuals (i.e.
relativerichness) using a binomial GLMM supported these pat-
terns, indicating that bacterial richness was higher on average
than fungal in 80% of individuals [95% credible interval
0.43–0.96]. When conditioning on class, samples from both
Mammalia and Insecta were more likely to have higher
bacterial diversity than fungal diversity (credible intervals
not crossing zero on the link scale; electronic supplementary
material, figure S2). Mammalia were 32.7% more likely to
have higher bacterial relative to fungal diversity than Aves
in our study organisms (95% credible interval 7.6–58.7%).
Variation among species in this model explained 28.8%
(16.1–39.7%) of the variation in relative microbial richness.
Using a bivariate model with both fungal and bacterial diver-
sity as response variables to examine patterns of absolute
microbial richness across host taxonomy, both Mammalia
and Insecta exhibited bacterial diversity that was consistently
greater than fungal diversity when controlling for variation
among species (credible intervals of mean difference between
diversity estimates not crossing zero). There was no evidence
of positive covariance between fungal and bacterial richness
values at the species level (mean correlation 0.18, 95% credible
intervals � 0.34 to 0.65), suggesting that the high diversity of
one microbial group does not necessarily reflect high diversity
of the other. The bivariate model, containing effects of class and
species, explained 53.3% (44.7–60.3%) of variation in bacterial
Shannon diversity and 29.8% (16.3–40.8%) of variation in
fungal Shannon diversity.

Phylogenetic analyses supported these general patterns
(electronic supplementary material, figure S3). We detected
phylogenetic signal in observed amplicon sequence variants
(ASVs) for both fungi (C mean = 0.27, pBH = 0.004) and bacteria
(Cmean = 0.29, pBH = 0.004). For Shannon diversity, no signifi-
cant relationship was present for fungi (p BH = 0.079) or
bacteria (pBH = 0.062) after correction for multiple testing.

(b) Limited evidence of covariation betw
and fungal microbiome

(i) Alpha-diversity
Models exploring the influence of diet on microbial richness
yielded mixed results. In mammals, we detected a relationship
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Figure 1.Host phylogeny and diet as predictors of host bacterial and fungal alpha-diversity. (a) Boxplots and raw data (points) of inverse Simpson indices for
bacterial (green) and fungal (orange) communities across a range of host species. Note differenty-axis scales for the two rows. (b) Raw data (points) and model
predictions (shaded area and lines) of models examining the relationship between host diet and microbiome alpha-diversity. In mammals, an increasein the amount
of plant material in the diet (more negative PC1 values) drives increases in bacterial diversity. There was no corresponding relationship between diet and richness for
either bacteria or fungi in birds. Shaded areas represent 95% credible intervals. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
P

roc.
R

.
S

oc.
B

288:
20210552

3



and fungi vary

royalsocietypublishing.org

4
between bacterial richness and the primary axis of a PCA of
dietary variation (figure 1 b). This indicates that bacterial
alpha-diversity increases with progressively more vegetation,
and less invertebrate prey, in the diet. We also found support
for an effect of PC2 on both fungal and bacterial diversity,
suggesting an increase in diversity in tandem with the pro-
portion of dietary seeds and fruits, though the relationship
was weaker (electronic supplementary material, figure S4).
However, we found no relationship between diet and microbial
diversity in birds across both fungi and bacteria (Figure 1b,
credible intervals for slopes of all terms involving PC1 and
PC2 all include zero).
.
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(ii) Beta-diversity
Patterns of variation in microbial community composition
broadly followed those for alpha-diversity above. While for
mammals, there was a significant correlation between host-
associated bacterial community composition and diet (r =
0.33, p = 0.002) and a near-significant relationship between
fungal community composition and diet ( r = 0.14, p = 0.067),
for birds, there was no significant relationship between diet-
ary data and bacterial community composition ( r = 0.09, p =
0.211) or fungal community composition ( r = 0.03,p = 0.386).
Further, taxonomic differences in microbiome composition
based on differences in crude dietary patterns were not
clear for either bacteria or fungi when the microbiome com-
position was visualized at the family level (electronic
supplementary material, figures S5 and S6). That said, Alpha-
proteobacteria and Eurotiomycete fungi were notably absent
from species that primarily ate vegetation (i.e. grasses, etc),
and Neocallimastigomycete fungi were the predominant
fungal class associated with two out of four of these host
species (electronic supplementary material, figure S5 and S6)
sym

f

(c) Strong evidence of correlated phylo
both microbial groups

Our data revealed consistent variation in fungal and bacterial
community structure across the host phylogeny (figure 2a).
PERMANOVA analyses on centred-log ratio (CLR) trans-
formed ASV abundances revealed significant phylogenetic
effects of host class, order and species, as well as effects o
sample storage and library preparation protocol for both
microbial groups (table 1; electronic supplementary material,
figures S7 and S8). For both bacteria and fungi, host species
identity explained more variation than host class or order,
and this pattern remained when re-running the models with-
out sample preparation protocol effects, though this inflated
the estimate of R2 for all taxonomic groupings (table S2).

Consistent with our predictions, the similarity between the
microbial communities of a given pair of host species was pro-
portional to the phylogenetic distance between them (e.g. ASV
level: fungal cor. = 0.26; p = 0.001; bacterial cor. = 0.37;p =
0.001; figure 2b). Correlations for both bacterial and fungal
communities became stronger when aggregating microbial
taxonomy to broader taxonomic levels (figure 2b). Notably,
the bacterial correlation was stronger than the fungal equival-
ent at most taxonomic levels (figure 2b), indicating stronger
patterns of phylosymbiosis for bacteria.

We also detected a strong, significant correlation between
fungal and bacterial community structure of individual
samples at the level of ASVs using Procrustes rotation
biosis in

(cor. = 0.29, p < 0.001; figure 2c). Collapsing ASV taxonomy
to genus, family and order resulted in even stronger corre-
lations (cor. = 0.44, 0.48 & 0.43, respectively; allp < 0.001;
figure 2c). These data indicate a coupling between the struc-
tures of fungal and bacterial communities, whereby shifts in
the structure of one community across the phylogeny also
reflect consistent shifts in the other microbial group.

(d) Patterns of co-occurrence of bacteria
across host taxonomy

Analysis of correlations among fungal and bacterial abun-
dances revealed differences in network structure at both the
host class and host species level (electronic supplementary
material, figures S9–S11). In particular, fungi of the phylum
Ascomycota appeared frequently in the microbial networks
of birds, mammals and amphibians (electronic supplementary
material, figure S11). Models of species-level network data
(electronic supplementary material, figures S9 and S10)
revealed the frequency of positive co-occurrence between
pairs of microbes also varied by class; Mammalia exhibited
the highest proportion of positive edges (figure 3a), being
significantly greater than those of birds (mean diff. 0.042
(0.017–0.067)) and amphibians (mean diff. 0.050 (0.002–
0.112)). Notably, insects had a markedly lower proportion of
positive edges compared to all other taxa (figure 3a). Class
explained 93.2% (92.9–93.4%) of variation in edge sign. There
was also systematic variation in network structure among taxo-
nomic groups. Using the class-level network data (electronic
supplementary material, figure S11), we estimated that Mam-
malia exhibited the fewest components, fewest communities
and lowest modularity (electronic supplementary material,
table S3 and figure 3b), indicating lower overall network subdi-
vision relative to other animal classes, though this suite of traits
is strongly correlated (electronic supplementary material,
figure S12). Mean betweenness of fungal nodes also varied
by host class; randomizations revealed that mean fungal
betweenness was significantly lower than expected by chance
in Aves ( p=0.044; figure 3c) but not Mammalia ( p=0.600;
figure 3c). When investigating patterns of co-occurrence
between fungal and bacterial taxa from the class-level net-
works, Aves displayed a significantly higher frequency of
positive Actinobacteria–Ascomycota associations than
expected by chance (p=0.002; figure 3d). Though there was
variation across host classes in which pair of phylum-level
co-occurrences were most frequent, none occurred more
significantly than expected by chance (all p> 0.740).
3. Discussion
Our study represents the most wide-ranging evaluation of
animal mycobiome composition, and its covariation with the
bacterial microbiome, undertaken to date. Our data provide
novel evidence for mycobiome phylosymbiosis in wild ani-
mals, indicative of close evolutionary coupling between
hosts and their resident fungal communities. Consistent with
previous studies, we also find evidence of phylosymbiosis in
the bacterial microbiome [29], but crucially, we demonstrate
strong and consistent covariation between fungal and bacterial
communities across host phylogeny, especially at higher
microbial taxonomic levels. These patterns are supported by
complementary network analysis illustrating frequent
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Figure 2.(a) Phylogenetic tree of host species, with branches coloured by class and node points coloured by order. Barplots show the proportional composition of
fungal and bacterial phyla for each host species, aligned to tree tips. (b) Correlation between microbial and host genetic distances (generated from the phylogenetic
tree in (a)) for both bacteria (green) and fungi (orange) across all host species. Microbial taxonomy was either raw ASVs or grouped into the family level. Aggrega-
tion to family resulted in higher correlations for both microbial groups, and the correlation was always stronger in bacteria. (c) Correlation between fungal and
bacterial community structure derived from Procrustes rotation on PCA ordinations of each microbial group. Microbial communities were aggregatedat various
taxonomic groupings (order, family and genus), or as raw ASV taxonomy. For both (b) and (c), distributions of correlation values were generated using resampling
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Table 1.PERMANOVA results for (a) fungi and (b) bacteria of factors
explaining variation in microbial community structure. Terms
the order shown in the table to marginalize effects of sampl
preparation protocols before calculating per cent variance
taxonomic groupings. Species ID was the dominant source
the data for both taxonomic groups, but there were also stro
sample storage and wet laboratory protocol, particularly for b

predictor d.f. R2 p-value

(a) FUNGI

sample type 7 0.05 0.001

tissue storage 5 0.04 0.001

extraction kit 7 0.07 0.001

class 2 0.02 0.001

order 6 0.05 0.001

species 18 0.09 0.001

residuals 303 0.68

(b) BACTERIA

sample type 6 0.06 0.001

tissue storage 6 0.16 0.001

extraction kit 7 0.12 0.001

class 2 0.02 0.001

order 6 0.09 0.001

species 18 0.12 0.001

residuals 273 0.42
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correlative links between fungal and bacterial taxa, whereby
certain pairs of microbes from different kingdoms are
much more likely to co-occur in the microbiome than expec-
ted by chance. Taken together, these data provide novel
evidence of host recruitment for specific fungal and bacterial
communities, which in turn may reflect host selection for inter-
actions between bacteria and fungi critical for host physiology
and health.

We found marked variation among host species in
microbial community richness and composition for both
bacteria and fungi. Though our data suggest many species
support a diverse assemblage of host-associated fungi, we
show that bacterial diversity tends to be higher on average
relative to fungal diversity, and that there is no signal of posi-
tive covariance between fungal and bacterial richness within
species, suggesting more ASV-rich bacterial microbiomes are
not consistently associated with more ASV-rich mycobiomes.
These patterns could arise because of competition for niche
space within the gut, where high bacterial diversity may
reflect stronger competition that prevents the proliferation of
fungal diversity. Understanding patterns of niche competition
within and among microbial groups requires that we are able
to define those niches by measuring microbial gene function
and quantifying the degree of overlap or redundancy in
functional genomic profiles across bacteria and fungi.

We detected strong phylosymbiosis for both fungi and bac-
teria across a broad host phylogeny encompassing both
vertebrate and invertebrate classes. This pattern was signifi-
cantly stronger in bacteria than for fungi. In both microbial
kingdoms, the signal of phylosymbiosis strengthened when
aggregating microbial assignments to broader taxonomic
levels, a phenomenon that has previously been shown for bac-
terial communities [30]. That this pattern also occurs in fungi
suggests either that host recruitment is weaker at finer-scale
taxonomies, or our ability to detect that signal is weaker at
the relatively noisy taxonomic scale of ASVs. Stronger signals
of phylosymbiosis at family and order-level taxonomies may
reflect the deep evolutionary relationships between hosts
and their bacterial and fungal communities, as well as the
propensity for microbial communities to allow closely related
microbes to establish while repelling less related organisms
[31]. That is, higher order microbial taxonomy may better
approximate functional guilds within the microbiome, such
as the ability to degrade cellulose [25,30], which are otherwise
obscured by taxonomic patterns of ASVs. Resolving this
requires the integration of functional genomic data from the
fungal and bacterial microbiota into the phylogeny.

Network analyses of microbial co-occurrence supported
our findings of microbe-specific patterns of phylosymbiosis
by revealing strong covariation between fungal and bacterial
community composition across the host phylogeny. These
patterns are consistent with host recruitment for particular
suites of fungal and bacterial taxa, which may represent
bacteria–fungi metabolic interactions beneficial to the host.
Bacterial–fungal interactions have previously been demon-
strated for a handful of animal species [8,9,17,32,33], but
here we show these could be widespread across multiple
animal classes. Both bacteria and fungi have considerable
enzymatic properties that facilitate the liberation of nutrients
for use by other microbes, thus facilitating cross-kingdom
colonization [34–36] and promoting metabolic inter-depen-
dencies [37–39]. The frequency and predicted direction of
co-occurrence relationships varied considerably among host
classes, with the mammalian network exhibiting (i) a lower
modularity, indicating weaker clustering into fewer discrete
units (both distinct components and interlinked commu-
nities) and (ii) a higher frequency of positive correlations
between microbes (at the host species level) compared to
most other classes, in particular birds and insects. Higher
modularity in Aves compared to Mammalia could represent
stronger associations within distinct suites of microbes,
compared to a more homogeneous network in the latter.
Similarly, we found that fungal betweenness was signifi-
cantly lower than expected by chance, suggesting that
fungal nodes are relatively more peripheral within these clus-
ters in Aves compares to Mammalia. This could mean that
fungi are less important as ‘hubs’ of putative metabolic net-
works in birds and therefore less likely to be form links to
other clusters. Comparisons of networks are challenging
when they differ in size (i.e. number of nodes) and structure,
and differences between classes in traits like modularity and
betweenness will also be affected by species replication
within each class and factors like the ecological breadth of
hosts. Even if the species-level sample size is identica
across classes, lower modularity could be expected to arise
if hosts in one class were more similar in terms of ecological
niche or traits like diet. However, proportional traits like
interaction structure (proportion of positive interactions) are
unlikely to be driven solely by sample size, suggesting
marked biological variation in strength of fungi –bacteria
relationships across the host phylogeny. This is particularly
evident in Aves, where we observed a high frequency of posi-
tive associations between Ascomycota and Actinobacteria.
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Actinobacteria are crucial for the maintenance of gut homeo-
stasis [40], whereas the increased prevalence of members o
Ascoymycota have been associated with both healthy and
impaired gut function in humans [41]. That we observe
such a tight coupling between these two cross-
kingdom taxonomic groups suggests they may be involved
in cross-feeding metabolic networks within the avian gut,
or alternatively may be in competition for similar niche
space. It is important to note that positive correlations
between microbial abundances are not themselves evidence
of interactions between those species. We suggest they rep
resent novel hypotheses that could be tested in controlled
systems, where microbiome composition and therefore the
interactions among microbes can be manipulated to test the
influence of such interactions on host physiology.

The drivers of phylosymbiosis remain unclear, even for
bacterial communities; is a phylogenetic signal indicative of
host–microbiome coevolution, or simply a product of ‘eco-
logical filtering ’ of the microbiome in the host organism
either via extrinsic (e.g. diet, habitat) or intrinsic sources
(e.g. gut pH, immune system function) [26,29,42]? Our results
indicate host diet may play a role in determining bacterial
and fungal composition in mammals, but not in birds.
These results are broadly consistent with previous work,
where the influence of diet on bacterial microbiome was
most evident in mammals [25], or only present at the species
level in New Guinea passerines [43]. For example, the compo-
sition and diversity of both fungal and bacterial communities
of faecal samples differed between phytophagous and insec-
tivorous bats [16], and the fungal community composition of
mice guts were affected by fat content of their diet [17]. How-
ever, recent work has revealed diet–microbiome correlations
in non-passerine birds [44], suggesting the relationship may
not be uniform across finer taxonomic scales within host
classes. It is also worth noting that the signals produced
from faecal and true gut samples may differ; evidence
suggests faecal samples may indicate diet is the predominant
driver of ‘gut’ microbiome composition when gastrointestinal
samples indicate host species is the predominant determinant
[45]. Moreover, faecal samples may only represent a small
proportion of the gastrointestinal microbiome [45 –47].

Our data also show that sample type has a significant
effect on both fungal and bacterial community composition.
In addition, DNA extraction kit and storage method also
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affected microbiome composition, as seen in previous work
[48–51]. As our study made use of existing samples, we
had limited ability to influence the sample type, storage
and DNA extraction method, and in some cases, these
varied considerably even within a class (e.g. across the four
amphibian species used, we had four different tissue types).
We also had considerable variation in approaches to sample
storage across the study species, including freezing, storage
in ethanol and storage in RNA later, and a variety of different
extraction kits with different approaches to lysis (both mech-
anical and chemical), which will ultimately affect which
microbial taxa are detected. Despite these limitations, we
still find compelling evidence for phylosymbiosis in fungal
communities, and strong associations between bacterial and
fungal taxa across a broad range of primarily wild host
species. However, a more thorough analysis of true gut
communities is required to fully characterize mycobiome
phylosymbiosis and dietary signals across wild animals,
and to identify other ecological and host-associated factors
that influence mycobiome composition and function. We
hypothesize that evolutionary processes play a large role in
shaping host-associated microbiomes, with selection for
microbiome function rather than taxonomic groupings per se.

Within animals, the roles of host-associated fungal com-
munities are not well understood, yet our data highlight
that fungi are important components of microbiome structure
that are often overlooked. Our knowledge of the range of
functions provided by the host mycobiome, and how these
alter or complement those provided by the bacterial micro-
biome remain limited. We hypothesize that host-associated
fungi and bacteria produce mutually beneficial metabolites
that facilitate the colonization, reproduction and function of
cross-kingdom metabolic networks [28]. Though we provide
evidence for consistent variation among host class in fungal
community structure, and the role of fungi within microbial
co-occurrence networks, for many researchers, the questions
of key interest will focus on what governs variation at the
level of the individual. Clear gaps in our knowledge remain
regarding the relative contributions of host genomic [52–54]
and environmental variation to host mycobiome structure,
function and stability. There is an urgent need to incorporate
quantitative estimates of microbial function into microbiome
studies, which are crucial for understanding the forces of
selection shaping host–microbe interactions at both the
individual and species level.
es

que

.

4. Material and methods
(a) Sample collection
DNA was extracted from tissue or faecal samples of 49 host species
using a variety of DNA extraction methods (electronic supple-
mentary material, table S1) and normalized to approximately
5–10 ng � l� 1. Samples were largely collated from previous studies
and/or those available from numerous researchers and as such,
DNA extraction and storage techniques were not standardized
across species. We sequenced a median of 10 samples per speci
(range of 5 to 12; electronic supplementary material, table S1).

(b) ITS1F-2 and 16S rRNA amplicon se
Full details are provided in the electronic supplementary material.
Briefly, we amplified the ITS1F-2 rRNA gene to identify fungal
communities using single index reverse primers and a modified
protocol of Smith & Peay [55] and Nguyen et al. [56], as detailed
in Griffiths et al. [13]. To identify bacterial communities, we
amplified DNA for the 16S rRNA V4 region using dual indexed
forward and reverse primers according to Kozich et al. [57] and
Griffiths et al. [53]. The two libraries were sequenced separately
using paired-end reads (2 × 250 bp) with v2 chemistry on an
Illumina MiSeq.

We conducted amplicon sequence data processing in
DADA2 v. 1.5 [58] in RStudio v. 1.2.1335 for R [59,60] for both
ITS rRNA and 16S rRNA amplicon data. After data processing,
we obtained a median of 1425 reads per sample (range of 153
to 424 527) from the ITS data and a median of 3273 reads
(range of 153 to 425 179) for the 16S rRNA data.

To compare alpha-diversity between species and microbial
kingdoms, we rarefied libraries to 500 reads per sample, yielding
292 samples from 46 species and 307 samples from 47 specie
for fungal and bacterial kingdoms, respectively. Alpha-diversity
measures remained relatively stable within a host species
whether data were rarefied to 500, 1000, or 2500 reads (figure 1
electronic supplementary material, figure S1; see electronic
supplementary material for more details).
(c) Host phylogeny
We built a dated phylogeny of host species using TimeTree [61]
using 42 species, of which 36 were directly represented in the Time-
Tree database. A further six species had no direct match in
TimeTree and so we used a congener as a substitute (Amietia, Glos-
sina, Portunus, Ircinia, Amblyommaand Cinachyrella). We calculated
patristic distance among species based on shared branch length in
the phylogeny using the ‘cophenetic’ function in the apepackage
[62]. We visualized and annotated the phylogeny using the R pack-
age ggtree[63]. To create a phylogeny for all samples, we grafted
sample-level tips onto the species phylogeny with negligible
branch lengths following Youngblut et al. [25].
ncing

(d) Fungal and bacterial community ana
We used brms [64,65] to fit (generalized) linear mixed-effects
models [(G)LMMs] to test for differences in alpha-diversity and
calculatedr2 of models using the ‘bayes_R2’ function. We assessed
the importance of terms based on whether 95% credible intervals
of the parameter estimates crossed zero. We usedggplot [66], cow-
plot [67] and tidybayes[68] for raw data and plotting of posterior
model estimates. To support these analyses, we usedphylobase
[69] and phylosignal[70] to estimate the phylogenetic signal in pat-
terns of alpha-diversity for both bacteria and fungi, using both
Inverse Simpson Index and number of observed ASVs as outcome
variables. We calculated Abouheif’s Cmean for each diversity–
microbe combination and corrected p-values for multiple testing
using Benjamini–Hochberg correction.

To identify taxonomic differences in microbiome and myco-
biome composition between host species, we used CLR
transformation in the microbiome[71] package to normalize
microbial abundance data, which obviates the need to lose data
through rarefying [72]. To quantify differences in beta-diversity
among kingdoms and species while simultaneously accounting
for sample storage and library preparation differences among
samples, we conducted a PERMANOVA analysis on among-
sample Euclidean distances of CLR-transformed abundances
using the adonisfunction in vegan[73] with 999 permutations.
For both kingdoms, we specified effects in the following order:
sample type, tissue storage, extraction kit, class, order, species
This marginalizes the effects of sample metadata variables first,
before partitioning the remaining variance into that accounted
for by host phylogeny. The results were similar when amplicon
data were converted to the relative abundance or rarefied to
500 reads (electronic supplementary material, table S4).
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To test the hypothesis that inter-individual differences in
microbial community composition were preserved between
microbial kingdoms, we performed Procrustes rotation of the
two PCA ordinations for bacterial and fungal abundance
matrices, respectively (n = 277 paired samples from 46 species)
We also repeated this analysis with ASVs agglomerated into pro-
gressively higher taxonomic rankings from genus to order [30].
To provide a formal test of differences in strength of covariation
at different taxonomic levels, we conducted a bootstrap resam-
pling analysis where for each kingdom at each iteration, we
randomly sampled 90% of the data and recalculated the corre-
lation metric. We repeated this process 999 times to build a
distribution of correlation values at each taxonomic grouping.
To examine the hypothesis that inter-individual distance in
microbial community composition varies in concert with inter-
specific phylogenetic distance, we performed a Procrustes
rotation on the paired matrix of microbial distance (Euclidean
distance of CLR-transformed abundances) and patristic distance
from the phylogenetic tree.

To identify potential co-occurrence relationships between
fungal and bacterial communities, we conducted two analyses;
(i) we used the SpiecEasi[74] to identify correlations between
unrarefied, CLR-transformed ASVs abundances at the host
class level (with insects grouped), and (ii) we used co-occurrence
analysis at the species level, by rarefying the bacterial and fungal
datasets to 500 reads each, and agglomerated taxonomy family
level, resulting in 117 bacterial groups and 110 fungal groups.
These analyses are complementary ascooccuris more sensitive
and SpiecEasimore specific in terms of the ability to detect stat-
istical associations between pairs of microbes. Both methods
identified significant variation in network composition between
host class (i.e. when species-level data were scaled up to clas
level, figure 3a). We then merged thephyloseqobjects for bacterial
and fungal communities for each sample, with sufficient data
retained to conduct the co-occurrence analysis for 40 host
species. Using these cross-kingdom data, we calculated the co
occurrence between each pair of microbial genera by constructing
a Spearman’s correlation coefficient matrix in the bioDist package
[75,76]. We visualized those with � greater than 0.50 (strong posi-
tive interactions) and � < � 0.50 (strong negative interactions) for
each host species separately using network plots produced
in igraph[77].

To determine the effect of diet on bacterial and fungal com-
munity composition, we used only samples from the bird and
mammal species and agglomerated the data for each host specie
using the merge_samples function in phyloseq[78]. We obtained
dietary data for each host species from the EltonTraits database,
which provides standardized and semi-quantitative diet data for
host species based on descriptions from global handbooks
and monographs [79]. Further details on network and dietary
analyses are in electronic supplementary material.
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