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High ATP Production Fuels Cancer
Drug Resistance and Metastasis:
Implications for Mitochondrial ATP
Depletion Therapy
Marco Fiorillo 1,2, Béla Ózsvári 1, Federica Sotgia 1* and Michael P. Lisanti 1*

1 Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manches
United Kingdom,2 The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Ita

Recently, we presented evidence that high mitochondrial ATP production is a ne
therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated t
“metabolically� ttest” cancer cells from the total cell population. Importantly, ATP-hig
cancer cells were phenotypically the most aggressive, with enhanced stem-like
properties, showing multi-drug resistance and an increased capacity for cell migratio
invasion and spontaneous metastasis. In support of these observations, ATP-high ce
demonstrated the up-regulation of both mitochondrial proteins and other protei
biomarkers, speci� cally associated with stemness and metastasis. Therefore, w
propose that the “energetically� ttest” cancer cells would be better able to resist the
selection pressure provided by i) a hostile micro-environment and/or ii) conventio
chemotherapy, allowing them to benaturally-selectedfor survival, based on their high ATP
content, ultimately driving tumor recurrence and distant metastasis. In accordance w
this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a drama
increase in their ability to metastasize in a pre-clinical modelin vivo. Conversely,
metastasis was largely prevented by treatment with an FDA-approved dru
(Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading
ATP depletion. Clinically, these new therapeutic approaches could have importa
implications for preventing treatment failure and avoiding cancer cell dormancy,
employing ATP-depletion therapy, to target even the� ttest cancer cells.

Keywords: anti-oxidant capacity, ATP, bedaquiline, cancer stem cells (CSCs), dormancy, mitochondria, metastasis,
multi-drug resistance
y cell
ATP, THE ENERGETIC CURRENCY OF LIFE: HISTORY,
CHEMISTRY AND BIOLOGY

ATP is the vital energetic“currency” of all living things, including micro-organisms (1–11). Viruses
also energetically require suf� cient ATP levels, for replication in host cells.

Historically, ATP was initially discovered in 1929, by Karl Lohmann, a German chemist (Figure 1).
Then, in 1937, Herman Kalckar, from Denmark, showed that ATP synthesis is driven b
rg October 2021 | Volume 11 | Article 7407201
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Fiorillo et al. High ATP Production Fuels Metastasis
respiration. From 1939 to 1941, Fritz Lipmann, a German-b
scientist, was the� rst to demonstrate that ATP is used as
universal chemical energy in cells. However, it wasn’t until 1961,
that an American biochemist, namely Efraim Racker,� rst isolated
the catalytic F1-subunit of the mitochondrial ATP-synthase. T
in 1978, Peter D. Mitchell proposed that the asymme
distribution of protons across a topologically enclo
membrane, plays an important role in mitochondrial AT
generation. In 1997, the Nobel Prize in Chemistry was jo
awarded to Paul D. Boyer and John E. Walker, for discoverin
enzymatic mechanism(s), underpinning mitochondrial A
synthesis (4–7, 12–16). The mitochondrial ATP-synthas
(Complex V) is an excellent example of a rotary molec
motor, with an architecture of nanoscale dimensions (4–7).

Chemically, at the molecular level, ATP is a nucleo
triphosphate, which contains adenine, a ribose sugar, and
phosphate groups (i.e., adenosine-5’-triphosphate) (1–3).
Enzymatic cleavage of ATP at its terminal phosphate gr
produces two main reaction products, ADP and inorga
phosphate (Pi), thereby releasing high levels of stored che
energy (-30.5 kJ/mole) (1–3). Importantly, free energy releas
by the hydrolysis of ATP is also due to the higher stability of
reaction products, because the reaction is kept away
equilibrium in living cells. As a consequence, the free en
released by the hydrolysis of ATP into ADP and Pi, is actu
higher than under standard biochemical conditions.

Biologically, ATP is a required co-factor for a plethora
biochemical reactions, involved in cellular catabolism, as well
anabolic metabolism (8–11). During passive diffusion, sma
molecules randomly movevia Brownian motion, down the
concentration gradient. Therefore, in living cells, in order
maintain normal physiology and organismal homeostasis, act
transport is necessary to movemolecules directionally an
vectorially, against the concentration gradient, from an area o
concentration to an area of high concentration. This process of a
transport also involves energy expenditures, in the form of ATP

Kinases employ ATP for auto- and trans-phosphorylat
reactions, to rapidly transmit informationvia cellular signaling
Frontiers in Oncology | www.frontiersin.org 2
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cascades, from the plasma membrane to the cytoplasm, intrac
organelles and, ultimately, to the nucleus. The enzyme ade
cyclase (a family of ten human genes; ADCY1-10) uses ATP
precursor, for the generation of the second messenger, cyclic
(3’,5’-cyclic adenosine monophosphate).

ATP is involved in various aspects of protein synthesis.
example, tRNA-ligases employ ATP hydrolysis for coupling
20 amino acids to their appropriate tRNAs, for their use
cellular and mitochondrial ribosomes, during protein synthe
During protein translation, molecular chaperones (e.g., HS
and HSP90 family members) facilitate proper protein folding
acting as enzymatically active ATPases, consuming
amounts of ATP.

In summary, ATP energetically“fuels” most cellular processe
including metabolism, active transport, intracellular signaling
well as DNA, RNA and protein synthesis. Therefore, it is perh
surprising that nutrient fasting and/or caloric restriction (17, 18)
are believed to be one of the best strategies for extending
healthspan and lifespan, as evidenced by studies using m
organisms (C. elegans, Drosophilaand mice), as well as preventi
cancer (19, 20). For example, Resveratrol, a natural anti-ag
phytochemical and caloric restriction mimetic, is a kno
inhibitor of the mitochondrial ATP-synthase (21). Moreover,
Resveratrol is also thought to exert its powerful anti-ag
effects,via its sirtuin-dependent mechanisms of action.

More speci� cally, calorie restriction activates pro-longev
signaling pathways in model organisms, such as AMPK and
mitochondrial unfolded protein response (UPRmt), and inhib
mTOR and insulin/IGF1 signaling (22, 23). These effects ma
mechanistically reduce or restrict different processes tha
contribute to aging, such as in� ammation, loss of proteostas
and senescence.

Energy for the mitochondrial synthesis of ATP is deriv
from the oxidation of NADH and FADH2 by Complexes I-IV of
the mitochondrial electron transport chain (ETC). NADH a
FADH2 are generated mainly from the TCA cycle, but so
NADH is also donated by glycolysis and from the conversio
pyruvate into acetyl-CoA. However, cytosolic NADH (obtain
FIGURE 1 | A brief history of the discovery of ATP and its energetic function. This timeline highlights the key scientists and the events that contributed to ourdeeper
understanding the structure, function and molecular machinery responsible for the synthesis of ATP, especially within mitochondrial organelles.
October 2021 | Volume 11 | Article 740720
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Fiorillo et al. High ATP Production Fuels Metastasis
through glycolysis) does not directly feed into the mitochond
electron transport chain, but it gives electron equivalentsvia the
malate-aspartate and/or glycerol shuttles. In contrast, NAD
generated by the pentose-phosphate pathway (PPP), is us
maintain glutathione in a reduced state, providing anti-oxid
buffering capacity against ROS and oxidative stress.

Because of the central importance of ATP as a“barometer” of
cell metabolism, many luminescent and� uorescent probes hav
been developed, to measure and track ATP levels, in respo
various cellular stimuli (24–28). For example, BioTracker ATP-R
1 is a vital dye that is only� uorescent when bound to ATP, b
does not recognize ADP or other nutrients (29). Morphologically,
BioTracker ATP-Red 1 speci� cally localizes to mitochondria, a
seen by� uorescence microscopy, and co-localizes with
mitochondrial probe MitoTracker-Green (29). Therefore,
BioTracker ATP-Red 1 allows for the dynamic detection
visualization of mitochondrial ATP in living cells and tissues.

As mitochondrial activity is speci� cally increased in huma
tumor cells and metastatic cancer cellsin vivo, as measured b
speci� c functional activity assays, high ATP production may b
key driving force in promoting tumor progression, therap
resistance and, ultimately, in metastatic dissemination (30, 31).
However, more mechanistic studies are needed to experime
support this hypothesis.
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USING ATP AS A BIOMARKER TO
METABOLICALLY FRACTIONATE THE
CANCER CELL POPULATION:
IMPLICATIONS FOR ATP-DEPLETION
THERAPY

In our recent studies, we took advantage of a vital� uorescent dye
that allows one to measure ATP levels in living cells, nam
BioTracker ATP-Red 1 (32, 33). More speci� cally, we coupled
BioTracker ATP-Red 1 staining with a bioenergetic fractiona
scheme, in which the total cell population was subjected to� ow
cytometry, to isolate the ATP-high and ATP-low su
populations of MCF7 cells, an ER(+) human breast cance
line. This metabolic fractionation approach allowed us to iso
the most“energetic” cancer cells within the total cell populatio
One possibility is that increased mitochondrial metabolism a
or ROS production may contribute to this phenotype,via
mitochondrial retrograde signalling (34, 35). Therefore, we
proposed that the ATP-high cancer cell population should
targeted for eradicationvia ATP-depletion therapy (36–40).
ATP-depletion therapy would be expected to result in ra
energy-depletion, especially in highly aggressive cancer
thereby halting their propagation, by inducing autophagy
apoptosis and/or necrosis.

In a parallel line of research, we have previously ident� ed
>20 mitochondrially-targeted therapeutics that could be u
to effectively achieve ATP-depletion therapy (Figure 2).
These potential therapeutics include: FDA-approved d
(Doxycycline, Tigecycline, Azithromycin, Pyrvinium pamoa
Atovaquone, Bedaquiline, Niclosamide, Irinotecan); nat
Frontiers in Oncology | www.frontiersin.org 3
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products/nutraceuticals (Actinonin, CAPE, Berberine, Brutieri
Melitidin); and experimental compounds [Oligomycin, AR-C15585
Mitoriboscins, Mitoketoscins, Mito� avoscins, TPP derivative
(including Dodecyl-TPP and 2-Butene-1,4-bis-TPP)] (41–47).
A triple-combination of two antibiotics together with Vitamin
(Doxycycline, Azithromycin and Ascorbic acid) was found
be particularly potent for targeting mitochondria, inducing
ATP-depletion and inhibiting CSC propagation (48), at sub-
antimicrobial levels.

As many of these are repurposed FDA-approved antibio
with excellent safety pro� les, Phase II clinical trials a
warranted. For example, a Phase II clinical pilot study
Doxycycline (49) has already shown that this >50-year-o
antibiotic is indeed effective in metabolically targeting the C
population in early breast cancer patients, as demonstrated
CD44 and ALDH1 as speci� c CSC markers (49). Mitochondrial
ATP-depletion therapy is expected to functionally mimic fas
and/or caloric restriction, thereby more effectively starving C
to death. This has important implications for cancer preven
(50–52) and for potentially extending human lifespan duri
aging (53).

Recently, we also demonstrated that treatment with a pan
mitochondrially-targeted therapeutics, which potently inh
mitochondrial protein translation or OXPHOS, could blo
tumor cell metastasis, using anin vivo pre-clinical model (54–
56). These results indicated that ATP levels are function
critical for the processes fueling aggressive tumor cell beha
and spontaneous metastasis.

In further support of our hypothesis, other mitochondr
inhibitors are known to have promising anti-cancer effe
including IACS-010759, Gboxin,b1-blockers, Nebivolol, an
Benzethonium (57–60).
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SURVIVAL OF THE “FITTEST” : ATP-HIGH
CANCER CELLS SHOW A MULTI-DRUG
RESISTANT PHENOTYPE, WITH
ENHANCED ANTI-OXIDANT CAPACITY

Previous studies have shown that high anti-oxidant capacity
to increased levels of reduced glutathione, elevated NADPH
activated NRF2 signaling, signi� cantly contributes to the onset o
multi-drug resistance (61–67). Consistent with this hypothesi
recently we directly showed that ATP-high MCF7 cells hav
increased anti-oxidant capacity, with elevated levels of red
glutathione, and are intrinsically resistant to four different cla
of drugs (Tamoxifen, Palbociclib, Doxycycline and DPI) (33).
Therefore, the existence of the ATP-high CSC phenotype
help to mechanistically explain the pathogenesis of multi-d
resistance, during cancer therapy (Figure 3). In this context,
current cancer therapy may allow only the metabolically“� ttest”
cancer cells to survive.

More speci� cally, as we have shown that the ATP-h
phenotype is indeed transient, consistent with a“stemness”
phenotype, external selection pressure created by a h
environment, such as chemo-therapy, may further stabilize
October 2021 | Volume 11 | Article 740720
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Fiorillo et al. High ATP Production Fuels Metastasis
metabolic state. As such, this high energy phenotype ma
required for the survival of only the“� ttest” cancer cells, allowin
their propagation, under these harsh conditions.

Our recent � ndings with ATP-high MCF7 cells are al
consistent with several otherstudies that establish a dire
causal relationship between mitochondrial“power” and
Tamoxifen-resistance. For example, MCF7-TAMR cells
were generatedvia chronic exposure to increasing concentratio
of Tamoxifen, resulting in Tamoxifen-resistance, showed ele
Frontiers in Oncology | www.frontiersin.org 4
be

t

ed

levels of mitochondrial OXPHOS and ATP production (66).
In MCF7-TAMR cells, acquired Tamoxifen-resistance was du
the over-expression of two key anti-oxidant proteins (NQO1
GCLC) and their positive metabolic effects on mitochond
metabolism, as revealed by unbiased proteomics analysis (66). In
addition, recombinant over-expression of either NQO1 or GC
in MCF7 cells autonomously conferred an ~2-fold increas
mitochondrial ATP-production and Tamoxifen-resistance (66).
Moreover, recombinant over-expression of a somatic muta
FIGURE 2 | Mitochondrial complexes I to IV can be safely targeted with FDA-approved drugs. This diagram illustratesthat ATP-depletion can be induced in
cancer cells by employing FDA-approved mitochondrial inhibitors that either i) block OXPHOS directly or ii) block OXPHOS indirectly, by halting mitochondrial
protein translation. Inhibition of mitochondrial ATP production is a manageable side-effect that can re-purposed as a therapeutic effect to targetand halt the
propagation of CSCs. Inhibitors of mitochondrial protein translation (Doxycycline, Tigecycline and Azithromycin) prevent the production of the 13 proteins
encoded by mitochondrial DNA (mt-DNA), including key subunits of complex I, III, and IV, as well as complex V (MT-ATP6, MT-ATP8) and Humanin (MT-RNR2).
October 2021 | Volume 11 | Article 740720
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Fiorillo et al. High ATP Production Fuels Metastasis
(Y537S) in the estrogen receptor (ER-alpha; ESR1), clin
associated with acquired Tamoxifen-resistance in breast c
patients, genetically conferred elevated mitochondrial biogen
OXPHOS and high ATP production (68). The proteomic pro� les
of MCF7-TAMR cells and MCF7-ESR1(Y537S) cells also sh
considerable overlap in the biological processes that
functionally activated (68). Finally, 60 gene produc
functionally-associated with mitochondrial ATP productio
were predictive of Tamoxifen-resistance in ER(+)/Lumina
breast cancer patients (69). These predictive biomarkers includ
18 different mitochondrial ribosomal proteins (MRPs) a
>20 distinct components of the mitochondrial OXPHO
complexes. Therefore, our recent results showing that“naïve”
ATP-high MCF7 cells are intrinsically Tamoxifen-resista
without any prior exposure to the drug, have important clin
implications for optimizing the effectiveness of hormonal br
cancer therapy.

Interestingly, it has been previously reported that treatm
with conventional chemotherapeutic regimens, actually incre
the number of CSCs, while selectively killing“bulk” cancer cells
(70), but no metabolic hypotheses have been proposed to ex
Frontiers in Oncology | www.frontiersin.org 5
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this phenomenon. In accordance with our“ATP-based
hypothesis”, Chan and colleagues (from Genentech, In
examined the effects of gemcitabine and etoposide on the
cancer cell population (71). Remarkably, they observed that af
treatment with gemcitabine and etoposide, the population
surviving cells showed an increase in ATP content, elev
mitochondrial mass, with more mitochondrial respiration (71).
However, they did not propose a mechanistic explanation
these observations, nor did they consider the CSC popula
Instead, they simply concluded that measuring ATP is not a g
read-out to assess the effectiveness of chemo-therapeutic a
Given our current� ndings with ATP-high cells, an alterna
interpretation of their results is that gemcitabine and etopo
selectively killed the ATP-low sub-population of cancer c
thereby enriching for the“energetic” ATP-high sub-population
which are more stem-like and drug-resistant. Therefore,
drug discovery should be initiated to help eradicate the A
high sub-population of cancer cells.

Higher intracellular ATP levels have also been suggest
account for acquired drug-resistance to oxaliplatin and cispl
in a variety of chronically-treated colon and ovarian cancer
FIGURE 3 | High ATP levels are a major driver of aggressive cancer cell phenotypes. ATP-high cancer cells show increases in many aggressive properties or
behaviors, including cell proliferation, stemness, anchorage-independence, migration, invasion, metastasis, anti-oxidant capacity and drug-resistance. In contrast,
more “dormant” CSCs show low ATP levels. High mitochondrial ATP production may be related to increases in mitochondrial mass in ATP-high cancer cells.
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Fiorillo et al. High ATP Production Fuels Metastasis
lines (HT29, HCT116, A2780), although a diverse numbe
mechanisms have been proposed, including increased glyc
and/or mitochondrial metabolism (72, 73). However, in thes
previous studies, ATP levels were measured only
chronically selecting for the drug resistant cell populat
Therefore, a direct cause-effect relationship between
production and drug resistance could not be established.

Taken together, these� ndings are internally consistent wi
the idea that the high selection pressure afforded by the
conventional chemotherapeutic agents ultimately drives
natural-selection and survival of only the“energetically� ttest”
cancer cells, namely the ATP-high sub-population. Therefor
the future, new drug therapies must be implemented, to ta
and eradicate the ATP-high population of cancer cells, to pre
the accumulation of an aggressive, metastatic sub-populati
tumor cells.
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TUMOR DORMANCY AND
MULTI-DRUG RESISTANCE: ARE THEY
INTER-RELATED?

According to the conventional view of tumor dormanc
dormant cancer cells undergo slower rates of cell prolifera
and/or cell cycle arrest (quiescence), to avoid therapy-ind
cell death, leading to multi-drug resistance (67, 74). Surprisingly,
recently we observed just the opposite phenomenon. ATP
MCF7 cells were less proliferative, with >87% of the cells in
G0/G1 phase of the cell cycle, but were actually more sensit
4 different classes of drugs, using the 3D-mammosphere as
a readout (33). Conversely, ATP-high MCF7 cells we
signi� cantly more proliferative, with >38% of the cells in eit
S-phase or G2/M, showing a clear multi-drug resista
phenotype. Therefore, high levels of mitochondrial ATP ap
to be a key driver of both elevated cell proliferation and dr
resistance, as they represent the energetically“� ttest” population
of cancer cells (Figure 3).
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DEFINING A METASTASIS GENE
SIGNATURE, USING BIOINFORMATICS:
VALIDATING THE IMPORTANCE OF
ATP5F1C, USING SEVERAL
INDEPENDENT DATA SETS AND
MDA-MB-231 CELLS

To interrogate the possible role of mitochondrial ATP product
in the process of metastasis, we also used a bioinformatics app
(33).Brie� y,we intersecteda series ofpublicly-availableGEO b
cancer DataSets and de� ned a metastasis-associated gene-sign
consisting of� ve ATP-related genes, namely ATP5F1C, UQC
COX20, NDUFA2, and ABCA2 (Figure 4). Notably, two member
of the signature, ATP5F1C and UQCRB, are both known mar
of maximal oxygen uptake (V02max) in mitochondrial-rich human
skeletal muscle� bers (75).
Frontiers in Oncology | www.frontiersin.org 6
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Interestingly, ATP5F1C appeared to be the most rele
member of this metastasis signature, as it is directly connect
ATP-synthesis (76). ATP5F1C is the gamma subunit of t
mitochondrial ATP synthase (Complex V) and is direc
involved in converting physical energy (torque) into chem
energy (ATP) (33, 76).

To further validate and con� rm the relevance of ATP5F1C
we next used a third completely independent database, na
the “The Metastatic Breast Cancer Project”, which includes
mRNA expression pro� ling data (RNA Seq V2 RSEM) fro
the RNA-sequencing of metastatic breast cancer samples, d
from N=146 patients (Figure 4). In this context, the mRNA
expression of ATP5F1C was positively correlated with the
expression of numerous breast CSC markers, circulating tu
cell (CTC) markers, metastasis markers, cell cycle regul
proteins, and other mitochondrial-related genes, as well as
other members of the metastasis gene signature (UQC
COX20, NDUFA2). Independently, using Kaplan-Meier (K-
analysis, high levels of ATP5F1C mRNA transcripts speci� cally
predicted poor clinical outcomes in breast, ovarian and l
cancer patients (33).

To provide functional validation, we next used MDA-MB-2
cells as a metastatic model for triple-negative breast ca
Interestingly, ATP-high MDA-MB-231 cells over-expres
ATP5F1C, as well as other members of mitochondrial complex
V and CTC markers (Ep-CAM1 and VCAM1), all relative to AT
low MDA-MB-231 cells. ATP-high MDA-MB-231 cells also show
notable increases in ATP-production, proliferation, anchora
independent growth, cell migration, invasion and spontane
metastasis (Figure 3). Conversely, inducible knock-down of
ATP5F1C in MDA-MB-231 cells was indeed suf� cient to inhibit
ATP-production,anchorage-independentgrowthandcellmigra

Moreover, ATP-high sub-populations of MDA-MB-231 a
MCF7 cells both showed features of multi-drug resista
consistent with a more aggressive cancer cell phenotype.

Therefore, ATP5F1C may be an attractive target for new
development and metastasis prevention.
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REPURPOSING BEDAQUILINE TO
PREVENT ATP PRODUCTION, CANCER
CELL MOTILITY, AND SPONTANEOUS
METASTASIS IN VIVO: TARGETED DOWN-
REGULATION OF ATP5F1C

Are there any existing FDA-approved inhibitors of t
mitochondrial ATP-synthase that could be repurposed to ta
and prevent cancer metastasis? This would certainly acce
future clinical trials, as FDA-approved drugs can re-enter Pha
trials, for another clinical indication, completely skipping Phas
which is speci� cally focused on safety and toxicity.

Bedaquiline is a clinically-approved drug, that is usually use
anti-tuberculosis therapy, especially in the context of drug-resi
TBstrains. More speci� cally,Bedaquilinewas originallydesigned
target and block the activity of the ATP-synthase in mycobact
Perhaps surprisingly, recent studies have also demonstrate
October 2021 | Volume 11 | Article 740720

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


st

to
gra
-
e
)
an
tive
tin

y,

ow
lls

ss,

a
s w
AT
aft
ing

s of
ilarly,
ells,

the
suring

t on
d

n that

be re-
TP-
e
ch,

eting
e
y

Fiorillo et al. High ATP Production Fuels Metastasis
Bedaquiline signi� cantly inhibits the human and the yea
mitochondrial ATP-synthase, as an off-target side effect (77). In
addition,usingcryo-EMasa tool forstructuralstudies, investiga
have localized the binding site of Bedaquiline to the inte
membrane subunit (F0), using the yeast mitochondrial ATP
synthase. Since the soluble F1 subunit is physically tethered to th
membrane-bound F0 subunitvia the gamma-subunit (ATP5F1C
(76), we hypothesized that ATP5F1C might be mis-folded
degraded in the presence of Bedaquiline. This would effec
disrupt ATP synthesis, as ATP5F1C functions as the rota
central stalk that helps convert torque into chemical energ
the form of ATP (Figure 5).

Interestingly, we observed that ATP5F1C was effectively d
regulated after Bedaquiline treatment in MDA-MB-231 ce
resulting in signi� cant reductions in ATP production, stemne
anchorage-independent growth and cell migration (33).

Bedaquiline-induced cell death in MDA-MB-231 cells w
related to the onset of autophagy and necrosis, but apoptosi
not observed. Remarkably, the expression of ATP5F1C and
production, as well as cell growth, remained unaffected
Bedaquiline treatment in MCF-10A cells, a non-tumor-produc
Frontiers in Oncology | www.frontiersin.org 7
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human breast epithelial cell line. Therefore, the effect
Bedaquiline appeared to be restricted to cancer cells. Sim
Bedaquiline inhibitedATP-production inMCF7 breast cancerc
butnot inhTERT-BJ1cells,anormalhuman� broblast cell line (44).

As a result of these� ndings, we tested the ef� cacy of
Bedaquiline in a pre-clinical xenograft model, namely
CAM assay, which uses chicken eggs as the host for mea
tumor growth, spontaneous metastasis and drug toxicity (33).
Our results demonstrated that Bedaquiline had no effec
MDA-MB-231 tumor growth, but effectively prevente
spontaneous metastasis, by nearly 85%, at a concentratio
did not show any signi� cant chicken embryo toxicity (Figure 5).

As a consequence, we suggest that Bedaquiline could
purposed to prevent spontaneous metastasis, by driving A
depletionvia its targeting of the ATP5F1C subunit, within th
mitochondrial ATP-synthase multi-subunit complex. As su
clinical trials may be warranted.

We speculate that Bedaquiline, by mechanistically targ
the gamma-subunit of the ATP synthase, may promot
dissociation of the F1-domain of the enzyme and thereb
promote the opening of the transition pore (78–80). Recent
FIGURE 4 | Using several independent data sets to identify ATP5F1C as a key biomarker and therapeutic target for metastasis prevention. In order to de� ne an
ATP-related metastasis gene signature we� rst intersected two GEO DataSets focused on breast cancer metastasis (namely, GSE2034 and GSE59000),
resulting in 5 common genes. The positive co-expression of ATP5F1C, with3 other members of this gene signature (UQCRB, COX20, NDUFA2), was indeed
con� rmed by analyzing data from The Metastatic Breast Cancer Project (Provisional, February 2020; DataSet 3; https://mbcproject.org). Finally, 2 of these 4
gene transcripts (ATP5F1C and UQCRB) were independently found to be speci� cally-associated with i) maximal oxygen uptake (VO2max) and ii) a higher
percentage of mitochondrial-rich (type 1)� bers, in human skeletal muscle (DataSets 4/5), especiallyduring exercise training. Therefore, ATP5F1C and UQCRB
are likely to be key biomarkers of high OXPHOS and high mitochondrial ATP production in cancer cells.Modi� ed from Reference 33 and reproduced with
permission, under a Creative Commons License.
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Fiorillo et al. High ATP Production Fuels Metastasis
� ndings strongly support the idea that the ATP synthase fo
the permeability transition pore (PTP) (78, 79). Prolonged
opening of the PTP permeabilizes the inner mitochond
membrane to small solutes and constitutes the point of
return in the execution of cell death.

Finally, the mitochondrial ATP-synthase is indeed subjecte
numerous post-translational modi� cations (such as phosphorylatio
as well as acetylation and succinylation on key lysine residue
course, this can potentially affect its level of enzymatic act
and could perhaps explain the phenotypic differences bet
ATP-high and ATP-low cancer cells. Regarding Bedaquiline
FDA-approved drug is known to bind directly to the AT
synthase, but it is not known if Bedaquiline affects the statu
these post-translational modi� cations.
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CONCLUSIONS

In conclusion, we recently employed bioenergetic
“strati� cation” using an ATP-based biomarker to isolate
metabolically“� ttest” cancer cells. Using this novel approach,
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obtained the� rst evidence that high levels of mitochondrial A
are a primary determinant of aggressive cancer cell behav
including spontaneous metastasis. These� ndings have
important therapeutic implications for preventing treatme
failure in cancer patients, which remains an urgent unme
clinical need.

For example, energetic cell pro� ling, using ATP as a
biomarker, can provide a reliable source of ATP-high CSC
for establishing“living” tumor bio-banks and ii) for conductin
small-molecule library screening, targeting drug resistance.
new conceptual framework will allow novel strategies to
developed to therapeutically target and eradicate even
energetically“ � ttest” CSCs, to ultimately abrogate dru
resistance and metastasis.

In direct support of these observations, Kalluri and collea
(81) observed that shRNA-mediated down-regulation of the
mitochondrial transcription factor, namely PGC-1a, signi� cantly
inhibited lung metastasis, in several independent cell l
(MDA-MB-231, 4T1 and B16F10 melanoma cells), but
little or no effect on tumor growth. These observations
consistent with the idea that targeted down-regulation
FIGURE 5 | Targeting the human mitochondrial ATP synthase with Bedaquiline, an FDA-approved drug, prevents spontaneous metastasis. Mitochondrial ATP-
synthase is a nano-scale rotary molecular motor that uses the transport of hydrogen ions to generate physical energy in the form of torque that is then converted into
chemical energy in the form of ATP. Rotation of the gamma-subunit (ATP5F1C) helps to convert physical energy into chemical energy. Note that Bedaquiline
treatment induces the degradation or down-regulation of the gamma-subunit (ATP5F1C), resulting in ATP-depletion and the prevention of metastasis.
October 2021 | Volume 11 | Article 740720
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PGC-1a inhibited the propagation of the“� ttest” CSC sub-
population (31, 32, 82), although the authors did not direct
address the issue of the CSC phenotype.

Similarly, high expression levels of the ATP synthase inhib
factor 1 (IF1), which inhibits the activity of the mitochondrial AT
synthase, predicts a better outcome for breast cancer pa
especially in the case of triple-negative breast cancer (83, 84).
Moreover, IF1 over-expression reduces the production of AT
mitochondria and decreases the proliferation and invasivene
triple-negative breast cancer cells (84).

Finally, mitochondrial DNA-encoded (mt-DNA) cytochrome
oxidase II (MT-CO2) is an essential component of mitochond
complex IV of the respiratory chain; without MT-CO2, electr
transport and mitochondrial ATP production cannot proce
Recently, Lebok and colleagues (85) showed that high levels o
MT-CO2 protein expression in a cohort of approximately 2,
breast cancer patients, from Germany and Switzerland,
clinically associated with advanced tumor stage, higher tu
grade, lymph nodal metastasis and shorter overall survival
0.0001 each). Moreover, at the molecular level, high MT-
protein expression was associated with elevated Ki67 (a mar
cell proliferation), the genetic ampli� cation of several oncogen
(HER2, MYC, CCND1 and MDM2), the deletion of PTEN
known tumor suppressor) and the down-regulation of estro
receptor (ER-alpha) expression (85). As MT-CO2 is a well-
established surrogate marker of mitochondrial DNA content
mitochondrial protein translation, these results clinically estab
that high mitochondrial content (85) is a functional biomarker o
aggressive tumor progression and metastasis, as well as
prognosis and reduced overall survival. In further suppor
these clinical observations, MT-CO2 is over-expressed by
fold in an hTERT-enriched sub-population of breast cancer s
cells (86). Pharmacologically, MT-CO2 is effectively targeted by
FDA-approved antibiotic Doxycycline (87), which behaves as a
inhibitor of mitochondrial protein translation and prevents AT
, et

th
/

rk o
15

ot
39

744
ed

r an
39
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production (87), ultimately blocking metastasis in preclinic
models (54). Therefore, Doxycycline may also provide
therapeutic solution for inhibiting MT-CO2 in breast canc
patients, to help prevent disease progression.

Taken together, these multiple lines of experimental evid
are all consistent with the idea that mitochondrial ATP-deplet
therapy should be pursued asa viable means to provid
metastasis prophylaxis in cancer patients.
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