
SecRose: a data transportation layer 
security mechanism for wireless sensor 

networks
Ekonomou, E and Booth, KM

Title SecRose: a data transportation layer security mechanism for wireless 
sensor networks

Authors Ekonomou, E and Booth, KM

Type Conference or Workshop Item

URL This version is available at: http://usir.salford.ac.uk/2750/

Published Date 2009

USIR is a digital collection of the research output of the University of Salford. Where copyright 
permits, full text material held in the repository is made freely available online and can be read, 
downloaded and copied for non­commercial private study or research purposes. Please check the 
manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please
contact the Repository Team at: usir@salford.ac.uk.

mailto:usir@salford.ac.uk


SecRose: a data transportation layer security 
mechanism for Wireless Sensor Networks

Elias Ekonomou    Kate Booth
E.Ekonomou@pgr.salford.ac.uk K.M.Booth@salford.ac.uk

Centre for Networking and Telecommunications Research
School of Computing, Science and Engineering

The University of Salford
Salford, Greater Manchester M5 4WT, UK

Abstract- We introduce the final version of SecRose, a mechanism 
for  secure  transferring  of  data  in  a  Wireless  Sensor  Network 
(WSN). SecRose is based on improvements in existing proposals 
plus  a  set  of  distinctive  novel  characteristics.  Major  Features 
include encrypted and authenticated communications, integrated 
key  management  and  categorisation  of  communication  types. 
SecRose is secure, scalable and extremely lightweight.

I. INTRODUCTION

A. Wireless Sensor Networks
A typical wireless sensor network (WSN) consists of a number of wirelessly 
interconnected  sensor  nodes  that  are  used  to  gather  information  from  the 
environment. They might operate in a hostile environment and they should be 
resistant to physical or electronic attacks. They can acquire information using 
any  standard  electronic  component,  e.g.  microphones,  photometers, 
thermometers  etc and so they can be used for a number of  tasks.  They can 
operate  in  a  wide  variety  of  applications  including  military,  commercial, 
industrial and even domestic or personal applications.
The network consists of sensor devices which use a single integrated circuit 
which embeds all the electronic components required. This chip interfaces with 
a sensor device which could be mechanical or electronic or both. The whole 
sensor is powered by a small battery which means the network’s life is highly 
dependent on the energy consumption of the sensor.
In  addition  to  the  sensors  the  network  uses  a  base  station  which  is  the 
network’s interface point to the rest of the world. The base station is usually a 
more powerful and less energy dependent device than the sensor devices. Some 
networks might include more than one base station.
Existing  WSNs are  mainly  experimental  and  might  consist  of  up to  a  few 
hundreds of sensors. Future WSNs are expected to consist of tens of thousands 
of  nodes,  although  the  actual  size  of  the  future  typical  sensor  network  is 
disputed[1].
Each sensor node is a mini computer, complete with processing unit, volatile 
and non volatile memory and interfacing capabilities via radio or LEDs. It also 
includes a minimalistic operating system, with TinyOS [2] being the current 
standard.

B. Research objective
The area of WSNs attracts considerable research interest mainly because their 
greatly  exciting  potential.  In  order  to  achieve  that  potential  the  research 
community has to overcome the security obstacle which poses great challenges 
[3], [4]. 
Privacy and security is an essential requirement of many applications in the 
modern world. By enabling security in the WSNs, we create the potential of 
using them for demanding requirements. A well designed security protocol is 
essential  for  the  further  development  and  the  success  of  wireless  sensor 
networks.
Our objective was to provide an efficient and easy to use security mechanism 
for  WSNs.  The process  of  achieving  our  objectives  resulted in  a  paper  [5] 
which described our approach and the initial design. In this paper we describe 
the final design of SecRose. The mechanism,  at its present form,  meets our 
security requirements without significant energy cost. 

C. SecRose design goals
Since every WSN application is subject to its own threat model the security 
requirements  are  not  homogenous.  Therefore  we  had  to  set  a  number  of 
security properties and require them to be provided by SecRose in order to 
characterise it as secure. These properties were originally defined in [3] and are 
as follows:.
SecRose must provide data confidentiality. Data have to be encrypted in a way 
difficult enough to avoid any realistic possibility of reading them while they 
are still useful.
It  must also provide data authentication and integrity.  We have to guarantee 
that the identity of the source is indeed what is claimed to be and that the data 
have not been altered during transit.
Finally, we have to provide data freshness so that an attacker cannot record and 
replay messages  that  would  appear valid  to the network.  A solution  to  this 
problem usually means that the network is also protected against cryptanalytic 
attacks.
We had to provide the above security properties utilising the minimum possible 
energy. It was also desired to provide the security properties transparently. We 
would enhance the TinyOS’s equivalent of the data transportation layer, not the 
way that  applications  interface  with  that  layer.  SecRose  would  therefore  be 
extremely  portable  and  migration  from  plain  TinyOS  to  SecRose-enabled 
applications would be effortless.

II. OTHER WORK

Research in the past was largely conducted under military funding and thus 
affected by military goals  set by the funding institutions.  Their  goal  was to 
limit  the  effect  of  node  capturing,  also  known  as  node  compromise  by an 
attacker. Such event would give access to the memory of the captured node 
which would include the keys in use. If these were revealed then the whole 
security of the network would be compromised. Proposed countermeasures to 
node capturing included key management schemes [6], [7], [8] and location-
aware  security  [9].  Most  of  that  research  was  done  for  extremely  large 
networks, which are yet to be deployed anywhere.
However, recent advantages in integrated circuit design have resulted in more 
secure microprocessors. This statement is supported by the work in [10], [11], 
[12] and [13].  Therefore we argue that the whole idea of node capturing is 
certainly  outdated.  Not  only  work  in  other  disciplines  challenged  node 
capturing, but even the most recent work in WSNs does not address the issue. 
The attempt for traditional secret-key solution was introduced in [4] but it was 
never fully described or implemented [14]. Subsequently the research seems to 
have shifted in providing lightweight cryptographic mechanisms, for example, 
TinySec [14] which is the mechanism that is currently shipped with TinyOS 
and included in commercial products like the ones from Crossbow [15]. We are 
also aware of the work of Li  et al.  in SenSec [16] and Luk et al. in MiniSec 
[17]. Unfortunately we were unable to find an implementation of SenSec for 
reference and evaluation and thus we had to rely on their published work only 
in order to identify its performance potential.

III. THE SECROSE DESIGN

A. Design Assumptions
We assume a network consisting of a few hundreds of nodes. The nodes are 
mica2  models  from  Crossbow  [15],  one  of  the  less  capable  commercially 



available  node.  A  mica2  node  has  an  8MHz  processor,  128KB  runtime 
memory,  512KB storage  memory  and 4KB non-volatile  memory.  They can 
communicate at the rate of 38.4Kbps and they run TinyOS. 
Traffic flow follows a pattern determined by the application. We believe that 
most traffic is directed from the nodes to the base station. The reason for that 
assumption is derived from the ultimate goal  of a WSN; to get information 
from the network.  There are also two more possible flow patterns. Fist, the 
base station will occasionally broadcast a command or other data to the whole 
network.  Secondly  the  network  nodes,  or  the  base  station,  can  directly 
communicate with each other. We assume that the frequency of the last case is 
significantly less that the other two cases. 
We also assume that all  the sensors  use integrated circuits  that are tamper-
resistant. Thus, in case a node is captured the attacker is unable to extract data 
from the sensor.

B. Packet types
As we distinguish three possible communication types we have defined three 
types of packets to cover all the possible communication needs inside a WSN 
while  allowing  for  maximum optimisation.  A fourth  type  is  used  for  state 
preservation but it allows for many more future uses.
A packet of type  normal packet is used when a node wants to communicate 
with the base station. We expect this type of packet to be the most used type 
during  the  lifetime  of  a  typical  WSN.  Normal  packets lack  a  destination 
address, since that is always the base station. Fig. 1a shows the format of a 
normal packet.
A packet of type broadcast packet should be used by the base station if there is 
a need to command or query the whole network. Broadcast packets lack source 
and destination address since they are can only originate from the base station 
and they are destined to the network in general. Fig. 1b shows the format of a 
broadcast packet.
Finally,  a  packet  of  type  long  packet is  to  be  used  in  point-to-point 
communications between any given pair  of  nodes in the network,  including 
communication from the base station to a specific node. A long packet does not 
lack source and/or destination address as the other packet types do.  Fig.  1c 
shows the  format  of  a  long packet. The fourth  type,  a  control  packet, is  a 
specially constructed normal packet. That type is explained further in section 
IV. 

C. Key Management
The key management system represents the network as a set of communication 
pairs. Each communication pair has its own pair key which is derived from an 
initial key. The initial key is stored in the pairs during deployment and can be 
uniform for all the pairs. Even a broadcast communication is regarded a pair, 
with the base station on one side and the whole network on the other side of the 
pair.
The pair keys are derived using the initial key and a counter value. The initial  
key  is 96 bits and the  counter is 32 bits. The pairs are required to produce a 
new  pair  key after  each  successful  communication.  The  whole  process  is 
further explained in section IV.
The method guarantees data freshness, as keys are usually not reused. It also 
prevents  cryptanalysis,  since  the  same  plaintext  would  produce  a  different 
ciphertext.  This  scheme  shares  some  of  the  properties  of  key  management 
schemes  and  thus  it  also  limits  the  impact  of  a  node  compromise  attack. 

D. Flags
All packet types defined before are identified by a flag. There are four packet 
types and thus 2 bits of information were required in order to represent them. 
This 2-bit value can be safely overloaded with the value of the packet’s length. 
We  have  also moved  the  length in  the  very beginning  of  the packet’s  data 
stream so that it allows for appropriate and rapid handling of any packet.
The length of the packet previously contained the amount of data payload in 
this packet. That is a value in the range of 0 to 28 which can be represented 
using 5 bits. So the first 3 most significant bits of the 8-bit data length value are 
always unused. We overload the 2-bit flag in the first 2-bits of the length in 
order to eliminate the flag’s overhead in the radio. We end up with a robust 
mechanism with significant saving potential and minimum overhead. 
The use of flags allows us to save significant amounts of energy by introducing 
different packet types. Energy is particularly saved when using normal packets 
and broadcast packets. Since both types have a predetermined destination, the 
nodes can determine the packet type and its destination by just reading the flag. 
They can therefore save energy by not sending the destination address at all.
The  flag  mechanism,  in  association  with  a  routing  table,  can  help  a  node 
determine if a packet is intended to be forwarded by itself or not. Neighbour 
nodes that happen to overhear a communication can stop receiving the rest of 
the packet at a very early stage, saving the otherwise wasted energy.

E. Message authentication
Message authentication provides protection against a possible attempt to alter a 
message  during transit.  It  also guarantees  that  the  source of  the  data is the 
expected source and not an adversary. We authenticate our data by replacing 
the aged CRC value of the packets with a Message Authentication Code. Such 
code is generally a small amount of data appended in the end of the packet. 
SecRose produces a MAC by feeding the pair key and the data stream to our 
encryption function as recommended by Dworkin in CMAC[18].
We selectively authenticate the important parts of each packet depending on 
the packet type. As illustrated in Fig. 1, the AM, Group and Data contents of 
the packet are always authenticated by the MAC. In addition we authenticate 
the source in normal packets and the destination in long and control packets.
We  state  that  a  32-bit  MAC  provides  adequate  protection  against  MAC 
collisions,  intentional or not.  The length of the maximum possible protected 
data  stream  is  sufficiently  small  to  be  protected  by  a  32-bit  MAC. 
Nevertheless, the CMAC produces a code that is equal in size with the block 
size of the block cipher used. In our case that size is a minimum of 64 bits. We 
use the rest of the 64 bits for other functionality.

F. Counter calculation
As stated above, the pair keys are produced by the initial key and a changing 
counter value. The counter is not simply incremented by one. It is incremented 
by the value of the 5th byte in the output of the MAC calculation. Thus after 
each packet’s MAC is calculated the counter is also determined and is derived 
by the actual data of the packet plus the previous value of the counter.
Each time a MAC is calculated the increment of the counter is also determined. 
When  the  MAC is  later  verified  by  the  receiving  node,  it  is  also  able  to 
calculate the new counter value as well. This method allows us to maintain a 
counter state without transmitting its value over the radio and thus saving the 
required energy and the potential security implications.

G. Acknowledgements and maintenance of state
Since we use counters to produce the pair keys we also need to be assured that 
the state of these counters is properly maintained for each node in the pair. 
Loss of counter state leads to a broken communication capability. We use an 
acknowledgement method to ensure that state is maintained.
Each receiver is required to send an ACK packet back to the sender each time a 
valid  packet  with a valid MAC is received. An  ACK packet is essentially a 
control packet, complete with its MAC, which contains no actual data payload. 
However,  it  is  prepared  using  the  new counter  value,  as  derived  from the 
received packet. 
Should the receiver be unable to verify the new MAC of the ACK packet or if 
there is no  ACK packet at  all  then the communication  in  this  pair  is  either 
problematic or under attack. It  is much more possible for a radio link to be 
problematic than to be under attack. Therefore SecRose can be programmed to 
allow for a number of communication attempts before a pair is designated as 
broken. The exact mechanism of how this happens is described in section IV.



The  novelty  of  our  acknowledgement  method  is  that  we  do  not  send  a 
traditional ACK value between hops each time a packet is sent/forwarded over 
a  hop.  That method would be a security disadvantage[19] and would waste 
energy for a functionality that is already covered by the ACK packet.

H. Encryption function
We recommend, and use, the Tiny Encryption Algorithm [20]   (TEA) as the 
encryption function for SecRose. The particular algorithm was selected for its 
security properties and for its small block size that suits small plaintext lengths. 
The most important property of TEA is that it combines both a small block size 
and a large 128-bit key. It  also features small memory footprint and limited 
computational requirements. Its latest revision was published by Russell under 
the name of Corrected Block TEA in 2004.
Although we believe that TEA is the most suitable for use in WSNs, there is no 
security  risk  in  using  any  other  encryption  function  with  the  SecRose 
mechanism.  The  features  of  our  algorithm  do  not  rely  on  the  encryption 
function itself but in how the function is used.

IV. DESCRIPTION OF OPERATION

A. Preparation
The first  step in sending a packet  is to  determine  and prepare its  flag.  The 
sender can determine the packet type at transportation level by looking on the 
address that the application wishes to send to. If the address be the base station 
address then the flag is 0. If it is the broadcast address the flag becomes 1. At 
that stage anything else has a flag of 2. After determination the flag has to be 
overloaded in the length field of the packet. This is achieved by appropriately 
flipping the 2 most significant bits of the length in order to represent the value 
of the flag.
The next and final preparation task is to encrypt the data of the packet using 
the current pair key. The pair key is produced as explained in paragraph H of 
this section.

B. Packet type specifics
After the initial task the sender has to calculate the MAC of the packet. The 
process involves determining what needs to be protected, as implied by the 
design and explained in section III. Then the encryption function is employed 
to produce a MAC code as defined in CMAC.  This process also produces the 
exact value to increment the  counter  with. However that value is not used at 
this stage.
While sending the packet the sender must keep track of what information to 
send,  based on  the  design.  Specifically,  broadcast  packets need neither  the 
source nor the destination to be sent, while normal packets replace the content 
in the space allocated for the destination address with the source address.

C. Post-send counter handling
After sending a packet the sender updates the counter with the increment value 
produced while calculating the MAC. Then the counter is stored in a temporary 
memory location, identifiable by the node ID of the receiver.  The receiver’s 
node ID is also the ID of the pair, from the sender’s perspective. Should the 
destination be the broadcast address then a special value is used as the pair ID. 
At this stage the sender can continue with other tasks while it waits for the 
ACK packet to be received.

D. Reception
On the  other  end  of  the  communication  the  receiver  is  notified  about  the 
incoming packet event and the first action to execute is to receive and examine 
the length of the packet. The flag can be extracted from the length, since it was 
overloaded there by the receiver. After determining the  flag the receiver can 
properly receive the packet’s fields using the equivalent to the sending process.

Upon complete reception the node has to calculate the MAC of the packet and 
compare  it  with  the  MAC received  over  the  radio.  Again  the  packet  type 
specifics have to be taken into account for appropriate MAC calculation and 
the counter value is produced as well. Packets with a verified MAC are then 
decrypted and higher layers are notified about the successful reception event.
If the MAC does not verify with the current key the receiver is allowed to use 
the  backup  key.  That  is  the  key  used  in  the  most  recent  previous 
communication, as defined below.
Should the MAC fail  to verify again the receiver  is  powerless  to solve  the 
problem and thus it has to ignore this packet.

E. Sending of acknowledgement
If  the  MAC is  verified the  receiver  should  proceed with  sending the  ACK 
packet to the sender. The initial stage for this process is to update the current 
counter with the new counter increment value, which was calculated before. 
Then the  ACK packet  is prepared. That packet is a  long packet with  length 
equal to zero and 3 as the packet flag. 
The packet is immediately sent over the radio as for any other packet.  The 
receiver saves the new current counter while keeping a backup of the previous 
counter. Then the receiver can proceed with other tasks.

F. Receiving the acknowledgement
When the sender receives the  ACK  packet  it  should immediately identify it 
using its flag and it should also be able to properly receive it using the normal 
reception process. 
After reception the MAC has to be verified and upon successful verification the 
sender has to re-assign its current and backup keys. The temporary key that 
was stored after sending now becomes the current key. The current key is kept 
as a backup key.
If the MAC cannot be verified the receiver is allowed to use the backup key 
and  try  verification  again.  If  the  verification  fails  again  the  receiver  does 
nothing. Although that fact means that the next time will reuse an already used 
key we have to allow it  to happen in order to accommodate  possible  radio 
problems.  The  amount  of  times  that  a  key is  allowed  to  be  reused can be 
programmed in SecRose.

G. Intermediate nodes
All intermediate nodes can determine the destination of a packet. This is true 
since the destination field is not encrypted and the flag designates normal and 
broadcast packets. They can therefore consult their routing table and decide if 
they ought to receive and forward this packet or not. Nodes that belong to the 
path of a specific pair should receive and immediately forward the packet byte-
to-byte without attempting to decrypt or validate it.

H. Counters and key production
Before each cryptographic or MAC calculation the node has to mix the active 
counter with the  initial key  in order to produce the  final key. The process is 
executed by breaking the 96-bit initial key into four 24-bit blocks and the 32-
bit  counter into  four  8-bit  blocks.  Then  the  first  block  of  the  initial  key 
becomes  the first  block of  the  final  key,  followed  by the  first  block of  the 
counter. The process is repeated four times until the final key is finalised. Fig. 
2 illustrates this process.

V. EVALUATION

A. Security properties
As mentioned before, SecRose was designed with a set of goals that defined 
when  a  communication  is  secure.  These  goals  state  the  need  to  provide 
confidentiality, authentication, integrity and freshness. Other work in the area 
also meets these goals, namely TinySec [14], SenSec [16] and MiniSec [17]. 



This  paragraph  demonstrates  why  SecRose  proposes  a  better  solution  to 
achieve most of these goals than the other mechanisms.
In order to provide confidentiality, all mechanisms follow the logical path of 
encrypting the exchanged data. The difference of SecRose is our integrated key 
management mechanism and the use of TEA for encryption. While the other 
proposals make no mention of how the keys are deployed and managed, we 
have  integrated  a  process  to  do  exactly  that.  The  key  management  is  an 
essential part of SecRose and poses an extremely small energy overhead while 
greatly enhancing the overall confidentiality of the exchanged data. Also, our 
mechanism protects the acknowledgement packets as well,  a fact that is not 
seen in any of the other designs.
Additional differences regarding confidentiality lie in the selected block cipher 
of the other proposals.  SecRose  and MiniSec use the Skipjack block cipher 
[21] for their cryptographic needs. Although Skipjack is suitable because of its 
small block size it only uses 80-bit keys. To tackle this problem, SenSec uses a 
variant of Skipjack which accepts 128-bit keys but the security of the variant is 
yet to be analysed by the cryptographic community. On the other hand, TEA 
operates with 128-bit key lengths and it was designed like that from the very 
beginning.
All the other proposals use initialisation vectors (IVs) in order to provide data 
freshness and to minimise  the vulnerability of  the design  to a cryptanalysis 
attack.  Such  vectors  are  essentially  counters  which  are  altered  with  every 
communication and are then fed to the encryption function as a part of the data 
payload which needs to be encrypted.  This process guarantees that repeated 
encryptions of the same plaintext always result in different ciphertext. The IVs 
are sent over the radio as a part of the packet. SecRose also uses a pseudo-
randomly  incremented  counter  for  the  same  task  but  in  a  fundamentally 
different approach; our counter is not transmitted with the packet,  it  is kept 
secret.
The major advantage of this approach is that the counter does not have to be 
small. Currently we use a 32-bit counter while the IVs of TinySec and SenSec 
are only 16-bits. Only the IV of MiniSec is of equal size to SecRose. But the 
IVs  are  constructed  including  the  destination  address,  AM type  and Group 
values.  This  makes  the  IVs  inferior  to  a  pure  counter  since  they  are  not 
guaranteed  to  be  variable  at  all  times.  Therefore  SecRose  provides  greater 
freshness  that  the  other  proposals.  This  allows  for  greater  complexity  and 
higher traffic volumes while it leaks less cryptanalytic information. 
Finally, all mechanisms use their encryption function in CBC mode to produce 
a MAC. The MAC guarantees message authentication and integrity. SecRose 
follows the same approach and as far as we can say there is no observable 
difference in any way.

B. Energy efficiency
Energy  is  the  asset  that  has  to  be  paid  to  obtain  security.  It  is  therefore 
generally accepted that a security mechanism will be less efficient and slower 
than a plain one. SecRose offers a number of efficiency improvements and we 
are confident that the overall impact of SecRose in the network’s lifetime is 
lower the other security mechanisms in most cases.
The main energy-saving contributor is SecRose’s distinction of packet types 
and  the  way  of  how  this  distinction  is  implemented,  the  flags.  The  flags 
consume no extra radio energy while at the same time allow for small energy 
gains  in  every  single  normal  of  broadcast  packet  transmitted.  The  energy 

savings  of  the  flags  are  illustrated in  Fig.  3  which  shows  a comparison  of 
SecRose’s  packets  against  the  other  available  solutions.  Actual  benchmarks 
show that this difference is indeed demonstrated in real life scenarios.
The flags also allow for further savings in potential future versions of SecRose. 
For example small control packets might be used by the application to achieve 
a suitable communication requirement. They also allow for early rejection and 
reduced routing information.  These features are already implemented in the 
demonstration of SecRose.

C. Design novelty and completeness
The first transport layer security protocol for WSNs was TinySec. SenSec and 
MiniSec are based on TinySec and they attempt to produce a similar result with 
greater energy efficiency. 
SecRose was not based on TinySec and it does not simply attempt to improve 
the energy performance of  TinySec. We use a number  of  completely novel 
ideas and as a result SecRose incorporates security and efficiency features not 
present in other security mechanisms. The existence of these unique features 
allow for an elevated security of the overall WSN. For example we protect the 
acknowledgements. This allows for dramatic improvements in the security of 
existing routing protocols, because many of them suffer from an attack known 
as ACK spoofing [19].
TinySec is the most complete and ready to use security mechanism for WSNs 
but SecRose is very close to that as well. Although the MiniSec’s team have 
also released some  code, this  code  is  limited only a particular  sensor  node 
model. The completeness status of SenSec is unknown.

VI. FUTURE WORK

The  SecRose  mechanism is  almost  complete  but  there  is  always  room for 
improvements. A potential future version could include:.
More functionality for maintaining the state of the counter is possible. Section 
IV describes two cases where the nodes  are powerless  to  solve  a problem. 
Although this is currently not a major issue it is undesired and poses potential 
security implications. These problems can be solved by requesting assistance 
from neighbouring nodes or from the base station, using control packets.
We have also identified a duplicate effort that results from the use of SecDed 
encoding  in  TinyOS and  a  MAC in  SecRose.  The  purpose  of  the  SecDed 
encoding is to identify an infinite number of transmission errors and correct a 
finite number of them. But the MAC can also identify transmission errors. We 
intend  to  shift  the  functionality  from  SecDed  to  the  MAC  and  thus  save 
significant amounts of currently wasted energy.

VII. CONCLUSION

We have introduced SecRose.  It  is the latest security mechanism for use in 
Wireless  Sensor  Networks.  We  have  shown  how  it  meets  its  design 
requirements,  how  it  operates  and  how  it  compares  with  other  existing 
mechanisms that share common goals. We believe that SecRose benefits from 
certain unique features and also builds on existing ideas currently present in the 
literature.  The result  is  a robust,  complete  and improved  mechanism that is 
implemented and available to use with any existing or future WSN application.



REFERENCES

1. Gamage, C., et al. Security for the Mythical Air-Dropped Sensor Network. 
in  Proceedings  of  the  11th  IEEE  Symposium  on  Computers  and 
Communications. 2006.
2. Berkeley, U., TinyOS. 2004.
3.  Perrig,  A.,  J.  Stankovic,  and  D.  Wagner,  Security  in  wireless  sensor 
networks. Communications of the ACM, 2004. 47(6): p. 53 - 57.
4. Perrig, A., et al.,  SPINS: security protocols for sensor networks. Wireless 
Networks, 2002. 8(5): p. 521 - 534.
5.  Ekonomou,  E.  and  K.  Booth.  Securing  data  transfer  in  Wireless  Sensor 
Networks.  in  Seventh  annual  postgraduate  symposium  (PGNet).  2006. 
Liverpool / UK: Liverpool John Moores University.
6.  Pietro,  R.D.,  L.V.  Mancini,  and  A.  Mei,  Energy  efficient  node-to-node 
authentication and communication confidentiality in wireless sensor networks 
Wireless Networks, 2006. 12(6): p. 709-721.
7. Sencun, Z., S. Sanjeev, and J. Sushil, LEAP+: Efficient security mechanisms 
for large-scale distributed sensor networks. 2006, ACM. p. 500-528.
8. Du, W., et al. A pairwise key pre-distribution scheme for wireless sensor 
networks.  in Conference on Computer  and Communications  Security.  2003. 
Washington D.C., USA: ACM Press.
9.  Yang, H.,  et  al. Toward resilient security in wireless sensor networks.  in 
Proceedings  of  the  6th  ACM  international  symposium  on  Mobile  ad  hoc 
networking and computing. 2005. Urbana-Champaign, IL, USA.
10. Atmel,  ATmega 128 & ATmega 128L.  8-bit  AVR microcontroller  with 
128K Bytes in-system programmable flash. 2004.
11. Kömmerling, O. and M.G. Kuhn. Design Principles for Tamper-Resistant 
Smartcard Processors. in USENIX Workshop on Smartcard Technology. 1999. 
Chicago, Illinois, USA.
12.  Hess,  E.,  et  al.  Information  Leakage  Attacks  Against  Smart  Card 
Implementations  of  Cryptographic  Algorithms  and  Countermeasures.  in 
EUROSMART Security Conference. 2000.
13. Skorobogatov, S.P., Semi-invasive attacks - A new approach to hardware 
security  analysis,  in  Computer  Laboratory.  2005,  University  of  Cambridge: 
Cambridge.
14. Karlof,  C.,  N. Sastry,  and D. Wagner.  TinySec:  A Link Layer  Security 
Architecture for Wireless Sensor  Networks.  in Second ACM Conference on 
Embedded Networked Sensor Systems (SensSys 2004). 2004.
15. Crossbow, Crossbow Technology Inc.: http://www.xbow.com. 2004.
16.  Li,  T.,  et  al.,  SenSec  Design.  Tech.  Rep. 2005,  Institute  for  Infocomm 
Research: Singapore. p. 15.
17.  Luk,  M.,  et  al.  MiniSec:  a  secure  sensor  network  communication 
architecture. in Proceedings of the 6th international conference on Information 
processing in sensor networks 2007. Cambridge, Massachusetts, USA: ACM.
18. Dworkin, M., Recommendation for Block Cipher Modes of Operation: The  
CMAC Mode  for  Authentication.  2005,  National  Institute  of  Standards  and 
Technology.  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-
38B.pdf.
19.  Karlof,  C.  and D. Wagner.  Secure routing in wireless  sensor  networks: 
Attacks and countermeasures. in First IEEE International Workshop on Sensor 
Network Protocols and Applications. 2003.
20. Wheeler, D. and R. Needham., TEA, a tiny encryption algorithm. 1994.
21.  National  Institute  of  Standards  and  Technology,  SKIPJACK  and  KEA 
Algorithm Specifications. 1998.


