Johnson, DM, Heijman, J, Bode, EF, Greensmith, DJ ORCID: https://orcid.org/0000-0002-6459-523X, van der Linde, H, Abi-Gerges, N, Eisner, DA, Trafford, AW and Volders, PGA
2013,
'Diastolic spontaneous calcium release from the sarcoplasmic reticulum increases beat-to-beat variability of repolarization in canine ventricular myocytes after β-adrenergic stimulation'
, Circulation research, 112 (2)
, pp. 246-56.
![]() |
PDF
- Published Version
Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
RATIONALE Spontaneous Ca(2+) release (SCR) from the sarcoplasmic reticulum can cause delayed afterdepolarizations and triggered activity, contributing to arrhythmogenesis during β-adrenergic stimulation. Excessive beat-to-beat variability of repolarization duration (BVR) is a proarrhythmic marker. Previous research has shown that BVR is increased during intense β-adrenergic stimulation, leading to SCR. OBJECTIVE We aimed to determine ionic mechanisms controlling BVR under these conditions. METHODS AND RESULTS Membrane potentials and cell shortening or Ca(2+) transients were recorded from isolated canine left ventricular myocytes in the presence of isoproterenol. Action-potential (AP) durations after delayed afterdepolarizations were significantly prolonged. Addition of slowly activating delayed rectifier K(+) current (I(Ks)) blockade led to further AP prolongation after SCR, and this strongly correlated with exaggerated BVR. Suppressing SCR via inhibition of ryanodine receptors, Ca(2+)/calmodulin-dependent protein kinase II inhibition, or by using Mg(2+) or flecainide eliminated delayed afterdepolarizations and decreased BVR independent of effects on AP duration. Computational analyses and voltage-clamp experiments measuring L-type Ca(2+) current (I(CaL)) with and without previous SCR indicated that I(CaL) was increased during Ca(2+)-induced Ca(2+) release after SCR, and this contributes to AP prolongation. Prolongation of QT, T(peak)-T(end) intervals, and left ventricular monophasic AP duration of beats after aftercontractions occurred before torsades de pointes in an in vivo dog model of drug-induced long-QT1 syndrome. CONCLUSIONS SCR contributes to increased BVR by interspersed prolongation of AP duration, which is exacerbated during I(Ks) blockade. Attenuation of Ca(2+)-induced Ca(2+) release by SCR underlies AP prolongation via increased I(CaL.) These data provide novel insights into arrhythmogenic mechanisms during β-adrenergic stimulation besides triggered activity and illustrate the importance of I(Ks) function in preventing excessive BVR.
Item Type: | Article |
---|---|
Themes: | Health and Wellbeing Subjects outside of the University Themes |
Schools: | Schools > School of Environment and Life Sciences > Biomedical Research Centre |
Journal or Publication Title: | Circulation research |
Publisher: | American Heart Association |
Refereed: | Yes |
ISSN: | 1524-4571 |
Related URLs: | |
Funders: | Netherlands Organization for Scientific Research, British Heart Foundation, AstraZeneca Ltd |
Depositing User: | D Greensmith |
Date Deposited: | 10 Feb 2015 20:47 |
Last Modified: | 16 Feb 2022 16:06 |
URI: | https://usir.salford.ac.uk/id/eprint/33383 |
Actions (login required)
![]() |
Edit record (repository staff only) |