Synthesis, mobility and multifurcation of deployable polyhedral mechanisms with radially reciprocating motion

Wei, G ORCID:, Chen, Y and Dai, JS 2014, 'Synthesis, mobility and multifurcation of deployable polyhedral mechanisms with radially reciprocating motion' , Journal Of Mechanical Design, 136 (9) , 091003.

[img] PDF - Published Version
Restricted to Repository staff only

Download (3MB) | Request a copy


Extending the method coined virtual-center-based (VCB) for synthesizing a group of deployable platonic mechanisms with radially reciprocating motion by implanting dual-plane-symmetric 8-bar linkages into the platonic polyhedron bases, this paper proposes for the first time a more general single-plane-symmetric 8-bar linkage and applies it together with the dual-plane-symmetric 8-bar linkage to the synthesis of a family of one-degree of freedom (DOF) highly overconstrained deployable polyhedral mechanisms (DPMs) with radially reciprocating motion. The two 8-bar linkages are compared, and geometry and kinematics of the single-plane-symmetric 8-bar linkage are investigated providing geometric constraints for synthesizing the DPMs. Based on synthesis of the regular DPMs, synthesis of semiregular and Johnson DPMs is implemented, which is illustrated by the synthesis and construction of a deployable rectangular prismatic mechanism and a truncated icosahedral (C60) mechanism. Geometric parameters and number synthesis of typical semiregular and Johnson DPMs based on the Archimedean polyhedrons, prisms and Johnson polyhedrons are presented. Further, movability of the mechanisms is evaluated using symmetry-extended rule, and mobility of the mechanisms is verified with screw-loop equation method; in addition, degree of overconstraint of the mechanisms is investigated by combining the Euler's formula for polyhedrons and the Grübler–Kutzbach formula for mobility analysis of linkages. Ultimately, singular configurations of the mechanisms are revealed and multifurcation of the DPMs is identified. The paper hence presents an intuitive and efficient approach for synthesizing PDMs that have great potential applications in the fields of architecture, manufacturing, robotics, space exploration, and molecule research.

Item Type: Article
Themes: Subjects outside of the University Themes
Schools: Schools > School of Computing, Science and Engineering
Journal or Publication Title: Journal Of Mechanical Design
Publisher: American Society of Mechanical Engineers
Refereed: Yes
ISSN: 1050-0472
Related URLs:
Funders: European Commission 7th Framework Program Squirrel, National Natural Science Foundation of China, Tianjin Technology Scheme project
Depositing User: Dr Guowu Wei
Date Deposited: 29 May 2015 17:50
Last Modified: 15 Feb 2022 19:10

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)


Downloads per month over past year