Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation

Rana, P, Shukla, N, Beg, OA, Kadir, A and Singh, B

http://dx.doi.org/10.1177/2397791418782030

<table>
<thead>
<tr>
<th>Title</th>
<th>Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Rana, P, Shukla, N, Beg, OA, Kadir, A and Singh, B</td>
</tr>
<tr>
<td>Publication title</td>
<td>Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems</td>
</tr>
<tr>
<td>Publisher</td>
<td>SAGE</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>USIR URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/45170/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2018</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: library-research@salford.ac.uk.
UNSTEADY ELECTROMAGNETIC RADIATIVE NANOFLUID STAGNATION-POINT FLOW FROM A STRETCHING SHEET WITH CHEMICALLY REACTIVE NANOPARTICLES, STEFAN BLOWING EFFECT AND ENTROPY GENERATION

Puneet Rana1*, Nisha Shukla1, O. Anwar Bég2, A. Kadir3 and Bani Singh1

1Department of Mathematics, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307, Uttar Pradesh, India.
2Fluid Mechanics, Propulsion and Nanosystems, Aeronautical and Mechanical Engineering, School of Computing, Science & Engineering, University of Salford, Newton Building, M54WT, UK.
3Corrosion and Materials, Aeronautical and Mechanical Engineering, School of Computing, Science & Engineering, University of Salford, Newton Building, M54WT, UK.

Abstract: The present article investigates the combined influence of nonlinear radiation, Stefan blowing and chemical reactions on unsteady EMHD stagnation point flow of a nanofluid from a horizontal stretching sheet. Both electrical and magnetic body forces are considered. In addition, the effects of velocity slip, thermal slip and mass slip are considered at the boundaries. An analytical method named as homotopy analysis method is applied to solve the non-dimensional system of nonlinear partial differential equations which are obtained by applying similarity transformations on governing equations. The effects of emerging parameters including Stefan blowing parameter, electric parameter, magnetic parameter etc. on the important physical quantities are presented graphically. Additionally, an entropy generation analysis is provided in this article for thermal optimization. The flow is observed to be accelerated both with increasing magnetic field and electrical field. Entropy generation number is markedly enhanced with greater magnetic field, electrical field and Reynolds number, whereas it is reduced with increasing chemical reaction parameter.

Keywords: Stefan blowing; Nonlinear radiation; Nanofluid; EMHD; Entropy; Chemical reaction; Electrical field; Magnetic field; Homotopy solutions; Unsteady flow.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit/Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
<td>Magnetic Field Strength (T)</td>
<td>Brownian Motion Parameter (--)</td>
</tr>
<tr>
<td>C</td>
<td>Nanoparticles Concentration (--)</td>
<td>Thermophoresis Parameter (--)</td>
</tr>
<tr>
<td>D_B</td>
<td>Brownian Diffusion (m^2/s)</td>
<td>Prandtl number (--)</td>
</tr>
<tr>
<td>D_T</td>
<td>Thermophoresis Diffusion (m^2/s)</td>
<td>Embedding Parameter (--)</td>
</tr>
<tr>
<td>E</td>
<td>Electric Parameter (--)</td>
<td>Radiation Parameter (--)</td>
</tr>
<tr>
<td>E_0</td>
<td>Electric Field Strength (N/C)</td>
<td>Reynolds Number (--)</td>
</tr>
<tr>
<td>Ec</td>
<td>Eckert Number (--)</td>
<td>Stefan Blowing Parameter (--)</td>
</tr>
<tr>
<td>G</td>
<td>Dimensionless Stream function (--)</td>
<td>Dimensionless Concentration(--)</td>
</tr>
<tr>
<td>k</td>
<td>Thermal Conductivity (W/m-K)</td>
<td>Schmidt Number (--)</td>
</tr>
<tr>
<td>K</td>
<td>Chemical Reaction Parameter (--)</td>
<td>Time(s)</td>
</tr>
<tr>
<td>M</td>
<td>Magnetic Parameter (--)</td>
<td>Temperature Ratio (--)</td>
</tr>
<tr>
<td>N_1</td>
<td>Velocity Slip Parameter (--)</td>
<td>Velocity (m/s) along x-axis</td>
</tr>
<tr>
<td>N_2</td>
<td>Thermal Slip Parameter (--)</td>
<td>Velocity (m/s) along y-axis</td>
</tr>
<tr>
<td>N_3</td>
<td>Mass Slip Parameter (--)</td>
<td>Similarity Variables (--)</td>
</tr>
<tr>
<td>t_r</td>
<td>$\frac{T_w}{T_\infty}$</td>
<td></td>
</tr>
</tbody>
</table>

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit/Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Thermal Diffusivity (m^2/s)</td>
<td>Dimensionless Temperature Difference</td>
</tr>
<tr>
<td>β</td>
<td>Stagnation Parameter (--)</td>
<td>Heat Capacity (J/Km3)</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Stefan blowing (wall injection) finds substantial applications in industrial systems such as drying and purifying processes where boundaries are perforated. The “blowing effect” occurs due to the mass transfer of molecules or nanoparticles from one location to another. Mass transfer is also fundamental to absorption, evaporation, combustion, distillation and materials synthesis. The concept of blowing effect is provided by the Stefan problem which is an application of mass transfer [1] of species. Stefan blowing problem states that there exist a relation between the rate of mass transfer and flow field at the wall, because mass transfer is dependent upon the flow field and flow field is generated by mass blowing at wall. Fang and Jing [2] have considered the Stefan blowing effects to investigate the mass and heat transfer of a viscous fluid over a linearly stretching sheet and observed that velocity, temperature and concentration are increasing
functions of blowing parameter. Uddin et al. [3] have provided a numerical study of bioconvection nanofluid flow over a plate incorporating the effects of Stefan blowing, velocity, thermal and mass slips at the wall. In addition, Uddin et al. [4] investigated the second order velocity slip and Stefan blowing effects for bio-nanofluid flow with passively boundary conditions.

Nanofluids [5–8] constitute based fluids containing nano-sized metallic particles. The presence of metallic nano-particles enhances thermal conductivity properties of such fluids. Shahzad et al. [9] have presented the analytical study of the magnetohydrodynamic flow of Cu based nanoparticles. They have observed that the heat transfer enhances near the surface due to the presence of Cu-nanoparticles. Sheikholeslami and Bhatti [10] have applied finite element method to investigate the influence of Coulomb force on the force convective nanofluid flow and observed an enhancement in Nusselt number due to electric field. A broad literature is available regarding the different types of study on nanofluid [11–18] due to a vast amount of applications of it in industries and engineering field.

In high-temperature materials processing, thermal radiation is significant. Generally two modelling approaches are employed for simulating radiative heat transfer effects, namely linear and nonlinear models. Nonlinear radiation is valid for both high and low temperature difference but linear radiation is valid only for low temperature difference. Thus, to provide a more general and physically realistic simulation, in the present work, we consider the nonlinear thermal radiation in the present article. Numerous studies of radiative flows have been communicated. Khan et al. [19] have investigated the nonlinear radiation effect on a magnetohydrodynamic nanofluid flow from a sheet and have shown that the rate of heat transfer is increased for a shrinking sheet whereas it is decreased for a stretching sheet. Bhatti and Rashidi [20] have
examined the combined influence of thermal radiation and diffusion on nanofluid flow over a stretching sheet. Sheikholeslami [21] has investigated the effect of Lorentz force and radiation on a $Fe_3O_4 - H_2O$ nanofluid and achieved and enhancement in rate of heat transfer due to an enhancement in radiation parameter. Rashidi et al. [22] have considered the impact of thermal radiation with aligned magnetic field on a Cu and Al_2O_3-water nanofluid flow over a stretching sheet. Further studies include [23,24] for different configurations and with multiple body force effects.

Materials processing systems often involve chemical reactions, which may be destructive or constructive in nature and can influence significantly heat and mass diffusion phenomena. Generally boundary layer flow models utilize first order chemical reaction effects and assume the reaction to be destructive. Chemical reactions are instrumental in transforming material constitution. This phenomenon also arises in chemical engineering industries, electrochemistry, hydrolysis, electro-plating and combustion processes (furnaces, fires, jet propulsion etc). Interesting studies of reactive flows include Mishra et al. [25] on magnetic viscoelastic fluids, Mohamed [26] on two-phase nanofluids, Venkateswarlu and Narayana [27] on radiative rotating nanofluid flows, Bég et al.[28] on dissipative radiative hydromagnetic double diffusion transport and Matin and Pop [29] on porous nanofluid flows. Further investigations include [30–33] in which chemical reaction has been shown to have a significant influence on heat and/or mass transfer characteristics.

The second law of thermodynamics provides a way to quantify the level of disorder of a thermodynamically system. This study is known as entropy generation analysis which is very useful in optimizing thermal engineering systems to operate at high working efficiency. The
method of entropy generation minimization was originally proposed by Bejan [34] in 1996. Many researchers have investigated the effects of physical parameters on entropy generation in various thermal flow regimes. Tshehla and Makinde [35] have calculated the rate of entropy generation in steady flow of a liquid with variable viscosity for two concentric cylindrical pipes. Das et al [36] have elaborated on entropy generation in an unsteady MHD flow of nanofluid from a stretching sheet, observing that metallic nanoparticles generate a large amount of entropy. Rehman et al. [37] have considered the steady Jeffery nanofluid flow over a stretching sheet, indicating that entropy generation number is an increasing function of thermophoresis parameter, Eckert number and Brinkman number. Qing et al. [38] have studied the entropy generation analysis on a magnetohydrodynamic flow of Casson nanofluid with the effects of chemical reactions and nonlinear thermal radiation over a stretching surface. Bhatti et al. [39] have applied successive linearization method to investigate the entropy generation analysis for non-Newtonian nanofluid over stretching surface.

The preceding studies have not considered entropy generation for the combined unsteady electro-magnetic nanofluid stagnation flow from a stretching sheet with the simultaneous effects of Stefan blowing, chemical reaction, nonlinear thermal radiation, velocity slip, thermal slip and mass slip. Both electrical and magnetic body forces are incorporated in the mathematical model [40]. The system of governing equations has been transformed into a non-dimensional system of nonlinear partial differential equations by applying similarity transformations. The non-dimensional boundary value problem is thereafter solved with the homotopy analysis method (HAM) employing power-series expansions. Homotopy analysis method is discovered by Liao[41–43] which is an excellent analytical technique to solve the nonlinear ordinary and partial differential equations. Rehman et al. [44] have compared the numerical results obtained via
shooting technique with HAM results of Casson fluid flow over an exponentially stretching sheet. In this article, we employ this technique to solve the system of nonlinear partial differential equations [45] which a non-dimensional form of governing equations. The present problem has applications in thermal management [46] of high heat flux electronics such as heat pipes, energy conversion devices and biomedical research.

The article is structured as follows. Section 1 is the introductory part. Section 2 covers the problem formulation. Section 3 entails the entropy generation analysis. Section 4 elaborates the analytical homotopy solutions and convergence characteristics. A brief discussion of results is presented in section 5. Section 6 summarizes the conclusions. The current work is relevant to electromagnetic nano-materials processing.

2. MATHEMATICAL MODEL

In this problem, we analyze the composite influence of Stefan blowing, destructive first order chemical reaction and nonlinear radiation on two-dimensional time dependent EMHD (Electromagneto-hydrodynamic) stagnation point flow[47] of an electrically-conducting incompressible nanofluid from a stretching sheet. Fig.1 represents the geometry of the problem in which the point O is a stagnation point. The horizontal \bar{x}-axis is located along the sheet and the vertical \bar{y}-axis is fixed in a direction perpendicular to the sheet. At the surface of sheet, the effects of velocity, thermal and mass slips are also considered. Such phenomena are known to arise in materials processing systems. Under these considerations, the boundary layer equations for conservation of mass, momentum, energy and nanoparticle (species) concentrations are defined may be shown to assume the form [21,48,49]:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{1}
\]

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} + \nu_{nf} \left(\frac{\partial^2 u}{\partial y^2} \right) - \frac{\sigma_{nf} B_0^2}{\rho_{nf}} (u - u_\infty) + \sigma_{nf} \frac{E_0 B_0}{\rho_{nf}}, \tag{2}
\]

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha_{nf} \left(\frac{\partial^2 T}{\partial y^2} \right) + \frac{\mu_{nf}}{(\rho c)_{nf}} \left(\frac{\partial u}{\partial y} \right)^2 + \tau_1 \left[D_B \frac{\partial C}{\partial y} T + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 \right] - \frac{1}{(\rho c)_{nf}} \frac{\partial q_y}{\partial y}, \tag{3}
\]

\[
\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + D_T \frac{\partial^2 T}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 - K(C - C_\infty), \tag{4}
\]

The following boundary conditions are imposed at the sheet (wall) and in the free stream[3]:

at \(\bar{y} = 0, \quad \bar{u} = \bar{u}_w(\bar{x}) + N_1 \frac{\partial \bar{u}}{\partial \bar{y}}, \quad \bar{v} = -\frac{D_B}{1 - C_w} \left(\frac{\partial C}{\partial \bar{y}} \right), \quad T = T_w + N_2 \frac{\partial T}{\partial \bar{y}}, \quad C = C_w + N_3 \frac{\partial C}{\partial \bar{y}}, \tag{5}
\]

as \(\bar{y} \to \infty, \quad \bar{u} \to \bar{u}_\infty, \quad T = T_\infty, \quad C = C_\infty, \)

where \(\bar{u} \) (m/sec), \(\bar{v} \) (m/sec) are the velocities along the \(\bar{x} \) (m) and \(\bar{y} \) (m) axes respectively and \(t \) (s) represents the time. The velocity of the sheet is \(\bar{u}_w(x) = b \bar{x} \) where \(b \) is the sheet (wall) stretching parameter and free stream velocity is defined as \(\bar{u}_\infty = a \bar{x} \). The term \(\nu_{nf} \) (m2/s) represents the kinematic viscosity whereas \(\mu_{nf} \) (Ns/m2) represents the dynamic viscosity of nanofluid. In addition, the term \(\rho_{nf} \) (kg/m3) is density of nanofluid, \(\sigma_{nf} \) (S/m) is electrical conductivity of nanofluid, \(k_{nf} \) is thermal conductivity of nanofluid, \((\rho c)_{nf} \) (J/K-m3) is heat capacity of nanofluid and \(\alpha_{nf} \) (m2/s) is thermal diffusivity of nanofluid. \(B_0(T) \) and
E_0(N/C) define magnetic and electric field strength respectively. The terms D_B (m2/s) and D_T (m2/s) signify Brownian and thermophoresis diffusion respectively and K (s$^{-1}$) represents chemical reaction coefficient. T (K) and T_∞ (K) are nanofluid and ambient temperatures, C and C_∞ are nanoparticles volume fraction and ambient volume fraction and the term $	au_1 = \frac{(\rho c)_p}{(\rho c)_{nf}}$ represents the ratio of heat capacities (J/K-m3) of nanoparticles to nanofluid whereas N_1, N_2 and N_3 are velocity slip, thermal slip and mass slip parameters respectively. T_n and C_n are respectively nanofluid temperature and nanoparticles volume fraction at surface. The radiative heat flux q_r (W/m2) is defined as[50]:

$$q_r = -\frac{4 \times \text{Stefan-Boltzmann constant } (\sigma_1)}{3 \times \text{Rosseland mean absorption coefficient } (k_y)} \frac{\partial T^4}{\partial y},$$

(6)

which is obtained by Rosseland approximations. This approximation is valid for optically-thick fluids which can absorb or emit radiation at their boundaries.

Proceeding with the analysis, the following similarity transformations are applied to convert Eqns. (1)-(5) into non-dimensional form [51,52]:

$$x = \sqrt{\frac{a}{u_{nf} y}} y, \quad \psi = \sqrt{a u_{nf} y} \tilde{x} G(x, y), \quad \tilde{u} = a \tilde{x} \frac{\partial \tilde{G}(x, y)}{\partial x}, \quad \tilde{v} = -\sqrt{a u_{nf} y} G(x, y),$$

$$\theta(x, y) = \frac{T - T_\infty}{T_n - T_\infty}, \quad S(x, y) = \frac{C - C_\infty}{C - C_\infty}, \quad y = 1 - e^{-\tau}, \quad \tau = \alpha t,$$

(7)

where x is similarity variable, $G(x, y)$, $\theta(x, y)$ and $S(x, y)$ are non-dimensional stream function, temperature and nanoparticles concentration, respectively and τ represents the non-dimensional
time. The term ψ represents the dimensional stream function which satisfies Eqn. (1) and is defined by the Cauchy-Riemann equations, \(\Re = \frac{\partial \psi}{\partial y}, \quad \Im = -\frac{\partial \psi}{\partial x}. \)

The non-dimensional forms of Eqns. (2)-(5) can be written as:

\[
\frac{\partial^3 G}{\partial x^3} + y \left(1 - \left(\frac{\partial G}{\partial x}\right)^2 + G \frac{\partial^2 G}{\partial x^2}\right) - \frac{x}{2} (y-1) \frac{\partial^2 G}{\partial y \partial x} + y(y-1) \frac{\partial^2 G}{\partial y^2} - M^2 y \left(\frac{\partial G}{\partial x} - 1 - E\right) = 0,
\]

\[
\frac{1}{\Pr} \left[\frac{\partial^2 \theta}{\partial x^2} + Nb \frac{\partial \theta}{\partial x} + Nt \left(\frac{\partial \theta}{\partial x}\right)^2 \right] + y(y-1) \frac{\partial \theta}{\partial y} - \frac{x}{2} (y-1) \frac{\partial \theta}{\partial x} + yG \frac{\partial \theta}{\partial x} + Ec \left(\frac{\partial^2 G}{\partial x^2}\right)^2
\]

\[
+ \frac{4}{3 \Pr} R \left[\frac{\partial^2 \theta}{\partial x^2} + (t_r - 1)^2 \left(3 \theta^2 \left(\frac{\partial \theta}{\partial x}\right)^2 + \theta^2 \left(\frac{\partial^2 \theta}{\partial x^2}\right)^2 + 3(t_r - 1) \left(\frac{\partial^2 \theta}{\partial x^2} + \left(\frac{\partial \theta}{\partial x}\right)^2\right) \right) \right] = 0,
\]

\[
\frac{\partial^2 S}{\partial x^2} + \frac{Nt \partial^2 S}{Nb \partial x^2} + Sc \left[yG \frac{\partial S}{\partial x} + y(y-1) \frac{\partial S}{\partial y} - \frac{x}{2} (y-1) \frac{\partial S}{\partial x}\right] - y\omega S = 0,
\]

at \(x = 0, \ G(0, y) = \frac{s}{Sc} \frac{\partial S(0, y)}{\partial x}, \ G(0, y) = \beta + \lambda_2 \frac{\partial^2 G(0, y)}{\partial x^2}, \)

\[
\theta(0, y) = 1 + \frac{\partial \theta(0, y)}{\partial x}, \ S(0, y) = 1 + \frac{\partial S(0, y)}{\partial x},
\]

as \(x \to \infty, \ \frac{\partial G(x, y)}{\partial x} = 1, \ \theta(x, y) = 0, \ S(x, y) = 0, \)

where the non-dimensional physical parameters are defined as:
$M = \sqrt{\frac{\sigma_{nf} B_0^2}{a \rho_{nf}}} \text{ is magnetic parameter, } E = \frac{E_0}{B_0 \bar{u}_x} \text{ is electric field parameter, } Pr = \frac{\nu_{nf} (\rho c)_{nf}}{k_{nf}} \text{ is Prandtl number, } Nb = \frac{\tau_i D_n (C_w - C_x)}{\alpha_{nf}} \text{ is Brownian motion parameter, } Nt = \frac{\tau_i D_T (T_w - T_x)}{T_r \alpha_{nf}} \text{ is thermophoresis parameter, } Ec = \frac{\bar{u}_w^2}{c_{nf} (T_w - T_x)} \text{ is local Eckert number, } Sc = \frac{\nu_{nf}}{D_B} \text{ is Schmidt number, } R = \frac{4 \sigma T_x^3}{k_{nf} k_1} \text{ is radiation parameter, } t_r = \frac{T_w}{T_x} \text{ is temperature ratio, } Re = \frac{\alpha x}{\nu_{nf}} \text{ is local Reynolds number, } \omega = \frac{K}{a} \text{ is chemical reaction parameter, } s = \frac{(C_w - C_{x_0})}{(1 - C_{x_0})} \text{ is Stefan blowing parameter, } \lambda_1 = N_1 \sqrt{\frac{a}{\nu_{nf}}} y \text{ is velocity slip parameter, } \lambda_2 = N_2 \sqrt{\frac{a}{\nu_{nf}}} y \text{ is thermal slip parameter, } \lambda_3 = N_3 \sqrt{\frac{a}{\nu_{nf}}} y \text{ is mass slip parameter and } \beta \text{ is the stagnation parameter.}$

In this study, the important engineering quantities are the skin friction coefficient, the local Nusselt number and Sherwood number. These quantities evaluate the transport phenomena at the wall (sheet) and are defined respectively as:

Skin friction coefficient:

$$C_{nf} = \frac{\tau_w}{\rho_{nf} (a \bar{x})^2}, \quad (12)$$

where τ_w represents wall stress, which is defined as:

$$\tau_w = \mu_{nf} \frac{\partial u}{\partial y} \bigg|_{\gamma=0}. \quad (13)$$
Using eqs. (7), (12) and (13), we obtain

\[Cf = \sqrt{\frac{y}{\text{Re}}} C_{nf} = G''(0, y). \]

(14)

Local Nusselt number [19,21,53]:

\[Nu = \frac{\overline{x}}{k_{nf} (T_w - T_\infty)} \left(q_w + q_r \right) \bigg|_{\tau=0}, \]

(15)

where \(q_w \) represents heat flux at wall and is defined as:

\[q_w = \left(-k_{nf} \nabla T + h_p j_p \right) \bigg|_{\tau=0}. \]

(16)

Here \(h_p = c_p (T_w - T_\infty) \) is enthalpy and \(j_p \) is the sum of the Brownian and thermophoresis diffusion terms, defined as:

\[j_p = -\rho_p \left(D_B \nabla C + D_T \frac{\nabla T}{T}\right). \]

(17)

Using eqs. (6), (7), (15), (16) and (17), we obtain

\[Nur = \frac{y}{\text{Re}} Nu = -\left[\theta'(0, y) \left(1 + Nt + \frac{4R}{3} r^3 \right) + NbS'(0, y) \right]. \]

(18)

Sherwood Number:

\[Sh = \frac{q_m \overline{x}}{D_B C_\infty}, \]

(19)

where \(q_m \) represents mass flux at wall and defined as: \(q_m = \frac{j_p}{\rho_p} \).

(20)
Using Eqns. (6), (17), (19) and (20), we obtain

\[Shr = \sqrt{\frac{y}{Re}} Sh = - \left[S'(0, y) + \frac{Nt}{Nb} \theta'(0, y) \right]. \] (21)

3. ENTROPY GENERATION ANALYSIS

The volumetric rate of entropy generation, due to the effects of heat transfer, nonlinear radiation, viscous dissipation, diffusion and electromagnetic field is defined as [36,54]:

\[S_G = \frac{k_{nf}}{T_\infty^2} \left[1 + \frac{16\sigma_1}{3k_{nf} k_1} \right] \left(\frac{\partial T}{\partial y} \right)^2 + \frac{\mu_{nf}}{T_\infty} \left(\frac{\partial \bar{u}}{\partial y} \right)^2 + \frac{R_g D_B}{C_\infty} \left(\frac{\partial C}{\partial y} \right)^2 + \frac{R_g D_B}{T_\infty} \left(\frac{\partial C}{\partial y} \right)^2 + \frac{\sigma_{nf} B_0^2}{T_\infty} (\bar{u}_o - \bar{u})^2 + \frac{\sigma_{nf} E_0 B_0 u \bar{u}}{T_\infty}, \] (22)

where \(R_g \) (J mol\(^{-1}\)K\(^{-1}\)) is gas constant.

The characteristic rate of entropy generation is:

\[S_C = \frac{k_{nf} (T_w - T_\infty)^2}{\bar{x}^2 T_\infty^2}. \] (23)

The non-dimensional entropy generation number is obtained by applying similarity transformations on the ratio of \(S_G \) and \(S_C \) which is defined as:

\[Ns = \frac{S_G}{S_C} = \frac{Re}{y} \left[1 + \frac{4R}{3} \left(\frac{\partial \theta}{\partial x} \right)^2 + \frac{Pr Ec}{\Omega} \left(\frac{\partial^2 G}{\partial x^2} \right)^2 + \frac{\gamma M^2}{\Omega} \left(\frac{1}{\Omega} \frac{\partial G}{\partial x} \right)^2 + \frac{\chi}{\Omega} \left(\frac{1}{\Omega} \frac{\partial S}{\partial x} \right)^2 + \frac{\partial \theta}{\partial x} \frac{\partial S}{\partial x} \right], \] (24)

where \(\chi = \frac{R_g D C_\infty}{k_{nf}} \) is diffusive constant and \(\Omega = \frac{T_w - T_\infty}{T_\infty} \) is non-dimensional temperature difference.
4. SOLUTIONS WITH HOMOTOPY ANALYSIS METHOD (HAM)

To solve the non-dimensional system of nonlinear partial differential Eqns. (7)-(9) with boundary conditions (10), the homotopy analysis method has been applied. On the basis of suggestions of Liao[42], we have selected the following initial guesses, linear operators and auxiliary functions:

The initial guesses:

\[G_0(x, y) = \frac{\beta - 1}{1 + \lambda_1} \left(1 - e^{-x} \right) - \frac{s}{Sc(1 + \lambda_2)} + x, \quad \theta_0(x, y) = \frac{e^{-x}}{1 + \lambda_2}, \quad S_0(x, y) = \frac{e^{-x}}{1 + \lambda_3}, \]

which are satisfied the boundary conditions (10).

The linear operators:

\[L_G(G) = \frac{\partial^3 G}{\partial x^3} - \frac{\partial G}{\partial x}, \quad L_\theta(\theta) = \frac{\partial^2 \theta}{\partial x^2} + \frac{\partial \theta}{\partial x}, \quad L_S(S) = \frac{\partial^2 S}{\partial x^2} + \frac{\partial S}{\partial x}, \]

which are satisfied the conditions:

\[L_G(C_1 + C_2 e^x + C_3 e^{-x}) = 0, \quad L_\theta(C_4 + C_5 e^{-x}) = 0, \quad L_S(C_6 + C_7 e^{-x}) = 0. \]

The auxiliary functions: \(H_G = 1, H_\theta = 1, \quad H_S = 1. \)

The zeroth order equation:

\[(1-q)L_G[\xi_G(x, y, q) - G_0(x, y)] = qh_G H_G(x, y) N_G[\xi_G(x, y, q), \xi_\theta(x, y, q), \xi_S(x, y, q)], \]

\[(1-q)L_\theta[\xi_\theta(x, y, q) - \theta_0(x, y)] = qh_\theta H_\theta(x, y) N_\theta[\xi_\theta(x, y, q), \xi_\theta(x, y, q), \xi_S(x, y, q)], \]
\[(1 - q)L_0[\xi_s(x, y, q) - S_0(x, y)] = qh_h H_3(x, y)N_3[\xi_s(x, y, q), \xi_h(x, y, q), \xi_s(x, y, q)], \quad (30)\]

associated with:
\[
\xi_o(0, y) - \frac{s}{S} \frac{\partial \xi_o(0, y)}{\partial x} = 0, \quad \beta - \lambda_1 \frac{\partial^2 \xi_o(0, y)}{\partial x^2} = 0, \\
\xi_o(0, y) - \lambda_2 \frac{\partial \xi_o(0, y)}{\partial x} - 1 = 0, \quad \xi_s(0, y) - \lambda_3 \frac{\partial \xi_s(0, y)}{\partial x} - 1 = 0, \\
\]
as \(x \to \infty, \quad \frac{\partial \xi_o(x, y)}{\partial x} = 1, \quad \xi_o(x, y) = 0, \quad \xi_s(x, y) = 0. \quad (31)\]

where \(q \in [0, 1]\) and \(h_h, h_o\) and \(h_s\) are the auxiliary parameters. The convergence of Eqns. (28)-(31) are dependent on the values of these auxiliary parameters. The term \(N_G, N_o\) and \(N_s\) are defined as:

\[
N_G = \frac{\partial^3 \xi_G}{\partial x^3} + x \left(\left(\frac{\partial \xi_G}{\partial x} \right)^2 + \xi_G \frac{\partial^2 \xi_G}{\partial x^2} \right) + y(y - 1) \frac{\partial^2 \xi_G}{\partial y \partial x} - \frac{x}{2} (y - 1) \frac{\partial \xi_G}{\partial y} - M^2 y \left(\frac{\partial \xi_G}{\partial x} - 1 - E \right), \quad (32)\]

\[
N_o = \frac{1}{Pr} \left[\frac{\partial^3 \xi_o}{\partial x^3} + N_t \frac{\partial \xi_o}{\partial x} \frac{\partial \xi_o}{\partial x} + N_t \left(\frac{\partial \xi_o}{\partial x} \right)^2 \right] + y(y - 1) \frac{\partial \xi_o}{\partial y} - \frac{x}{2} (y - 1) \frac{\partial \xi_o}{\partial y} + y \xi_o \frac{\partial \xi_o}{\partial y} + Ec \left(\frac{\partial \xi_G}{\partial x} \right)^2 \\
+ \frac{4R}{3Pr} \left[\frac{\partial^2 \xi_o}{\partial x^2} + (t_r - 1)^2 \left\{ 3 \xi_o^2 \left(\frac{\partial \xi_o}{\partial x} \right) + \xi_o^3 \frac{\partial^2 \xi_o}{\partial x^2} \right\} + 3(t_r - 1) \left(\frac{\partial \xi_o}{\partial x} \right)^2 + \left(\frac{\partial \xi_o}{\partial x} \right)^2 \right] \\
+ 3(t_r - 1)^2 \left(\frac{\partial^2 \xi_o}{\partial x^2} + 2 \xi_o \left(\frac{\partial \xi_o}{\partial x} \right)^2 \right) \right], \quad (33)\]

\[
N_s = \frac{\partial^2 \xi_s}{\partial x^2} + N_t \frac{\partial^2 \xi_o}{\partial x^2} + Sc \left[\frac{y \xi_o \partial \xi_s}{\partial x} + y(y - 1) \frac{\partial \xi_s}{\partial y} - \frac{x}{2} (y - 1) \frac{\partial \xi_s}{\partial y} \right] - y \omega \xi_s. \quad (34)\]
On differentiating Eqns. (28)-(30) \(m \) times and dividing by \(m! \), then with subsequent substitution of \(q = 0 \), we obtain:

\[
L_G(G_m(x, y) - \chi_{m-1}G_{m-1}(x, y)) = h_G H_G R^G_m(x, y),
\]

\[
L_\theta(\theta_m(x, y) - \chi_{m-1}\theta_{m-1}(x, y)) = h_\theta H_\theta R^\theta_m(x, y),
\]

\[
L_S(S_m(x, y) - \chi_{m-1}S_{m-1}(x, y)) = h_S H_S R^S_m(x, y),
\]

with boundary conditions:

at

\[
x = 0, \quad G_m(x, y) - \frac{s}{Sc} \frac{\partial S_m(x, y)}{\partial x} = 0, \quad \frac{\partial G_m(x, y)}{\partial x} - \lambda_1 \frac{\partial^2 G_m(x, y)}{\partial x^2} = 0, \quad \theta_m(x, y) - \lambda_2 \frac{\partial \theta_m(x, y)}{\partial x} = 0,
\]

\[
S_m(x, y) - \lambda_3 \frac{\partial S_m(x, y)}{\partial x} = 0,
\]

as \(x \to \infty, G_m(x, y) = 0, \theta_m(x, y) = 0 \) and \(S_m(x, y) = 0 \).

In the above Eqns., the term \(R^G_m(x, y), R^\theta_m(x, y) \) and \(R^S_m(x, y) \) are defined as:

\[
R^G_m(x, y) = \frac{1}{m-1!} \frac{\partial^{m-1} N_G}{\partial q^{m-1}} \bigg|_{q=0} = \frac{\partial^3 G_{m-1}}{\partial x^3} + y \sum_{i=1}^{m-1} \left(G_{m-1} \frac{\partial^2 G_{m-i-1}}{\partial x^2} - \left(\frac{\partial G_{m-i-1}}{\partial x} \right) \left(\frac{\partial G_{m-i-1}}{\partial x} \right) \right)
\]

\[
+ y(y-1) \frac{\partial^2 G_{m-1}}{\partial y \partial x} - \frac{x}{2} (y-1) \frac{\partial^2 G_{m-1}}{\partial x^2} - M^2 y \left(\frac{\partial G_{m-1}}{\partial x} \right) + (1-M^2 y(1+E))(1-\chi_m),
\]

\[
R^\theta_m(\eta, \xi) = \frac{1}{m-1!} \frac{\partial^{m-1} N_\theta}{\partial q^{m-1}} \bigg|_{q=0} = \frac{1}{Pr} \left(\frac{\partial^3 \theta_{m-1}}{\partial x^3} + N b \sum_{i=1}^{m-1} \frac{\partial \theta_{m-i-1}}{\partial x} \frac{\partial S_i}{\partial x} + N i \sum_{i=1}^{m-1} \frac{\partial \theta_{m-i-1}}{\partial x} \frac{\partial \theta_i}{\partial x} \right)
\]
\[+ y \sum_{i=0}^{m-1} G_i \frac{\partial \theta_{m-i}}{\partial x} + Ec \sum_{i=0}^{m-1} \frac{\partial^2 G_i}{\partial x^2} \frac{\partial^2 G_{m-i}}{\partial x^2} + y(y-1) \frac{\partial \theta_{m-1}}{\partial y} - \frac{x}{2} (y-1) \frac{\partial \theta_{m-1}}{\partial x} + \frac{4R}{3Pr} \left[\frac{\partial^2 \theta_{m-1}}{\partial x^2} + (t_r - 1)^3 \right], \]

\[
\left(3 \sum_{i=0}^{m-1} \left(\sum_{j=0}^{m-i} \frac{\partial \theta_{m-i-j}}{\partial x} \frac{\partial \theta_{m-i-j}}{\partial x} \right) + \sum_{i=0}^{m-1} \left(\sum_{j=0}^{m-i} \frac{\partial \theta_{m-i-j} \frac{\partial^2 \theta_{m-i-j}}{\partial x^2}}{\partial x^2} \frac{\partial \theta_{m-i-j}}{\partial x} \right) \right) + 3(t_r - 1)^2 \left[\sum_{i=0}^{m-1} \sum_{j=0}^{m-i} \frac{\partial \theta_{m-i-j} \frac{\partial^2 \theta_{m-i-j}}{\partial x^2}}{\partial x^2} \frac{\partial \theta_{m-i-j}}{\partial x} \right] \right), \tag{40} \]

\[R^m(x, y) = \frac{1}{m-1!} \frac{\partial^{m-1} N_S}{\partial q^{m-1}} \bigg|_{q=0} = \frac{\partial^2 S_{m-1}}{\partial x^2} + \frac{Nt}{Nb} \frac{\partial^2 \theta_{m-1}}{\partial x^2} + Sc \left[y \sum_{i=0}^{m-1} G_i \frac{\partial S_{m-1}}{\partial x} + y(y-1) \frac{\partial S_{m-1}}{\partial y} \right] - \frac{x}{2} (y-1) \frac{\partial S_{m-1}}{\partial x} \]

where \(G_m = \frac{1}{m!} \frac{\partial^m \xi_G(x, y, q)}{\partial q^m} \bigg|_{q=0} \) and \(\theta_m = \frac{1}{m!} \frac{\partial^m \xi_\theta (x, y, q)}{\partial q^m} \bigg|_{q=0} \) and \(S_m = \frac{1}{m!} \frac{\partial^m \xi_S (x, y, q)}{\partial q^m} \bigg|_{q=0} \). \(\tag{42} \)

The convergence of the following series of solutions is dependent on the appropriate choice of auxiliary parameters \(h_G, h_\theta \) and \(h_S \):

\[G(x, y, q) = G_0(x, y) + \sum_{m=1}^{\infty} G_m(x, y), \tag{43} \]

\[\theta(x, y, q) = \theta_0(x, y) + \sum_{m=1}^{\infty} \theta_m(x, y), \tag{44} \]

\[S(x, y, q) = S_0(x, y) + \sum_{m=1}^{\infty} S_m(x, y). \tag{45} \]
To solve the above eqs., we have applied the symbolic software Maple-18 and obtained the terms $G_m(x, y), \theta_m(x, y)$ and $S_m(x, y)$ in the following form:

$$G_m(x, y) = c_1 + c_2x + c_3e^{-x} + G_{PS}, \quad (46)$$

$$\theta_m(x, y) = c_4 + c_5e^{-x} + \theta_{PS}, \quad (47)$$

$$S_m(x, y) = c_6 + c_7e^{-x} + S_{PS}, \quad (48)$$

where the suffix “PS” represents the particular solution. The all $c_i (i = 1..7)$ are calculated with the help of the boundary conditions (38).

4.1 Convergence of HAM solutions:

The convergences of series (43)-(45) are dependent on the appropriate values of auxiliary parameters h_G, h_θ and h_S which can be obtained by sketching h-curves[55]. We have sketched the h-curves with $G^\prime(0, y), \theta^\prime(0, y)$ and $S^\prime(0, y)$ for different values of y up to the 8th order of approximations and obtained a horizontal line in the ranges $h_G = [-0.048, 0], h_\theta = [-0.048, 0]$ and $h_S = [-0.02, 0]$ which are displayed in Fig.2. Table-1 represents the order of convergences of $G^\prime(0,y), \theta^\prime(0,y)$ and $S^\prime(0,y)$ for the values of auxiliary parameters, $h_G = -0.024, h_\theta = -0.012$ and $h_S = -0.004$ which indicates that the results are convergent up to four decimal places at 20th order of approximations. Hence, these are the appropriate values of auxiliary parameters h_G, h_θ and h_S. In Table-2, we present a comparison of the values of $\{-S^\prime(0,y)\}$ obtained by homotopy analysis method and shooting method for steady non-radiative flow which presents a good agreement between both. Table-3 shows the comparison of the present values of
\(G''(0, y) \) with previous published values \(i.e. \) Wang[56] and Abbas et al. [57] for \(M = 0, E = 0, s = 0, \lambda_4 = 0 \) and different values of \(\beta \). Excellent correlation is achieved confirming the validity of the HAM solutions.

5. DISCUSSION OF RESULTS

In this section, we present a brief discussion of influence of physical parameters on velocity \(G'(x, y) \), temperature \(\theta(x, y) \), concentration \(S(x, y) \), skin friction coefficient \(Cf \), local Nusselt number \(Nur \), Sherwood number \(Shr \) and entropy generation number \(Ns \) via graphs and tables. The default values of leading parameters are taken as: \(M = 0.1, E = 0.1, Nt = 0.1, Nb = 0.1, Pr = 5, Ec = 0.3, R = 0.1, \tau_r = 1.5, \omega = 0.5, \beta = 0.1, s = 0.5, \lambda_1 = \lambda_2 = \lambda_3 = 2, Re = 1, \chi = 0.5, \Omega = 0.1 \). The symbolic software Maple 18 running on personal computer (core i5) is used for finding HAM solution. The numerical HAM values of Nusselt number and Sherwood number are presented in Table-4 with variation in the values of \(Ec, Nt, \beta, \lambda_2 \& \lambda_3 \) and fixed values of other parameters. This table shows that these both quantities are decreased with an increase in the value of Eckert number and thermal slip parameter but increased with thermophoresis and stagnation parameter and also represents that Nusselt number increases as the values of mass slip parameter increases but Sherwood number decreases with an increase in the value of this parameter.

The profiles of velocity \(G'(x, y) \), temperature \(\theta(x, y) \) and concentration \(S(x, y) \) in opposition to \(x \) are presented in Fig 3 in which Fig 3(a) and 3(b) are sketched to elucidate the effects of magnetic field parameter \(M \) and electric field parameter \(E \) on velocity. It is evident that \(G'(x, y) \) is an increasing function of both of these parameters. The behavior of \(M \) can be
understood by the term \(\frac{\sigma_{nf} B_0^2}{\rho_{nf}} (\bar{u} - \bar{u}_\infty) \) in the primitive momentum conservation eqn. (2). Since, in our study, the boundary layer velocity \(\bar{u} \) is less than the external free stream velocity \(\bar{u}_\infty \), therefore the term \(\frac{\sigma_{nf} B_0^2}{\rho_{nf}} (u - u_\infty) \) become negative. Furthermore in the transformed momentum conservation eqn. (8), the term \(- M^2 y \left(\frac{\partial G}{\partial x} - 1 - E \right)\), both magnetic and electrical body force terms become effectively positive. These body forces therefore assist momentum development and lead to flow acceleration. Thus velocity increases with an increase in the value of magnetic parameter, \(M \). Fig 3(c) depicts temperature profile versus transformed transverse coordinate, \(x \) for different values of radiation parameter \(R \). It is apparent that \(\theta(x, y) \) increases with an increase in the value of \(R \). This parameter is defined as \(R = \frac{4\sigma_{1} T_\infty^3}{k_{nf} k_{1}} \) and features in the augmented thermal diffusion term in the heat conservation eqn. (9). It defines the relative contribution of thermal radiation heat transfer to thermal conduction heat transfer. When \(R < 1 \) thermal conduction dominates. When \(R = 1 \) both thermal conduction and thermal radiation contributions are equal. For \(R > 1 \) thermal radiation dominates over thermal conduction. In the present simulations, we confine attention to the last of these three cases i.e. \(0 < R < 1 \) wherein thermal radiative flux is substantial. Fig. 3 (c) clearly reveals that there energizing of the flow with increasing \(R \) values. This enhances thermal diffusion and therefore elevates temperatures and also thermal boundary layer thickness. Similar observations have been reported by Shehzad \textit{et al.} [58] and Venkateswarlu \textit{et al.} [27]. Fig.3 (d) depicts the concentration profile vs. \(x \) for different values of chemical reaction parameter \(\omega \) which shows that concentration is a decreasing function.
of \(\omega \). We consider the destructive type of homogenous chemical reaction. Increasing the chemical reaction parameter \(\omega \) produces a decrease in velocity and therefore also momentum boundary layer thickness is therefore increased substantially with greater chemical reaction effect. However concentration distributions decrease when the chemical reaction increases. Physically, for a destructive case, with stronger chemical reaction, greater destruction of the original nano-particle species takes place. This, in turn, suppresses molecular diffusion of the remaining species which leads to a fall in concentration magnitudes and a corresponding depletion in concentration boundary layer thickness.

Figs. 4(a) -4(c) illustrate the influence of magnetic parameter \(M \), electric parameter \(E \), Stefan blowing parameter \(s \), dimensionless time \(\tau \), velocity slip parameter \(\lambda_1 \) and stagnation parameter \(\beta \) on skin friction coefficient \(Cf \). \(Cf \) increases with an increase in the values of \(M \) since magnetic body force accelerates the flow whereas it decreases with electric field \(E \). However the converse response is computed with \(s, \lambda_1 \) and \(\beta \). In this figure, we have computed the effects of blowing parameter on skin friction for the values of \(s = -1, 0, 1 \). Here \(s = -1 \) indicates suction at the sheet surface, \(s = 0 \) implies a solid wall (no lateral mass flux) and \(s = 1 \) indicates injection at the wall. We have observed that as the value of blowing parameter (mass transfer) increases, skin friction at the surface decreases i.e. strong lateral mass flux into the boundary layer decreases the skin friction at the sheet surface.

Fig.5 depicts the combined effects of \(s \) and \(\tau \) on local Nusselt number and Sherwood number; evidently both quantities are decreasing function of \(s \) but increasing function of \(\tau \). With greater progression of time therefore heat and mass transfer at the sheet (wall) is enhanced and wall
suction \((s=-1)\) induces a similar influence. Wall injection \((s=1)\) however depresses heat and mass transfer rates at the wall.

Fig. 6 describes the effects of radiation parameter on \(Nur\) and \(Shr\) and shows that as the value of radiation parameter increases, the Nusselt number *increases* but Sherwood number *decreases*. Clearly with greater temperatures generated at higher values of radiation parameter the heat transferred to the wall is boosted. Conversely wall mass transfer rate is depressed owing to an increase in concentration of nano-particles in the boundary layer.

Fig. 7. shows that \(Nur\) and \(Shr\) are both increased with chemical reaction parameter. The destruction in nano-particle species with stronger chemical reaction effect (higher \(\omega\) values), leads to a depletion in concentration values in the boundary layer. This encourages the transfer of species to the wall and elevates Sherwood number. The species diffusion to the wall also assist thermal diffusion and elevates wall heat transfer rates.

The second law of thermodynamics states that generally entropy of a system always increases. This statement is confirmed by **Fig 8 (a)-(c)** which depict the effects of magnetic parameter \(M\), electric parameter \(E\) and Reynolds number \(Re\) on entropy generation number \(Ns\). In all three graphs 8a-c, there is a non-trivial increase in entropy generation number \(Ns\). Magnetic field, electrical field and inertial effect (Reynolds number) therefore all encourage entropy generation in the nanofluid regime. However **Fig. 8(d)** indicates that entropy generation number is decreased with an increment in chemical reaction parameter. When the temperature of any substance is minimized, this inhibits molecular motion and therefore the entropy of the system decreases.
Fig. 9(a)-(c). visualize the combined effects of parameters \((M, E), (Nt, Nb)\) and \((Re, R)\), in three-dimensional plots of \(Ns\). Inspection of the Fig. 9(a) reveals that \(Ns\) increases with an increase in the value of thermophoresis parameter \(Nt\) whereas the contrary behavior is generated with increasing Brownian motion parameter \(Nb\). Fig. 9(b) shows the combined effects of Reynolds number and radiation parameter. With increasing Reynolds number, the entropy generation number also increases which is consistent with the results of Fig. 8(c). There is a weak modification of \(Ns\) due to radiation parameter. Furthermore it is apparent that Fig. 9(c) concurs with the results of Fig. 8(a) and 8(b).

6. CONCLUDING REMARKS

An analytical study of the collective influence of Stefan blowing and chemical reaction on unsteady nonlinear radiative EMHD stagnation-point flow of nanofluid from a stretching sheet has been presented with slip effects. Homotopy analysis method (HAM) solutions have been derived for the transformed, nonlinear partial differential boundary value problem. The principal conclusions of the present simulations may be summarized as:

- Velocity is an increasing function of magnetic and electric parameter. Temperature increases with an increase in the value of radiation parameter whereas concentration decreases with an increase in the value of chemical reaction parameter.

- Skin friction coefficient increases with an increase in the value of \(M\) and \(\tau\) whereas it demonstrates the opposite response with \(s\), \(\beta\), \(E\) and \(\lambda_1\). Local Nusselt number decreases with an increase in the value of Stefan blowing parameter \(s\) whereas it increases with \(R\),
\(\omega \) and \(\tau \). A similar response is computed for Sherwood number with \(s, \omega \) and \(\tau \); however the converse trend is observed with \(R \).

- Entropy generation number is an increasing function of \(M, E, \) Re, and \(Nt \) whereas it demonstrates the contrary behaviour with \(\omega \) and \(Nb \).

REFERENCES

22. Rashid I Ul Haq R and Al-Mdallal QM. Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects. *Phys E Low-Dimens Syst Nanostructures* 2017; 89: 33–42.

Table-1 Order of Convergence of HAM results: Order of convergence of the values of \(G''(0, y) \), \(\{-\theta'(0, y)\} \) and \(\{-S'(0, y)\} \) for the fixed values of parameters \(\omega = 0.5, Nt = Nb = 0.1, Sc = 3, Ec = 0.5, M = 0.1, Pr = 5, E = 0.1, s = 0.5, R = 0.1, t_r = 1.5, \beta = 0.1, \lambda_1 = \lambda_2 = \lambda_3 = 5, y = 0.5 \)

<table>
<thead>
<tr>
<th>Order</th>
<th>(G''(0, y))</th>
<th>({-\theta'(0, y)})</th>
<th>({-S'(0, y)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.1498</td>
<td>0.1670</td>
<td>0.1668</td>
</tr>
<tr>
<td>10</td>
<td>0.1507</td>
<td>0.1672</td>
<td>0.1669</td>
</tr>
<tr>
<td>15</td>
<td>0.1509</td>
<td>0.1674</td>
<td>0.1669</td>
</tr>
<tr>
<td>20</td>
<td>0.1509</td>
<td>0.1674</td>
<td>0.1669</td>
</tr>
<tr>
<td>25</td>
<td>0.1509</td>
<td>0.1674</td>
<td>0.1669</td>
</tr>
</tbody>
</table>

Table-2 Validation of HAM Results: Comparison of HAM values of \(\{-S'(0, y)\} \) with the values obtained by shooting method (limiting case) for the different values of Stefan blowing parameter \(s \) and fixed values of other parameters \(Nt = Nb = 0.1, Sc = 5, Ec = 0.3, M = 0.1, Pr = 5, E = 0.1, R = 0, \beta = 0.1, \lambda_1 = \lambda_2 = \lambda_3 = 5, y = 1, \omega = 0.5 \)

<table>
<thead>
<tr>
<th>(s)</th>
<th>({-S'(0, y)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM</td>
<td>Shooting</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1725</td>
</tr>
<tr>
<td>0.3</td>
<td>0.1724</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1721</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1720</td>
</tr>
</tbody>
</table>
Table-3: Comparison of present values of $G"(0, y)$ to the published results for particular case:

<table>
<thead>
<tr>
<th>β</th>
<th>Present values</th>
<th>Wang [56]</th>
<th>Abbas et al.[51]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2327</td>
<td>1.232588</td>
<td>1.232587</td>
</tr>
<tr>
<td>0.1</td>
<td>1.1467</td>
<td>1.14656</td>
<td>1.146561</td>
</tr>
<tr>
<td>0.2</td>
<td>1.0511</td>
<td>1.05113</td>
<td>1.051129</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7132</td>
<td>0.71330</td>
<td>0.713294</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4: HAM values of Nusselt and Sherwood number: The numerical values of Nusselt and Sherwood number obtained by homotopy analysis method on the fifteen order of approximations for the different values of Ec, Nt, β, λ_2 & λ_3 and fixed values of parameters $Nt = Nb = 0.1$, $Sc = 10$, $M = 0.1$, $Pr = 5$, $E = 0.1$, $R = 0.1$, $\lambda_1 = 3$, $y = 0.5$, $\omega = 0.5$.

| Ec | β | Nt |\begin{tabular}{|c|c|c|c|c|c|} \hline & λ_2, λ_3 & \multicolumn{3}{|c|}{(2, 3)} \\ \\ \hline & & Nur & Shr & Nur & Shr \\ \hline 0.1 | 0.1 | 0.4915 & 0.6922 & 0.5008 & 0.5995 & 0.3670 & 0.5142 \\ 0.25 | 0.5431 & 1.1939 & 0.5522 & 1.1033 & 0.4055 & 0.8902 \\ 0.4 | 0.5947 & 1.6953 & 0.6036 & 1.6068 & 0.4439 & 1.2661 \\ 0.1 | 0.4915 & 0.6922 & 0.5008 & 0.5995 & 0.3670 & 0.5142 \\ 0.25 | 0.4919 & 0.6927 & 0.5012 & 0.5999 & 0.3673 & 0.5145 \\ 0.4 | 0.4922 & 0.6933 & 0.5016 & 0.6003 & 0.3675 & 0.5149 \\ 0.1 | 0.4910 & 0.6919 & 0.5004 & 0.5992 & 0.3667 & 0.5140 \\ 0.25 | 0.5426 & 1.1932 & 0.5518 & 1.1026 & 0.4051 & 0.8897 \\ 0.4 | 0.5941 & 1.6942 & 0.6031 & 1.6057 & 0.4435 & 1.2653 \\ 0.1 | 0.4910 & 0.6919 & 0.5004 & 0.5992 & 0.3667 & 0.5140 \\ 0.25 | 0.4916 & 0.6925 & 0.5009 & 0.5997 & 0.3671 & 0.5144 \\ 0.4 | 0.4920 & 0.6932 & 0.5014 & 0.6002 & 0.3674 & 0.5148 \\ \hline \end{tabular} |
Fig. 1 Physical structure of problem.
Fig. 2 \(h\)-curve with \(G'(0, y) \), \(\theta'(0, y) \) and \(S'(0, y) \) for different values of \(y \) on 8th order of approximations.
Fig. 3 Effects of physical parameters on velocity $G(x, y)$, temperature $\theta(x, y)$ and concentration $S(x, y)$.
Fig. 4 Combined effects of (E, M), (s, τ) and (λ_j, β) on skin friction coefficient.
Fig. 5 Combined effect of s and τ on Nusselt and Sherwood number.

Fig. 6 Combined effect of radiation parameter R and τ on Nusselt and Sherwood number.
Fig. 7 Effect of chemical reaction parameter ω on Nusselt and Sherwood number.
Fig. 8 Effect of physical parameters M, E, Re and ω on entropy generation number Ns.
Fig. 9 Combined effects of (Nt, Nb), (Re, R) and (E, M) on entropy generation number Ns.
List of Caption of Figures

Fig 1. Physical structure of problem.

Fig 2. h-curve with $G''(0, y), \theta'(0, y)$ and $S'(0, y)$ for different values of y on 8^{th} order of approximations.

Fig 3 Effects of physical parameters on velocity $G'(x, y)$, temperature $\theta(x, y)$ and concentration $S(x, y)$.

Fig 4 Combined effects of (E, M), (s, τ) and (λ_1, β) on skin friction coefficient.

Fig 5 Combined effect of s and τ on Nusselt and Sherwood number.

Fig 6 Combined effect of radiation parameter R and τ on Nusselt and Sherwood number.

Fig 7 Effect of chemical reaction parameter ω on Nusselt and Sherwood number.

Fig 8 Effect of physical parameters M, E, Re and ω on entropy generation number Ns.

Fig 9 Combined effects of $(Nt, Nb), (Re, R)$ and (E, M) on entropy generation number Ns.