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ABSTRACT

A mathematical model is developed to study laminar, nonlinearjsotingmal, steadystate free
convection boundary layer flow and heat transfer of a micropolar viscoelastic fluid from a vertical
LVRWKHUPDO FRQH 7KH (ULQJHQ PRGHO DQG -HIIHU\YV YLVFRHODVW
nonNewtonian characteristics of lymers, which constitutes a novelty of the present work. The
transformed conservation equations for linear momentum, angular momentum and energy are
solved numerically under physically viable boundary conditions using a finite difference scheme
(Keller Boxmethod). The effects of Deborah number (De), Eringen vortex viscosity parameter (R),
ratio of relaxation to retardation timegX micro-inertia density parameter (B), Prandtl number (Pr)

and dimensionless stream wise coordingle( velocity, surfacesmperature and angular velocity

in the boundary layer regime are evaluated. The computations show that with greater ratio of
retardation to relaxation times, the linear and angular velocity are enhanced whereas temperature
(and also thermal boundary laythickness) is reduced. Greater values of the Eringen parameter
decelerate both the linear velocity and miocotation values and enhance temperatures. Increasing
Deborah number decelerates the linear flow and Nusselt number whereas it increases temperature
and boosts microotation magnitudes. The study is relevant to-Newtonian polymeric thermal
coating processes.

Keywords: -HITUH\V YLVFRHODVWLF PRGHO {NéwiQnidh @olfielSURSRODU PRG
Deborah number, Kelldoox method, heat transfdrpundary layers, skin friction, Nusselt number,
thermal coating systems.

1. INTRODUCTION VLPXODWLRQ RI IRUZDUG UROO FRDWL(
using both OldroyeB and FENEP models. These studies
Coating hydrodynamics has been an area of considerablenowever ignored heat transfer which may be critical in certain
interest since the monumental paper by Landau and Levichcoating systems (Mitsoulis, 168 The diffusion of heat can
(1942) in which an elegant formulation was developedife modify polymer properties significantly (Mark, 1996). Several
WKLENQHVV RI WKH ¢OP RI D AXLG Zlgythors have therefore studied thermofluid transport in non
withdrawn vertically from a bath at constant velocity. This Newtonian external coating flowsCao and Cui (2015)
work was however confined tdewtonianviscous fluids. In examined OstwakDeWaele pseudplastic fluids in fee
many modern industries non-Newtonian fluids are convection flow in porous media. Choudhury and Das (2016)
encountered e.g. in polyncoating processes (Lawrence and employed the ReineRiviin second order differential
Zhou, 1991). Numerous researchers have thereforeyjscoelastic model for reactive magnetized thermosolutal
investigated coating dynamics of different stationary or convection in porous media.. Thirumurugan and
rotating geometrical bodies (plates, cones, spheres, cylinders)/asanthakumari (2016) utilized the Wéas B viscoelastic
with non-Newtonian liquids and have employed a mrgf model to investigate the thermosolutal convection in-two
mathematical constitutive equation&enekhe and Schuldt phase porous media transp(ﬁtasad’gt a|(2013 and Subba
(1984) studied coating flows of powkaw and Carreau fluids  Raoet al.(2016) investigated computationally the momentum

on spinning disksCampanelleet al. (1986) investigatedip and heat transfer characteristics in external boundgey &ip
coating of a circular cylinder in nelewtonian powefaw flow of aviscoplasticfluid from a cylinder.

fluids. Zevallos et al (2005) presented a finite element



The classical NaviefStokes theory does not describe
sufficiently the flow properties of polymeric fluids, colloidal

YLVFRHODVWLF WUDQVSRUW SKHQRPH
include Kodandapaniet al. (2008) Nadeemet al. (2009)

suspensions, and fluids having certain additives. EringenHayat et al. (2012) The Jeffery model quite accurately

(1966) proposed thereforthe theory of micropolar fluids
which exhibit micrerotation effects as well as micipertia.
Micropolar fluids are fluids with microstructure. They belong
to a class of fluids with neesymmetric stress tensor also
known aspolar fluids. Micropolar fluids include as a special
case the conventional NaviStokes model of classical
viscous fluids that we shall cafirdinary fluids. Physically
micropolar fluids consist of arbitrarily oriented particles
suspended in a viscous medium. The formulation for
micropolar fluid theory allows their implementation in

describes the characteristics of relaxation and retardatioa time
which arise in certain polymeric flows. Furthermore, this
model utilizes time derivatives rather than converted
derivatives, which facilitates numerical solutions in boundary
value problems.

Relatively few studies have considered polymeric external
bourdary layer flows from curved bodies where the fluid
possesses both microstructuaatviscoelastic characteristics.
Prasadet al (2015) have studied nanoscale micropolar
convection from a cylinder. However they did not consider

boundary layer flows, of relevance to materials processing, andviscoelasticeffects. Thusthe objective of the current study is
has resulted in considerable activity among researchers. Yacolio examine the viscoelastic micropolar heat transfer in external
et al., (2011) proposed a mathematical model to characteriseboundary layer flow from a cone using the Jeffery -non

the melting heatansfer in both stretching and shrinking sheet
flows of a micropolar fluidPrakash and Sinha (1976) applied
micropolar fluid theory to simulate lubrication squeeze films
for circular disks, deriving analytical expressions for film
characteristics. Papaugset al. (1999) employed micropolar
fluid theory to study low speed flows in miemachined
rectangular metallic pipette arrayBhargavaet al. (2016)
analyzed the thermsolutal convection in a cavity containing
micro polarfluid with avariationfinite element method. atiff

et al. (2015) used Maple software to analyse the multiple slip
effects on transieribrcedbio convectiorflow of amicro polar

Newtonian (2005) and Eringen micropolar models (2001).
This is the novelty of this article.

2. MATH EMATICAL MODEL

The regime under investigation is natural convection
boundary layer flows of incompressible viscoelastic
micropolar fluid (polymeric liquid) from a vertical isothermal
solid cone, as shown ifig. 1. Both cone and liquid are
maintainel initially at the same temperaturR XULHUfV OL
assumed for heat conduction i.e. thermal relaxation effects are
negated. Thermal stratification and dispersion are also

nanofluid from a stretching/shrinking sheet with applications neglected as is viscous heating. The flow is laminar, steady
in materials fabricationAlam et al. (20 XVHG (ULQJtte pod the cone rface isothermal. These conditions
micropolar model to study transient Falki@an magnetic ~ correspond to steady polymeric convection in external
convection flowsTransport from external surfaces of curved boundary layer flow development on an axisymmetric cone
bodies e.g. verticaloneshas also stimulated some interest in geometry. Instantaneously the cone surface is raised to a
recent years. Such flows are of relevance to chemicaltemperaturdw> T, where the latter (ambient) tempéire of
engineering Systems and also materials Synthesis_ Chenghe pOlymeriC fluid is maintained as constant. ¥to®ordinate
(2015) studied the free convection heat transfer from a non Is measured along the slant surface of the cone from the origin
isothermal permeable cone with suction and temfure (at the vertex) and thg-coordinate is directed normal to the
dependent viscosity. dchanaet al. (2016) analysed the  cone surfaceThe cone has a semmertex angle of.
momentum, heat and mass ST behaviour of magneto
hydrodynamic flow towards a vertical rotating cone in porous
medium with thermophoresis and Brownian motion effects.
Cheng (2015) examined the natural convection heat transfer
about a vertical cone embedded in a porous medium with
isothermal wall conditions. Yih (1999) studied the effect of
thermal radiation flux on free convection about a truncated
cone. Gorla et al (1986) investigated themicro polar
convection boundary layer flow from a cone.

An interesting model in nehewtonian fluid mechanics
is theviscoelastic Jeffrey fluid model. This model degenerates
to a Newtonian fluid at a very high wall shear stress. This fluid
model also approximates reasonably well the rheological
behaviour of a wide rangef industrial liquids intuding
biotechnological detergents, physiological suspensibezse
foams, geologicabediments cosmeticcreams syrups, etc.  \jith the Boussinesq buoyancy and boundary layer
Many researchers have explored a range of industrial andapproximations, the governing equations for the conservation
biological flow problems using the Jeffery model. Prastal. of mass, momentum, miciotation and energy can be written

(2014)and Subba Raet al. (2015)studied external Jeffery i, two-dimensional Cartesian coordinatesy) as follows:
viscoelastic boundary layer flow from a circular cylinder using

an implicit finite difference code and showed that with
increasing Deborah numbers there is a falNasselt number
(heat transfer rajeand the skiffriction coefficient. Tripathi
and Beg (2013) analysed peristaltic propulsion with thermal
diffusion using the Jeffery model. Hayat al. (2015)
simulated the polymeric thermal flow from a stretching
cylinder in Jeffery viscoelastic liquidFurther studies of

Inverted permeable cone
Viscoelastic micropolar fluid
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Fig. 1 Physical model and coordinate system
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Herer is the local radius of the truncated coneand v
are the velocity components ik and y directions, T andN

are the temperature and angular velocity of the viscoelastic

micropolar fluidk and | are the vortex viscosity and micro

inertia density, J 0.5k ] isthe spin gradient

viscosity, _£ is the kinematic viscosity of the

X

viscoelastic micropolar fluid, Fis the dynamic viscosity of
the viscoelastic micropolar fluid andL is the fluid density.
Furthermore, £ is the thermal diffusivity, £ is the

coefficient for thermal expansion argi* is the gravitational

accelerationWith regard to the viscoasticity in the polymeric
liquid considered, this is simulated via tl@@arameter i.e. the
ratio of relaxation to retardation times, angharameter i.e. the
retardation time. The following boundary conditions are
imposed:

1w
At y 0, u v 0 N EW, T T, (5)
As yof, w O, w 00 8§ O d T
Here T, is the free steam temperature. We introduce
a stream function | defined by the Cauchy
Riemanequations, ry —— and vy ﬂ and
Y W

therefore, the mass conservation eqgn. (1) is automatically

4 a
41 R)« f cceff

1 o kc Ff [C(‘i% (7)
4Rgc 2(f Yo lD—eOfo c(dcp 7fC 47"
fc , wf w a
fe— f € «
W «
De bcce M fw gechBw
1 0 w/ w W &
A et Te [T of— o Yk ®)
r «
Ra
41 2,9 CC4RB[§;§429 f)ceifg

9

—_

fg 4 f % gWr
* g ¢ [gv\[<

The eight corresponding dimensionless boundary
conditions emerge as:

1 f
At 0, f 0 f/ -——, K 1
R (10)
As of, fo 0, f6 0, 9 0 K (

Here primes denote the differentiation with respect te non
dimensional transverse @odinate AHere we also define the

micropolar material parameters:

B (X)) LR K (11
The local Nusselt number of the inverted cone can be written
as
Nu
,0 12)
In equation (12),
Nu h%( (13)

Here h is the local heat transfer coefficient akds the

satisfied. Furthermore, the following dimensionless variables thermal conductivity of the micropolar viscoelastic fluid.

are introduced inteqns. (2)4):

[ YXen, k Lens, XGrt 1/ 05 !
X P
T T, XN ; U
K[KTW 7 9 5 (GN*. pr (0D
Gr 2qU(T, Tﬁ)?cosA1 De Q(;fr)E ®)
X X

3. NUMERICAL SOLUTION WITH KELLER BOX
IMPLICT METHOD

In this study the Kellebox implicit difference method is
implemented to solve the ndimear eight order system of
coupled boundary layer eqns. (#)9) subject to the boundary
conditions (10). This method continues to be popular in
boundary laHU IORZV S5HFHQW ZRUNV HPSC
scheme include Cheng (2008) for micropolar -smthermal
flow from a truncated con&éget al. (2016) formicro polar

Here all parameters are defined in the notation at the end of thevall plume dynamics in permeable systenMalik et al.

article. The following nondimensional partial differential
equations for momentum and energynservatiortherefore
emerge:

(2015) and Subba Rast al. (2017 for magnetic polymeric
flows and Gaffaret al. (2015) and Subba Raet al. (2017,
2018)for viscoelastic heat transfer from curved bodies. Very
few of these papers however have provided guidance for
researchers as to customization of the Kdllex schemeo

heat transfer problems. We have included details of the
GLVFUHWL]DWLRQ SURFHGXUH EHORZ
scheme involves the following four stages:

a. Reduction of theN™ order partial differential equation
system ta\ first order equations



b. Finite Difference Discretization nue 1, N 01 01
c. Quasilinearization of Noiinear Keller Algebraic g, v 79 6.1 ¢ g (27)

Equations 4
d. Block-tridiagonal Elimination of Linear Keller Algebraic \g§” 12 . .

. n n n

Equations 2 gl 9.1 G g (28)
Step 1: Reduction of the # order partial differential n 12
equation system to n first order equatisn \g§ 1 . Nl oni

Yoo 29 919 g (29)

New variables are introduced to Eqgns. {19) subject to the © 12

boundary conditions (10) are first written as a system of first We now state the finitdifference approximation of equations.

order equations. For this purpose, we reset Eqns.(@)as a : . n
set of simultaneous equations by introducing the new (16) (23) for themid-point 11’2K » bebw

variables: 1 ¢n n n
uxy feMxy f.odxy f ” R W 50
(XY , (x) T, dxy =« 15 h*u . Vi (31)
f' u (16) h*(v V') q“l (32)
u v (17) I3
v" q (18) h'(g' d',) ijE (33)
g p (19) 2
- h*(' 7' 34
s' t (20) j ( j j 1) é— (34)
441 RYve 7 ° 4 V.8 1
—_— VvC 4 . 18 1 )
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The associated boundary conditions are 4 h
At K 0, f Ou 0s l’g 0 24 _(tj tj 1) 21(7 D(fj fj 1)(tj E 1)
AsKof, uo 0,vw 068 0Oag C B
Phase b:Finite Difference Discretization 2n [ttt y) JT(uj y,)(s 5.)
A two dimensional computational grid is imposed on h (36)
the £ plane as sketched in Fig. 2. The stepping process ISI_(U u,) B( . ) Ik
defined by: o V1Tt PP
KO K Kh, jl2.J, K, (25) h D
nl ni
£ O [ ['k, n 12.N (26) (t, t)f —ZJUZfJ f, )t N7
where k, and h; denote the step distances in theand RS 8RB/ 4RB/"h
directions respectively. 41 2 Pl N =¥ "
) D7h (D 1hj 37
If g denotes the value of any variable afK " , then he 1 R — v (37)
variables zi/r;d derivatives of Equations. (1) (23) at ﬁ y [h § v, npl L rJnDl 01
;12K are replaced by: D’%] 12 .
7 p] p]l pn %:n 0%



0.5 | 0.896407] 0.620748] 0.897843] 0.61985

where we have used the abbreviations 1.0 | 0.856963 0.848082| 0.848B4 | 0.84023
o 1.5 | 0.779210| 1.129365| 0.771562| 1.11978

D [ (38) 2.0 | 0.674111| 1.441742| 0.675320| 1.43285
K, 3.0 | 0.434152| 2.202662| 0.412372| 2.06372

4

a
@ _O 41 Re (- T)fv 4RP D 2)6 4§ (39) Moreover, in order to verify the accuracy of present method,
et « the analytical results obtained in the present work were
E 4fv 2Aug AD 1)‘; ADT)fq 4A % compared with those available in the literature, obtaining an
4 excellent agreement with those given in Alam et al. [19] for
R, @ h —tc(D7)ft Qg 4 I( (40) particular valuesof /. The table presents the influence of
i increasing the tangential coordinajeon the skinfriction and
4(1 )pC 8RB ’m 4RB*v @ local nussult number result$ncreaseing /, is found to
R, @ (41) decrease skinfriction and increse heat transfer Tétere is a
i D 7)(fo) ( DLum) 4 p,
i3 ( )(fp) ( )um) vast change in skin friction and heat transfer rate when taking
The boundary conditions are the larger values of /.
Comprehensive solutions have been obtained and are
LT 4 r presentedn Figs. 3 £20. We examine the influence of several
;w08 Lnf LU oy 08 oM (42

key parameters, namely Deborah numbBe)( ratio of
relaxation to retardation timesg{ Prandtl mmber Pr),

Phase c:Quasilinearization of NonLinear Keller Algebraic micropolar parameteRj i.e. vortex to dynamic viscosity ratio

Equations nL g gl g and micro-inertia density parameteB). The effect of the

If we assume f"*u’" Vv 51 ¢f stream wise coordinate/)) is not explicitly examined. Default
m;‘ Y pJn 1 to be known for theddution of 8J+8 equations for ~ parameter values prescribed @be= 0.1, & 0.1, Pr = 0.71,
the solution of 8J+8 unknowns R=0.1,B=0.1, /=1.0. In the graphs the angular velocgy (

is denoted a%

fru, v, g1 dq, g, g,j 0,1,2.3. This non-

linear system of algebraic equations is linearized by means of Figures 3 %5, illustrate the influence of Deborah

1| TZ%)I%R QTV PHWKRG DQG WKLV PHWKR{amEd ¥n Xdddiy £ L Se&FeBturRrPR  and agular
a

velocity / . Dimensionless velocity component (fig.3) is
Phase d: Block-tridiagonal Elimination of Linear Keller

C ! considerably reduced with increasibg values.De arises in
Algebraic Equations

connection with some higher order derivatives in the

The |Ineal’ SyStem |S SO|Ved LISIng the bbCk momentum boundary |ayer equa‘“o@” |e,
elimination method, since it possess a bibakiagonal De N N and  also
structure consists of variables or constants. The system 71— 2ffc cefc)® wfEY  4/f
consists of blockmatrices the complete linearized system is .

. . D Mcce c fw , ccf8h Thi rameter
formulated as a block matrix system, where each element in / 1feof W/ f %sv[ c f fvyéitﬁf%g S paramete

the coefficient matrix is a matrix itself. Then, this system is

solved using the efficient Kelldbox method. The numerical ~ therefore exerts  a significant influence on  shearing

characteristics of the polymer flow. Deborah number is

results are strongly influeed by the number of mesh points
in both directions. After some trials in the-directions

(transverse i.e. radial coordinate) a larger number of mesh

defined as theatio of the characteristic time to the time scale
of defornation. For a fixed value of the characteristic time,
there may be different values of the time scale of deformation

points are selected whereas in tzedirections (tangetral and hence there can be many different Deborah number values
coordinate) significantly less mesh points are necessary. Thefor the same polymer. De > 1.0, elastic effects are dominant
numerical algorithm is executed in MATLAB on a PC. The while if De< 0.5, viscous effects prevaiFor any values other
method demonstrates excellent stability, convergence andthan these two extremes, the material would dejscbelastic
consistency (Keller, 1978). behaviour. For polymers i.e., for ndfewtonian fluids, higher
Devalues correspond to the polymer becoming highly oriented
in one directionand stretched. For very higbe values, the

fluid movement is too fast for elastic forced to relax and the
material acts as a purely elastic fluid. For small De values, the
time scale of fluid moment imuch greatethan the relaxation
time of elastic fores in the polymer. In fig. 4 an increase in
Debroah number enhance temperature throughout the
boundary layer regime. This has also been observed by Hayat
et al (2012). In fig. 5 with increasin®e values, there is a

4. KELLER BOX METHOD (KBM) NUMERICAL
RESULTS AND DISCUSSION

Table 1. Numerical values of skifriction and heat transfer
coefficient for different values of/ while Pr =0.71, $=0.5

and S=1.0when £ o f (Newtonian case).

/ Alam et.al results[19] Present results substantial decrease in angular vepdie. microelement
f €¢,0) (,0) | fgq.0) .0 rotary motion is inhibited. The heat transfer rate is
substantially decreased with increasibgvalues There is a

0.0 | 0.891936| 0.420508| 0.892157| 0.42178 progressive decay in heat transfer rate with incresing the




tangential coordinate. A decrease in heat transfer rateeat t
wall imply less heat is convected from the fluid regime to the
cone, thereby heating the boundary layer.

Figures 6 18 present the effect of the ratio of relaxation
to retardation times i.e., on velocity f ¢, temperature 7

and angular velocity ; distributions throughout the

boundary layer regime. A significant increase in velocity is
observed with increasingC values. Converselftemperature

is markedly reduced with increasing values 6f Also
increasing ¢ is seen to increase the angular velocity
significantly i.e. encourage spin of the mi@lements.

Velocity is significantly incesed with increasingc. The
polymer flow is therefore considerbly accelarated with an
increase in relaxation time (or decrease in retardation time).
The mathematical model reduces to the Newtonian viscous
flow model as Oo Oand De o O, since this negates
relaxation, retadation and elasticity effects.The momentum
boundary layer equation in theese cases contracts to th
familiar equation for Newtonian mixed convection from the
cone:

A 41 R)@cceff 4&c Ff 4a4gc 2(f) (43)
fc wif 2 w °
fe— f ( N
LT T " 1

Effectively with greater relaxation time of the polymer the
thermal boundary layer thickness is reduced.

Figures 9 £11 depicts the effect of the vortex viscosity
parameteR) on velocity ¢ ¢, tempeature 7 and

angular velocity / For R = 1, the micropolar and

Newtonian dynamic viscosity are equivalent. Fer= 0,
micropolarity is neglected and the equations reduce to the non
polar case. Although relatly simple in definitionR, has a
prominent influence on all the flow variables. We observe in
fig. 9 that an increase iR strongly decelerates the flow i.e.
damps linear velocity. Fig. 10 demonstrates that with stronger
micro-polarity i.e. greaterR value, the temperatures are
elevated in the boundary layer. The regime is significantly
heated and thermal boundary layer thickness is increased. T
increased vortex viscosity encourages thermal diffusion i.e.
energizes the flow. This increases the efficienf thermal
convection within the body of the fluid from the microscopic
to the macroscopic scale and effectively transports heat with
greater intensity from the cone surface into the fluid regime.
Fig. 11 depicts that strong reversal of mietement reation

is induced very close to the wall (cone surface) with increasing
Rvalues.

Figures 12 +14 depict the influence of velocityf c,
temperature 7 and angular velocity / for different

values of material paramet®r It is observed that an increase
of B significantly decelerates the flow, i.e. depresses velocity

hé&

Figures 15 +17 represent typical profiles for velocity
f c, temperature( ) and angular velocity / for

various values oPr. It is observed that an increase Pn
decreases in velocity. The most prominent variation in profiles
arises at intermediate distances from the cone surface.
Furthermore, increasirr generates a substantial retlan in

the fluid temperature and the thermal boundary layer
thickness. At largér, the thermal boundary layer is thinner
than at a smallePr. This is associated with the fact that for
small Prandtl numbers the fluid has very high thermal
conductivity.An increase irPr from 0.5 through 0.71, 2.0, 10,

12 as shown in fig. 15, substantially decelerates the flow i.e.
reduces hydrodynamic boundary layer thickness. Similarly
higher Prandtl number, which corresponds to lower thermal
conductivity of the polyrar results in a markedepressionn
temperatures (fig. 16). The lower thermal conductivity of
denser polymers inhibits thermal diffusion via conduction heat
transfer. Less heat is therefore conveyed from the cone surface
(wall) into the boundary layer anthermal boundary layer

Ghickness is decreased.

IncreasingPr as observed in fig. 17, reduces angular velocity
i.e stifles micreelement spirfangular deceleration

Figures 18 + 20 presents the Nusselt Number
comparisons for different values D&, RandPr respectively:
Increasing Deborah number, decrease the Nusselt number i.e
reduces heat transfer from the viscoelastic micropolar fluid to
the cone wall. Increasing vortex viscosity paramd®as, also
seen to decrease the Nusselt number. IncreaBnagdtl
number,Pr is observed to enhance the Nusselt number since
temperatures are reduced in the fluid and greater heat is
convected to the cone surface. This inevitably has implications
for cooling of thin film coatings.

5. CONCLUSIONS

A mathematicalmodel has been developed for the
buoyancydriven, natural convection boundary layer flow of a
viscoelastic micropolar fluid from a vertical isothermal cone.
The Jeffery nofNewtonian and Eringen mictstructural
models have been used to simulate differgmological
haracteristics. The transformed boundary layer conservation
equations have been solved with prescribed boundary
conditions using the finite difference implicit Kell#rox
method which has second order accuracy. A comprehensive
assessment oheé effects of Deborah numb®&e, ratio of
retardation to relaxation timé&, vortex viscosity paramet&

, Prandtl numberPr, microinertia density parameteB.
Excellent convergence and stability charactiesstare
demonstrated by the Keller box scheme which is capable of
solving very strongly nonlinear rheological problems.

The present simulations have shown that:

(i) Increasing Deborah number, De reduces velocity and
Nusselt number whereas it increagasperature and angular

throughout the boundary layer regime. The temperature is alsoV€locCity (microrotation of micreelements).

decreased with increasind® values. Conversely with
increagng material parameteB, the angular velocitymicro-
rotation)is increasedindicating that faster gyratory motions
of micro-elements are induced

(i) Increasing ratio of retardation to relaxation time;
increases the velocity and angular velocity whereas it reduces
the temperature (and thermal boundagetahickness).

(i) Increasing Eringen vortex viscosity parameteR
decreases the velocity and angular velocity whereas it elevates
temperature.



(iv) Increasing micranertia density parameteB, reduces
velocity and temperature whereas it enhanceslangelocity.

(v) Increasing Prandtl numbe®r decreases velocity,
temperature and angular velocity.

(vi) Increasing Deborah number and vortex viscosity
parameter both depress Nusselt number whereas an increase il
Prandtl number enhances the Nusselt beaim(heat transfer
rate at the cone surface).

The current study has neglected rotation of the cone and
therefore Coriolis body force effects, which are also relevant
in polymer chemical processing operatiofer example in
spin coating processe¥hese wl be considered in the near
future.
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