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ABSTRACT   
 
A mathematical model is developed to study laminar, nonlinear, non-isothermal, steady-state free 
convection boundary layer flow and heat transfer of a micropolar viscoelastic fluid from a vertical 
�L�V�R�W�K�H�U�P�D�O���F�R�Q�H�����7�K�H���(�U�L�Q�J�H�Q���P�R�G�H�O���D�Q�G���-�H�I�I�H�U�\�¶�V���Y�L�V�F�R�H�O�D�V�W�L�F���P�R�G�H�O���D�U�H���F�R�P�E�L�Q�H�G���W�R���V�L�P�X�O�D�W�H���W�K�H��
non-Newtonian characteristics of polymers, which constitutes a novelty of the present work. The 
transformed conservation equations for linear momentum, angular momentum and energy are 
solved numerically under physically viable boundary conditions using a finite difference scheme 
(Keller Box method). The effects of Deborah number (De), Eringen vortex viscosity parameter (R), 
ratio of relaxation to retardation times (�O), micro-inertia density parameter (B), Prandtl number (Pr) 
and dimensionless stream wise coordinate (�[) on velocity, surface temperature and angular velocity 
in the boundary layer regime are evaluated. The computations show that with greater ratio of 
retardation to relaxation times, the linear and angular velocity are enhanced whereas temperature 
(and also thermal boundary layer thickness) is reduced. Greater values of the Eringen parameter 
decelerate both the linear velocity and micro-rotation values and enhance temperatures. Increasing 
Deborah number decelerates the linear flow and Nusselt number whereas it increases temperatures 
and boosts micro-rotation magnitudes. The study is relevant to non-Newtonian polymeric thermal 
coating processes. 
 
Keywords: �-�H�I�I�U�H�\�¶�V�� �Y�L�V�F�R�H�O�D�V�W�L�F�� �P�R�G�H�O���� �(�U�L�Q�J�H�Q�� �P�L�F�U�R�S�R�O�D�U�� �P�R�G�H�O���� �Q�R�Q-Newtonian polymers, 
Deborah number, Keller-box method, heat transfer, boundary layers, skin friction, Nusselt number, 
thermal coating systems. 

 
1. INTRODUCTION  

Coating hydrodynamics has been an area of considerable 
interest since the monumental paper by Landau and Levich 
(1942) in which an elegant formulation was developed for the 
�W�K�L�F�N�Q�H�V�V�� �R�I�� �W�K�H�� �¿�O�P�� �R�I�� �D�� �À�X�L�G�� �Z�K�L�F�K�� �L�V�� �G�H�S�R�V�L�W�H�G���R�Q���D�� �S�O�D�W�H��
withdrawn vertically from a bath at constant velocity. This 
work was however confined to Newtonian viscous fluids. In 
many modern industries non-Newtonian fluids are 
encountered e.g. in polymer coating processes (Lawrence and 
Zhou, 1991). Numerous researchers have therefore 
investigated coating dynamics of different stationary or 
rotating geometrical bodies (plates, cones, spheres, cylinders) 
with non-Newtonian liquids and have employed a range of 
mathematical constitutive equations. Jenekhe and Schuldt 
(1984) studied coating flows of power-law and Carreau fluids 
on spinning disks. Campanella et al. (1986) investigated dip 
coating of a circular cylinder in non-Newtonian power-law 
fluids. Zevallos et al. (2005) presented a finite element 

�V�L�P�X�O�D�W�L�R�Q���R�I���I�R�U�Z�D�U�G���U�R�O�O���F�R�D�W�L�Q�J���À�R�Z�V���R�I���Y�L�V�F�R�H�O�D�V�W�L�F���O�L�T�X�L�G�V��
using both Oldroyd-B and FENE-P models. These studies 
however ignored heat transfer which may be critical in certain 
coating systems (Mitsoulis, 1986). The diffusion of heat can 
modify polymer properties significantly (Mark, 1996). Several 
authors have therefore studied thermofluid transport in non-
Newtonian external coating flows. Cao and Cui (2015) 
examined Ostwald-DeWaele pseudo-plastic fluids in free 
convection flow in porous media. Choudhury and Das (2016) 
employed the Reiner-Rivlin second order differential 
viscoelastic model for reactive magnetized thermosolutal 
convection in porous media. . Thirumurugan and 
Vasanthakumari (2016) utilized the Walters B viscoelastic 
model to investigate the thermosolutal convection in two-
phase porous media transport. Prasad et al. (2013) and Subba 
Rao et al. (2016) investigated computationally the momentum 
and heat transfer characteristics in external boundary layer slip 
flow of a viscoplastic fluid from a cylinder.  
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The classical Navier�±Stokes theory does not describe 
sufficiently the flow properties of polymeric fluids, colloidal 
suspensions, and fluids having certain additives. Eringen 
(1966) proposed therefore the theory of micropolar fluids 
which exhibit micro-rotation effects as well as micro-inertia. 
Micropolar fluids are fluids with microstructure. They belong 
to a class of fluids with non-symmetric stress tensor also 
known as polar fluids. Micropolar fluids include as a special 
case the conventional Navier-Stokes model of classical 
viscous fluids that we shall call ordinary fluids. Physically 
micropolar fluids consist of arbitrarily oriented particles 
suspended in a viscous medium. The formulation for 
micropolar fluid theory allows their implementation in 
boundary layer flows, of relevance to materials processing, and 
has resulted in considerable activity among researchers. Yacob 
et al., (2011) proposed a mathematical model to characterise 
the melting heat transfer in both stretching and shrinking sheet 
flows of a micropolar fluid. Prakash and Sinha (1976) applied 
micropolar fluid theory to simulate lubrication squeeze films 
for circular disks, deriving analytical expressions for film 
characteristics. Papautsky et al. (1999) employed micropolar 
fluid theory to study low speed flows in micro-machined 
rectangular metallic pipette arrays. Bhargava et al. (2016) 
analyzed the thermo-solutal convection in a cavity containing 
micro polar fluid with a variation finite element method.  Latiff 
et al. (2015) used Maple software to analyse the multiple slip 
effects on transient forced bio convection flow of a micro polar 
nanofluid from a stretching/shrinking sheet with applications 
in materials fabrication. Alam et al. (20�������� �X�V�H�G�� �(�U�L�Q�J�H�Q�¶�V��
micropolar model to study transient Falkner-Skan magnetic 
convection flows. Transport from external surfaces of curved 
bodies e.g. vertical cones has also stimulated some interest in 
recent years. Such flows are of relevance to chemical 
engineering systems and also materials synthesis. Cheng 
(2015) studied the free convection heat transfer from a non-
isothermal permeable cone with suction and temperature-
dependent viscosity. Solchana et al. (2016) analysed the 
momentum, heat and mass transfer behaviour of magneto 
hydrodynamic flow towards a vertical rotating cone in porous 
medium with thermophoresis and Brownian motion effects. 
Cheng (2015) examined the natural convection heat transfer 
about a vertical cone embedded in a porous medium with 
isothermal wall conditions. Yih (1999) studied the effect of 
thermal radiation flux on free convection about a truncated 
cone. Gorla et al. (1986) investigated the micro polar 
convection boundary layer flow from a cone. 

An interesting model in non-Newtonian fluid mechanics 
is the viscoelastic Jeffrey fluid model. This model degenerates 
to a Newtonian fluid at a very high wall shear stress. This fluid 
model also approximates reasonably well the rheological 
behaviour of a wide range of industrial liquids including 
biotechnological detergents, physiological suspensions, dense 
foams, geological sediments, cosmetic creams, syrups, etc. 
Many researchers have explored a range of industrial and 
biological flow problems using the Jeffery model. Prasad et al. 
(2014) and Subba Rao et al. (2015) studied external Jeffery 
viscoelastic boundary layer flow from a circular cylinder using 
an implicit finite difference code and showed   that with 
increasing Deborah numbers there is a fall in  Nusselt number 
(heat transfer rate) and the skin-friction coefficient. Tripathi 
and Bég (2013) analysed peristaltic propulsion with thermal 
diffusion using the Jeffery model. Hayat et al. (2015) 
simulated the polymeric thermal flow from a stretching 
cylinder in Jeffery viscoelastic liquid. Further studies of 

�Y�L�V�F�R�H�O�D�V�W�L�F�� �W�U�D�Q�V�S�R�U�W�� �S�K�H�Q�R�P�H�Q�D�� �Z�L�W�K�� �W�K�H�� �-�H�I�I�H�U�\�¶�V�� �P�R�G�H�O��
include, Kodandapani et al. (2008), Nadeem et al. (2009), 
Hayat et al. (2012). The Jeffery model quite accurately 
describes the characteristics of relaxation and retardation times 
which arise in certain polymeric flows. Furthermore, this 
model utilizes time derivatives rather than converted 
derivatives, which facilitates numerical solutions in boundary 
value problems.  

Relatively few studies have considered polymeric external 
boundary layer flows from curved bodies where the fluid 
possesses both microstructural and viscoelastic characteristics. 
Prasad et al. (2015) have studied nanoscale micropolar 
convection from a cylinder. However they did not consider 
viscoelastic effects. Thus, the objective of the current study is 
to examine the viscoelastic micropolar heat transfer in external 
boundary layer flow from a cone using the Jeffery non-
Newtonian (2005) and Eringen micropolar models (2001). 
This is the novelty of this article. 

 
2. MATH EMATICAL MODEL  
       The regime under investigation is natural convection 
boundary layer flows of incompressible viscoelastic 
micropolar fluid (polymeric liquid) from a vertical isothermal 
solid cone, as shown in Fig. 1. Both cone and liquid are 
maintained initially at the same temperature. �)�R�X�U�L�H�U�¶�V���O�D�Z���L�V��
assumed for heat conduction i.e. thermal relaxation effects are 
negated. Thermal stratification and dispersion are also 
neglected as is viscous heating. The flow is laminar, steady-
state and the cone surface isothermal. These conditions 
correspond to steady polymeric convection in external 
boundary layer flow development on an axisymmetric cone 
geometry. Instantaneously the cone surface is raised to a 
temperature Tw> T�’ , where the latter (ambient) temperature of 
the polymeric fluid is maintained as constant. The x-coordinate 
is measured along the slant surface of the cone from the origin 
(at the vertex) and the y -coordinate is directed normal to the 
cone surface. The cone has a semi-vertex angle of A.  

 
 
With the Boussinesq buoyancy and boundary layer 
approximations, the governing equations for the conservation 
of mass, momentum, micro-rotation and energy can be written 
in two-dimensional Cartesian coordinates (x, y) as follows: 
 

( ) ( )
0

ru rv
x y

� w � w
� � �  

� w � w
                                       (1)  
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2 3 2 2 3

12 2 2 3

( ) ( ) ( )cos

( . .
1

u u u N
u v k k g T T A

x y y y

u u u u u u u
u v

y x y x y y x y y

�U �P �U �E

�X
�O

�O

�f

�w �w �w �w
�� � �� �� �� ��

�w �w �w �w

� ª � º�w �w �w �w �w �w �w
�� �� �� �� ��� « � »�� �w �w �w �w �w �w �w �w �w� ¬ � ¼

     (2)  

2

2

T T T
u v

x y y
�D

�w �w �w
� � �  

�w �w �w
                                                  (3)  

2
*

2( ) (2 )j

N N N u
u v k N

x y y y
� U � J

�w �w �w �w
�� � �� ��

�w �w �w �w
                      (4)  

Here r is the local radius of the truncated cone, u  and v  
are the velocity components in x  and y  directions, T andN  
are the temperature and angular velocity of the viscoelastic  
micropolar fluid,k  and j  are the vortex viscosity and micro 

inertia density,  �� ��* 0.5k j� J � P�  � �  is the spin gradient 

viscosity, �P�X
�U

�  is the kinematic viscosity of the 

viscoelastic  micropolar fluid,  �Pis the dynamic viscosity of 

the viscoelastic  micropolar fluid and �U is the fluid density. 
Furthermore, �D  is the thermal diffusivity, �E is the 

coefficient for thermal expansion and *g  is the gravitational 
acceleration.With regard to the viscoelasticity in the polymeric 
liquid considered, this is simulated via the �O parameter i.e. the 
ratio of relaxation to retardation times, and ��1 parameter i.e. the 
retardation time. The following boundary conditions are 
imposed: 

1
At  0, 0, ,

2

, 0, 0, 0,

w

u
y u v N T T

y

As y u v N T T�f

�w
� � � � �� � 

�w

�o �f �o �o �o �o

      (5)  

Here T�f  is the free steam temperature. We introduce 

a stream function �\  defined by the Cauchy-

Riemannequations, ru
y
�\�w

� 
�w

 and  rv
x
�\�w

�  � �
�w

  and 

therefore, the mass conservation eqn. (1) is automatically 
satisfied. Furthermore, the following dimensionless variables 
are introduced into eqns. (2)-(4): 

�� ��
1

1 1 4
4 4

32
4

1
2 * 3 2

1
2 2

( , ) 0.5
( ) , ( ) , ,

( , ) , ( ) ,
( )

( ) cos ( )
, (6)

w

w

w

rGr fV x y
Gr Gr

x

T T x N
g Gr pr

T T

g T T x A Gr
Gr De

x

�X �[ �K �[�U
�[ �K �\

� P � U

� U � P
�T �[ �K

�P �U�D

� U � E �O�X
�X

��
�f

�f

�f

��
� � � 

��
� � � 

��

��
�  �  

Here all parameters are defined in the notation at the end of the 
article. The following non-dimensional partial differential 
equations for momentum and energy conservation therefore 
emerge: 

 

�� ��2 2

4
4(1 ) 7 4 4

1

4 2( ) 2 ( ) 7 4
1

1

iv iv

iv

R f ff f

De
Rg f f f f ff f

f f
f f

De f f f f
f f f f

� T � [
�O

�[
�O

� [ � [
�[

�O �[ �[ �[ �[

� ª � º�c�c�c �c�c �c�c�� �� �� �� ��� « � »��� ¬ � ¼

�c �c �c �c�c�c �c�c�� �� �� �� �� ��
��

�c� w � w� ª � º�c �c�c��� « � »� w � w
� « � »� 
� « � »�c�c�c �c �c�c� § � ·�w �w �w �w�c �c�c�c �c�c�� �� �� ��� « � »� ¨ � ¸�� �w �w �w �w� © � ¹� ¬ � ¼

   (7)  

 
 

4
7 4

Pr
f

f f
�T

�T �T �[�T �[ �T
� [ � [

� ª � º� w � w�c�c �c �c �c �c�� �� � ��� « � »� w � w� ¬ � ¼
             (8)  

 

24 1 4 (2 ) 7
2

4

R
g RB g f fg

g f
f g g f g

�[

� [ � [
� [ � [

� ª � º�c�c �c�c �c�� �� �� ��� « � »� ¬ � ¼

� ª � º� w � w�c �c �c �c�� �� � ��� « � »� w � w� ¬ � ¼

           (9)  

The eight corresponding dimensionless boundary 
conditions emerge as: 

2

2

1
0, 0 ', , 1

2

, ' 0, '' 0, 0, 0

f
At f f g

y

As f f g

� K � T

� K � T

�w
� � � � � 

�w

�o �f �o �o �o �o             
(10)

 

Here primes denote the differentiation with respect to non-
dimensional transverse co-ordinate�KHere we also define the 
micropolar material parameters:  

2 2 2 1( )wB j v� X � U��� , k
R

�X
�                                           (11) 

The local Nusselt number of the inverted cone can be written 
as  

1
4

( ,0)
Nu

Gr
� T � [�c�                                  (12) 

In equation (12),  
hxNu k�                                      (13) 

 Here h is the local heat transfer coefficient and k is the 
thermal conductivity of the micropolar viscoelastic fluid. 
 

3. NUMERICAL SOLUTION WITH KELLER BOX 
IMPLICT METHOD  

 
In this study the Keller-box implicit difference method is 

implemented to solve the non-linear eight order system of 
coupled boundary layer eqns. (7) �± (9) subject to the boundary 
conditions (10). This method continues to be popular in 
boundary lay�H�U���I�O�R�Z�V���� �5�H�F�H�Q�W�� �Z�R�U�N�V�� �H�P�S�O�R�\�L�Q�J�� �.�H�O�O�H�U�¶�V�� �E�R�[��
scheme include Cheng (2008) for micropolar non-isothermal 
flow from a truncated cone, Bég et al. (2016) for micro polar 
wall plume dynamics in permeable systems, Malik et al. 
(2015) and Subba Rao et al. (2017) for magnetic polymeric 
flows and Gaffar et al. (2015) and Subba Rao et al. (2017, 
2018) for viscoelastic heat transfer from curved bodies. Very 
few of these papers however have provided guidance for 
researchers as to customization of the Keller-box scheme to 
heat transfer problems. We have included details of the 
�G�L�V�F�U�H�W�L�]�D�W�L�R�Q�� �S�U�R�F�H�G�X�U�H�� �E�H�O�R�Z���� �,�P�S�O�H�P�H�Q�W�D�W�L�R�Q�� �R�I�� �.�H�O�O�H�U�¶�V��
scheme involves the following four stages:  
 
a. Reduction of the Nth order partial differential equation 

system to N first order equations 
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b. Finite Difference Discretization 
c. Quasilinearization of Non-Linear Keller Algebraic 

Equations 
d. Block-tridiagonal Elimination of Linear Keller Algebraic 

Equations 
 
Step 1: Reduction of the nth order partial differential 
equation system to n first order equations 
 
New variables are introduced to Eqns. (7) - (9) subject to the 
boundary conditions (10) are first written as a system of first 
order equations. For this purpose, we reset Eqns. (7) - (9) as a 
set of simultaneous equations by introducing the new 
variables: 

( , ) , ( , ) , ( , )u x y f v x y f q x y f�c �c�c �c�c�c� � �        �� ��14  

( , ) , ( , ) , ( , )s x y t x y p x y m� T � T� c � c� � �        �� ��15  

'f u�                                                   (16) 

 'u v�                                                   (17) 
'v q�                                                       (18) 

'g p�                                                   (19) 
's t�                                                   (20) 

2 2

4
4(1 ) 7

1

4 2 4 4 2 7 4

(21)

R v fv

RP u s v A uq v fq q

u f q u v f
u v A u q v q

�O

� [ � [

�[
�[ �[ �[ �[ �[ �[

� ª � º�c�� �� ��� « � »��� ¬ � ¼

� c � c� ª � º�� �� �� �� �� �� �� ��� ¬ � ¼
� ª � º�§ �· �§ �·�w �w �w �w �w �w�c�� �� �� �� ��� � « � »�¨ �¸ �¨ �¸�w �w �w �w �w �w�© �¹ �© �¹� ¬ � ¼
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7 4 -
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R
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                     (23)  

The associated boundary conditions are 
0, 0, 0, 1, 0

, 0, 0, 0, 0

At f u s g

As u v s g

�K
�K

� � � � � 

�o �f �o �o �o �o
                �� ��24  

 
Phase b: Finite Difference Discretization 
 

A two dimensional computational grid is imposed on 
the �[-�� plane as sketched in Fig. 2. The stepping process is 
defined by:  

                  
(25) 

                        (26) 

 
where kn and hj denote the step distances in the ����and �� 
directions respectively. 

 

If denotes the value of any variable at , then the 

variables and derivatives of Equations. (16) �± (23) at 

 are replaced by: 

          
             (27) 

                    (28) 

                    (29) 

We now state the finite-difference approximation of equations. 

(16) �± (23) for the mid-point , below 
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                                  (31) 

1
1 1

2

( )n n n
j j j

j
h v v q��

��
��

� � �                         (32) 

1
1 1

2

( )n n n
j j j

j
h g g p��

��
��

� � �                                                   (33) 

 1
1 1

2

( )n n n
j j j

j
h t� T � T��

��
��

� � �                                                   (34) 

1
1 1

2
1 1 1

1 1 1

12
1 1

4 1
4(1 ) ( 7) ( )( )

1 4

1 1 1
4 ( ) ( 2) ( ) 4 ( )

2 4 2
1 1

4 ( ) 2 ( )( )
2 4

1 1
(1 ) ( ) (7 ) ( )( )

4 2

4 (

j j
j j j j

j

j j j j j j

j j j j j j

j j
j j j j

j

j j

v v
R f f v v

h

R p p u u s s

v v A u u q q

q q
A v v A f f

h

q q
A

�D
�O

�D

�[

� D � D

�[

��
� � � �

�� �� ��

�� �� ��

��
� � � �

� § � ·��� ª � º�� �� �� �� �� �� ��� ¨ � ¸� « � »� ¨ � ¸��� ¬ � ¼� © � ¹

�� �� �� �� �� ��

�� �� �� �� ��

��
�� �� �� �� �� ��

��
��

�> �@

1 1 1
1 1

1 1
1 1

11 1 1
1 1

) ( ) ( )
2 2

2 ( ) 2 ( )
2 2

( ) ( ) (35)
2

n n
j j j j

j

n n
j j j j

nj j n n
j j

j

v v f f f v
h

A u u q A q q u

q q
A f A f f q R

h

� D � D

� D � D

�D
�D

�� � � � �
� � � �

� � � �
� � � �

���� � � � �
��

�� �� �� ��

�� �� �� �� ��

��
�c�� �� � ��

 

�> �@

1 1 1

1 1 1

1 1
1 1

11 1
1 1 2

4
( ) (7 )( )( )

4

2 ( ) ( )( )
4

( ) ( )
2 2

( ) ( )
2 2

j
j j j j j j

r

j
j j j j j j j

j jn n
j j j j

nj jn n
j j j j

h
t t f f t t

p

h
h t t u u s s

h h
u u s s s u

h h
t t f f f t R

�D

�D
�[

� D � D

�D
�D

�� �� ��

�� �� ��

� � � �
� � � �

��� � � �
� � � �

�� �� �� �� �� ��

�� �� �� �� ��

�� �� �� ��

�� �� �� � ��

     (36) 

�� �� �� �� �� ��
�� �� �� ���� �� �� ���� ��

�� �� �� �� �� ��

�� ��

2

1 1 1

1 1 1 1

1 1 1

1

248
4 1

2 2 2
( 1)7

4 4
4

1 1
2 2 2

1 1
32

j
j j j j j j

j
j j j j j j j j

j j j j j j

j j

RB hRB hR j
p p m m v v

hh j
f f p p u u m m

h hj j n np p u u m m m u

hj n np p p R

�[�[

�D�D

� [ � D�D

�D

�� �� ��

�� �� �� ��

�� �� ��

��

� § � ·�� �� �� �� �� ��� ¨ � ¸
� © � ¹

����
�� �� �� �� �� ��

� � � ��� �� �� �� �� ��

� � � �� ª � º�� �� � �� � ¬ � ¼

   (37) 

0 10, , 1,2,..., ,j j j Jh j J�K �K �K �K �K�� �f� � �� � �{
0 10, , 1,2,...,n n

nk n N�[ �[ �[ ��� � �� � 

n
jg �� ��, n

j� K � [

�� ��1/2
1/2,

n
j� K � [��
��

�� ��1/2 1 1
1/2 1 1

1
,

4
n n n n n
j j j j jg g g g g�� �� ��
�� �� ��� �� �� ��

�� ��
1/ 2

1 1
1 1

1/ 2

1
,

2

n

n n n n
j j j j

jj

g
g g g g

h�K

��

� � � �
� � � �

��

� § � ·�w
� �� �� ��� ¨ � ¸�w� © � ¹

�� ��
1/ 2

1 1
1 1

1/ 2

1
,

2

n

n n n n
j j j jn

j

g
g g g g

k�[

��

� � � �
� � � �

��

� § � ·�w
� �� �� ��� ¨ � ¸�w� © � ¹

�� ��1/2,
n

j� K � [��

�� ��1
1 1/2,

n n n
j j j jh f f u��

� � � �� � �  

�� ��1
1 1/2,

n n n
j j j jh u u v��

� � � �� � �  



5 
 

 
where we have used the abbreviations 
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 The boundary conditions are 
 

0 0 0 00, 1, 1, 0, 0, 0, 0n n n n n n n n
j j j jf u s m u v s m� � � � � � � �            (42)

   
 
Phase c: Quasilinearization of Non-Linear Keller Algebraic 
Equations

 
 If we assume 1 1 1 1 1 1, , , , ,n n n n n n

j j j j j jf u v s t q�� �� �� �� �� ��  
1 1,n n

j jm p� � � � to be known for the solution of 8J+8 equations for 

the solution of 8J+8 unknowns 
, , , , , , ,n n n n n n n n

j j j j j j j jf u v s t q m p  , 0,1,2...j J� . This non - 

linear system of algebraic equations is linearized by means of 
�1�H�Z�W�R�Q�¶�V���P�H�W�K�R�G���D�Q�G���W�K�L�V���P�H�W�K�R�G���Z�D�V���X�V�H�G���E�\���6�X�E�E�D���5�D�R��et 
al. (2017). 
 
Phase d: Block-tridiagonal Elimination of Linear Keller 
Algebraic Equations 
  The linear system is solved using the block-
elimination method, since it possess a block-tridiagonal 
structure consists of variables or constants. The system 
consists of block matrices the complete linearized system is 
formulated as a block matrix system, where each element in 
the co-efficient matrix is a matrix itself. Then, this system is 
solved using the efficient Keller�±box method. The numerical 
results are strongly influenced by the number of mesh points 
in both directions. After some trials in the �K-directions 
(transverse i.e. radial coordinate) a larger number of mesh 
points are selected whereas in the �[ -directions (tangential 
coordinate) significantly less mesh points are necessary. The 
numerical algorithm is executed in MATLAB on a PC. The 
method demonstrates excellent stability, convergence and 
consistency (Keller, 1978). 
 
4. KELLER BOX METHOD (KBM) NUMERICAL 
RESULTS AND DISCUSSION 
 
Table 1. Numerical values of skin-friction and heat transfer 
coefficient for different values of �[  while Pr =0.71, Sf =0.5 
and ST =1.0 when �E� o � f (Newtonian case). 
 

�[  Alam et.al results [19] Present results 

( ,0)f �[�c�c   ( ,0)� T � [�c��  ( ,0)f �[�c�c  ( ,0)� T � [�c��

 0.0 0.891936 0.420508 0.892157 0.42178

2 

0.5 0.896407 0.620748 0.897843 0.61985

2 1.0 0.856963 0.848082 0.848784 0.84023

1 1.5 0.779210 1.129365 0.771562 1.11978

6 2.0 0.674111 1.441742 0.675320 1.43285

2 3.0 0.434152 2.202662 0.412372 2.06372

5  
Moreover, in order to verify the accuracy of present method, 
the analytical results obtained in the present work were 
compared with those available in the literature, obtaining an 
excellent agreement with those given in Alam et al. [19] for 
particular values of �[ . The table presents the influence of 

increasing the tangential coordinate �[ on the skinfriction and 
local nussult number results. Increaseing �[ , is found to 
decrease skinfriction and increse heat transfer rate. There is a 
vast change in skin friction and heat transfer rate when taking 
the larger values of  �[ . 
 Comprehensive solutions have been obtained and are 
presented in Figs. 3 �± 20. We examine the influence of several 
key parameters, namely Deborah number (De), ratio of 
relaxation to retardation times (�O), Prandtl number (Pr), 
micropolar parameter (R) i.e. vortex to dynamic viscosity ratio 
and micro-inertia density parameter (B). The effect of the 
stream wise coordinate (�[ ) is not explicitly examined. Default 

parameter values prescribed are: De = 0.1, �O = 0.1, Pr = 0.71, 
R = 0.1, B = 0.1, �[ = 1.0. In the graphs the angular velocity (g) 
is denoted as�I.  
 
 Figures 3 �± 5, illustrate the influence of Deborah 
number on velocity�� ��f �c, temperature�� ���T   and angular 

velocity �� ���I . Dimensionless velocity component (fig.3) is 

considerably reduced with increasing De values. De arises in 
connection with some higher order derivatives in the 
momentum boundary layer equations,(7), i.e., 

�� ��22 ( ) 7 4
1

iv ivDe
f f f ff f�[

�O
�c �c�c�c �c�c�� �� �� ��

��
    and also  

1
ivDe f f f f

f f f f�[
�O �[ �[ �[ �[

� § � ·�c�c�c �c �c�c� § � ·�w �w �w �w�c �c�c�c �c�c�� �� �� ��� ¨ � ¸� ¨ � ¸�� �w �w �w �w� © � ¹� © � ¹

. This parameter 

therefore exerts a significant influence on shearing 
characteristics of the polymer flow. Deborah number is 
defined as the ratio of the characteristic time to the time scale 
of deformation.  For a fixed value of the characteristic time, 
there may be different values of the time scale of deformation 
and hence there can be many different Deborah number values 
for the same polymer. If De > 1.0, elastic effects are dominant 
while if De < 0.5, viscous effects prevail.  For any values other 
than these two extremes, the material would depict viscoelastic 
behaviour. For polymers i.e., for non-Newtonian fluids, higher 
De values correspond to the polymer becoming highly oriented 
in one direction and stretched. For very high De values, the 
fluid movement is too fast for elastic forced to relax and the 
material acts as a purely elastic fluid. For small De values, the 
time scale of fluid moment is much greater than the relaxation 
time of elastic forces in the polymer.  In fig. 4 an increase in 
Debroah number enhance temperature throughout the 
boundary layer regime. This has also been observed by Hayat 
et al. (2012). In fig. 5 with increasing De values, there is a 
substantial decrease in angular velocity i.e. microelement 
rotary motion is inhibited. The heat transfer rate is 
substantially decreased with increasing De values. There is a 
progressive decay in heat transfer rate with incresing the 

1/2n

nk
�[

�D
��

� 



6 
 

tangential coordinate. A decrease in heat transfer rate at the 
wall imply less heat is convected from the fluid regime to the 
cone, thereby heating the boundary layer.  
 
  Figures 6 �± 8 present the effect of the ratio of relaxation 
to retardation times i.e., �O on velocity�� ��f �c, temperature�� ���T  

and angular velocity�� ���I  distributions throughout the 

boundary layer regime. A significant increase in velocity is 
observed with increasing �O values. Conversely, temperature 
is markedly reduced with increasing values of�O. Also 
increasing �O  is seen to increase the angular velocity 
significantly i.e. encourage spin of the micro-elements.  
Velocity is significantly incresed with increasing �O. The 
polymer flow is therefore considerbly accelarated with an 
increase in relaxation time (or decrease in retardation time). 
The mathematical model reduces to the Newtonian viscous 
flow model as 0�O�o and De �o  0, since this negates 
relaxation, retadation and elasticity effects.The momentum 
boundary layer equation in theese cases contracts to the 
familiar equation for Newtonian mixed convection from the 
cone:  
  
�> �@ 24 4(1 ) 7 4 4 4 2( )R f ff f Rg f

f f
f f

� T � [

�[
� [ � [

�c�c�c �c�c �c�c �c �c�� �� �� �� �� �� ��

�c� ª � º� w � w�c �c�c�  � �� « � »� w � w� ¬ � ¼

    (43) 

Effectively with greater relaxation time of the polymer the 
thermal boundary layer thickness is reduced.  
 
 Figures 9 �± 11 depicts the effect of the vortex viscosity 
parameter( )R  on velocity�� ��f �c  , temperature�� ���T   and 

angular velocity�� ���I . For R = 1, the micropolar and 

Newtonian dynamic viscosity are equivalent. For R = 0, 
micropolarity is neglected and the equations reduce to the non-
polar case. Although relatively simple in definition, R, has a 
prominent influence on all the flow variables. We observe in 
fig. 9 that an increase in R strongly decelerates the flow i.e. 
damps linear velocity. Fig. 10 demonstrates that with stronger 
micro-polarity i.e. greater R value, the temperatures are 
elevated in the boundary layer. The regime is significantly 
heated and thermal boundary layer thickness is increased. The 
increased vortex viscosity encourages thermal diffusion i.e. 
energizes the flow. This increases the efficiency of thermal 
convection within the body of the fluid from the microscopic 
to the macroscopic scale and effectively transports heat with 
greater intensity from the cone surface into the fluid regime. 
Fig. 11 depicts that strong reversal of micro-element rotation 
is induced very close to the wall (cone surface) with increasing 
R values. 
 
  Figures 12 �± 14 depict the influence of velocity�� ��f �c, 

temperature �� ���T  and angular velocity �� ���I  for different 

values of material parameter B. It is observed that an increase 
of B significantly decelerates the flow, i.e. depresses velocity 
throughout the boundary layer regime. The temperature is also 
decreased with increasing B values. Conversely with 
increasing material parameter, B, the angular velocity (micro-
rotation) is increased, indicating that faster gyratory motions 
of micro-elements are induced.  
 

 Figures 15 �± 17 represent typical profiles for velocity

, temperature   and angular velocity �� ���I for 

various values of Pr. It is observed that an increase in Pr 
decreases in velocity. The most prominent variation in profiles 
arises at intermediate distances from the cone surface. 
Furthermore, increasing Pr generates a substantial reduction in 
the fluid temperature and the thermal boundary layer 
thickness. At large Pr, the thermal boundary layer is thinner 
than at a smaller Pr.  This is associated with the fact that for 
small Prandtl numbers the fluid has very high thermal 
conductivity. An increase in Pr from 0.5  through 0.71, 2.0, 10, 
12 as shown in fig. 15, substantially decelerates the flow i.e. 
reduces hydrodynamic boundary layer thickness. Similarly 
higher Prandtl number, which corresponds to lower thermal 
conductivity of the polymer results in a marked depression in 
temperatures (fig. 16). The lower thermal conductivity of 
denser polymers inhibits thermal diffusion via conduction heat 
transfer. Less heat is therefore conveyed from the cone surface 
(wall) into the boundary layer and thermal boundary layer 
thickness is decreased. 
 Increasing Pr as observed in fig. 17, reduces angular velocity 
i.e stifles micro-element spin (angular deceleration). 
 
  Figures 18 �± 20 presents the Nusselt Number 
comparisons for different values of De, R and Pr respectively: 
Increasing Deborah number, decrease the Nusselt number i.e 
reduces heat transfer from the viscoelastic micropolar fluid to 
the cone wall. Increasing vortex viscosity parameter, R is also 
seen to decrease the Nusselt number. Increasing Prandtl 
number, Pr is observed to enhance the Nusselt number since 
temperatures are reduced in the fluid and greater heat is 
convected to the cone surface. This inevitably has implications 
for cooling of thin film coatings.  
 
5. CONCLUSIONS 

 
A mathematical model has been developed for the 

buoyancy-driven, natural convection boundary layer flow of a 
viscoelastic micropolar fluid from a vertical isothermal cone. 
The Jeffery non-Newtonian and Eringen micro-structural 
models have been used to simulate different rheological 
characteristics. The transformed boundary layer conservation 
equations have been solved with prescribed boundary 
conditions using the finite difference implicit Keller�±box 
method which has second order accuracy. A comprehensive 
assessment of the effects of Deborah number De, ratio of 
retardation to relaxation time�O, vortex viscosity parameterR
, Prandtl number Pr, micro-inertia density parameter B. 
Excellent convergence and stability characteristics are 
demonstrated by the Keller box scheme which is capable of 
solving very strongly nonlinear rheological problems.  
 
The present simulations have shown that:  
 
(i) Increasing Deborah number, De reduces velocity and 
Nusselt number whereas it increases temperature and angular 
velocity (micro-rotation of micro-elements). 
(ii) Increasing ratio of retardation to relaxation time, �O 
increases the velocity and angular velocity whereas it reduces 
the temperature (and thermal boundary layer thickness). 
(iii) Increasing Eringen vortex viscosity parameter, R 
decreases the velocity and angular velocity whereas it elevates 
temperature. 

�� ��f �c ( )�T
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(iv) Increasing micro-inertia density parameter, B, reduces 
velocity and temperature whereas it enhances angular velocity. 
(v)  Increasing Prandtl number, Pr decreases velocity, 
temperature and angular velocity. 
(vi) Increasing Deborah number and vortex viscosity 
parameter both depress Nusselt number whereas an increase in 
Prandtl number enhances the Nusselt number (heat transfer 
rate at the cone surface). 

The current study has neglected rotation of the cone and 
therefore Coriolis body force effects, which are also relevant 
in polymer chemical processing operations, for example in 
spin coating processes. These will be considered in the near 
future.  
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