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Abstract

In this paper, we proposed a new and robust biometric-based approach to iden-1

tify head of cattle. This approach used the Weber Local Descriptor (WLD) to2

extract robust features from cattle muzzle print images (images from 31 head of3

cattle were used). It also employed the AdaBoost classi�er to identify head of4

cattle from their WLD features. To validate the results obtained by this clas-5

si�er, other two classi�ers (k -Nearest Neighbor (k -NN) and Fuzzy-k -Nearest6

Neighbor (Fk -NN)) were used. The experimental results showed that the pro-7

posed approach achieved a promising accuracy result (approximately 99.5%)8

which is better than existed proposed solutions. Moreover, to evaluate the re-9

sults of the proposed approach, four di�erent assessment methods (Area Under10

Curve (AUC), Sensitivity and Speci�city, accuracy rate, and Equal Error Rate11

(EER)) were used. The results of all these methods showed that the WLD along12

with AdaBoost algorithm gave very promising results compared to both of the13

k -NN and Fk -NN algorithms.14
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1. Introduction15

Cattle identi�cation and traceability are very crucial to control safety policies16

of animals and management of food production. Many international organiza-17

tions, e.g. food safety and world animal health, have formally recognized the18

signi�cant values of the development of the animal identi�cation and traceabil-19

ity systems and they further actively promoted for these systems (Schroeder and20

Tonsor, 2012). Such values include (a) controlling the widespread of the animal21

diseases by identifying and detecting infected animals, (b) reducing losses of live-22

stock producers by controlling the diseases, (c) decreasing the government cost23

by the control, intervention, and eradication of the outbreak diseases (Bowling24

et al., 2008). Therefore, especially after the discovery of the Bovine Spongiform25

Encephalopathy (BSE), advanced animal identi�cation and traceability systems26

were evolved and deployed by big beef exporters and have been increasingly used27

by ranked beef importing countries (Schroeder and Tonsor, 2012).28

Marchant (2002) reported that animal identi�cation can be achieved using29

many di�erent methods which could be classi�ed as mechanical, electronic, and30

biometric. The mechanical class includes methods such as ear notching, ear tags,31

branding, and tattoos. Nonetheless, as reported in (Shadduck and Golden, 2002;32

Allen et al., 2008), the mechanical-based identi�cation su�ers from a number of33

limitations. The ear notching method is not suitable for large-scale identi�cation34

systems. The ear tag methods (metal clips and plastic tags) are not so expensive,35

but they may cause animal infections (Allen et al., 2008). The branding and36

tattoo methods are not achieving a relatively good accuracy as in one herd, all37

head of cattle are identically branded. Thus, they are not useful to uniquely38

di�erentiate between various head of cattle in the same herd. In addition, these39

methods take more time than other modern techniques (Shadduck and Golden,40

2002).41

Animal identi�cation systems based on electronic methods (Marchant, 2002;42

Shanahan et al., 2009) used Radio Frequency Identi�cation (RFID) to identify43

animals. These methods are mainly based on attaching two devices with the44
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animals. One device contains a unique identi�cation number and the other is the45

reading device which reads and interprets animals code (the unique identi�cation46

number). When a code is scanned, the reading device sends it to a database for47

future actions. The main limitation of this method is that the attached devices48

may get lost, removed, or damaged (Marchant, 2002).49

The third method is the biometric-based animal identi�cation (Shadduck50

and Golden, 2002; Jiménez-Gamero et al., 2006; Rusk et al., 2006; Corkery51

et al., 2007; Allen et al., 2008; Barry et al., 2008; Gonzales Barron et al., 2008;52

Rojas-Olivares et al., 2011; Adell et al., 2012). Similar to biometric-based hu-53

man identi�cation, a number of biometric animal have proposed to uniquely54

identify animals. Retina-based identi�cation systems (Rusk et al., 2006; Allen55

et al., 2008; Barry et al., 2008; Gonzales Barron et al., 2008; Adell et al., 2012)56

depend on the retinal image recognition (RIR) which utilizes the fact that the57

retina vessels of each head of cattle is a unique identi�er. DNA-based methods58

(Jiménez-Gamero et al., 2006) were also proposed to identify meat products59

that were produced from a given speci�c animal. Although this method, in case60

of head of cattle, gives a higher identi�cation rate than the other methods, it61

is intrusive, and not cost-e�ective and it could last days or weeks to obtain the62

identi�cation result (Rusk et al., 2006). Other biometric-based methods include63

animal facial recognition (Shadduck and Golden, 2002; Corkery et al., 2007) and64

muzzle-based identi�cation (Minagawa et al., 2002; Noviyanto and Arymurthy,65

2012; Awad et al., 2013; Noviyanto and Arymurthy, 2013).66

The muzzle-based animal identi�cation is based on the fact that the muzzle67

pattern or nose print of di�erent animals of the same species are mostly unique68

(Baranov et al., 1993; Gonzales Barron et al., 2008). Thus, it is concluded that69

muzzle print is similar to a human's �ngerprint. The muzzle-based approach is70

a very promising way for cattle identi�cation as it can achieve a high accuracy71

(e.g. 90.6% in (Noviyanto and Arymurthy, 2012)). Using this approach, there72

is no need to attach or insert external parts within the animals. Moreover, it73

complies with most countries legal rules.74

In the muzzle-based identi�cation system, extracting discriminative features75
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from the muzzle images is a very important step. Local invariant features are76

good ones as they are robust against many challenges such as noise, illumina-77

tion, transformation, rotation, and occlusion. There are two methods to extract78

the local invariant features: sparse descriptor (Lowe, 1999) and dense descriptor79

(Chen et al., 2010). In the former method, the interest points (keypoints), are80

�rst detected, then a local patch, around these keypoints, is constructed, and81

�nally invariant features are extracted. Scale Invariant Feature Transforma-82

tion (SIFT) is considered one of the most well-known algorithms in the sparse83

descriptor type (Lowe, 1999). In the dense descriptor-based methods, local84

features are extracted from every pixel (pixel by pixel) over the input image.85

Examples of this method include Local Binary Pattern (LBP) and Weber Local86

Descriptor (WLD) (Ojala et al., 2002; Chen et al., 2010).87

In this paper, a muzzle-based cattle identi�cation approach was proposed.88

This approach consists of three phases: feature extraction, feature reduction,89

and classi�cation. In the �rst phase, the WLD algorithm was used to extract90

local features. In the second phase, the Linear Discriminant Analysis (LDA)91

technique was used to reduce the features and further to discriminate between92

di�erent images of various head of cattle. In the classi�cation phase, three93

classi�ers (AdaBoost, k -Nearest Neighbor (k -NN), and Fuzzy k -NN (Fk -NN))94

were used to match between unknown cattle images and trained or labeled95

images and then based on the highest accuracy results, the best classi�er was96

recommended for the cattle identi�cation system.97

The rest of the paper is organized as follows. Section 2 summarizes the re-98

lated work of the cattle identi�cation system based on information technology.99

Section 3 gives overviews of the techniques and methods used for the proposed100

approach while Section 4 describes our proposed approach in detail. Experimen-101

tal results and discussion are introduced in Section 5 and Section 6, respectively.102

Finally, conclusions are summarized in Section 7.103
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2. Related Work104

There are a number of the muzzle-based cattle identi�cation approaches105

(Minagawa et al., 2002; Noviyanto and Arymurthy, 2012; Awad et al., 2013;106

Noviyanto and Arymurthy, 2013; Tharwat et al., 2014). These approaches used107

di�erent techniques to extract biometric features from muzzle images. Mina-108

gawa et al. (2002) proposed the �rst cattle identi�cation approach in which109

the joint pixels of the grooves were extracted by applying the image processing110

techniques, i.e. �ltering, binary transforming, and thinning. The identi�cation111

was then achieved by matching the joint pixels of a cattle image to the others112

or to itself. The experiments of their proposed approach were conducted on a113

database of 43 head of cattle and achieved minimum matching scores at 12%114

and maximum scores at 60%. The results also showed that the identi�cation115

accuracy was around 30%.116

The Speed Up Robust Features (SURF) and its variant (U-SURF) feature ex-117

traction techniques were used in (Noviyanto and Arymurthy, 2012). Noviyanto118

et al. used 15 muzzle print images in their experimental scenarios (10 images119

were used in the training phase, and �ve images were used in the testing phase).120

The SURF-based method was found superior to U-SURF-based one as the for-121

mer achieved 90% identi�cation accuracy against rotation conditions.122

Awad et al. (2013) used SIFT technique to detect the interesting points of123

muzzle images for the purpose of cattle identi�cation. To improve the robust-124

ness of their proposed approach, they applied the RANdom SAmple Consensus125

(RANSAC) algorithm along with the output of SIFT technique. In their exper-126

iment, they used six images for each head of cattle and in total their database127

includes 90 images (6 � 15 = 90). They achieved 93.3% accuracy of cattle128

identi�cation.129

Also, Noviyanto and Arymurthy (2013) applied the SIFT technique to muz-130

zle patterns lifted on paper in order to achieve cattle identi�cation. To improve131

the identi�cation performance of their system, they also proposed a new match-132

ing re�nement technique based on the keypoint of the orientation information.133
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They tested the proposed system using a database composed of 160 muzzle im-134

ages left on papers and taken from 20 head of cattle. The achieved accuracy135

results using SIFT only were equal to 0.0167 Equal Error Rate (EER) whereas136

using SIFT along with the proposed new matching re�nement technique mini-137

mized the EER to be 0.0028.138

Tharwat et al. (2014) used the LBP technique for the feature extraction139

phase of a muzzle-based cattle identi�cation approach. The LBP was used as140

it extracts robust texture features which are invariant to rotation and occlusion141

of the images. They also used LDA to (a) address LBP high dimensionality142

problem, and (b) discriminate between di�erent classes, thus improving the143

accuracy of their proposed system. For the identi�cation phase, they tested144

four di�erent classi�ers (Nearest Neighbor, k -Nearest Neighbor (k -NN), Naive145

Bayes, and Support Vector Machine (SVM)). The results showed that their146

proposed approach achieved 99.5% identi�cation accuracy.147

3. Preliminaries148

This section gives overviews of the techniques, algorithms, and methods used149

in the design of the proposed approach.150

3.1. Weber Local Descriptor (WLD)151

The WLD technique is an image descriptor technique which describes an152

image as a histogram of gradient orientations and di�erential excitations (Chen153

et al., 2010). It is originally inspired by Weber's Law where Ernst Weber, in the154

19th century, observed that the ratio between an increment threshold and the155

background intensity is constant and this can be formally expressed as follows:156

�I
I

= k (1)

where �I represents the increment threshold, I refers to the initial intensity or157

an image background, and k denotes the constant value even if I is changing.158

The fraction �I
I is known as Weber law or Weber fraction (Chen et al., 2010).159
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In WLD algorithm, features are extracted from each pixel in an image. In160

general, WLD algorithm consists of three steps, �nding di�erential excitations,161

gradient orientations, and building the histogram. For each pixel in the input162

image, the di�erential excitation is �rst computed and the gradient orientation163

is then calculated to extract local features. Finally, a WLD histogram is built by164

combining di�erential excitation and gradient orientation for each pixel (Chen165

et al., 2010). These steps are further explained below.166

3.1.1. Di�erential Excitation (�):167

A di�erential excitation (�) of a pixel is calculated as follows:168

1. Calculating the di�erence between the pixel xc (the center pixel) and its169

neighbors using Equation (2) (Chen et al., 2010).170

�00
s =

p�1X

i=0

(�xi) =
p�1X

i=0

(xi � xc) (2)

where xi(i = 0; 1; : : : ; p � 1) represents the intensity of the ith neighbors171

of xc and p refers to the number of neighbors. An illustrative example,172

inspired by the one in (Chen et al., 2010), is given in Figure 1 to show173

how the di�erential excitation is calculated. As shown in the �gure, there174

are eight neighbors to xc, where p = 8. To calculate the di�erential175

excitation and the orientation, four �lters, f00; f01; f10; and f11 are used176

to calculate �00
s ; �01

s ; �10
s ; and �11

s , respectively, where, �00
s represents the177

di�erence between xc and its neighbors as shown in Equation (2), �01
s = xc,178

�10
s = x5 � x1, and �11

s = x7 � x3.179

2. Computing the ratio between the di�erences, �00
s , and the intensity of the

current pixel, �01
s = xc. This can be achieved using Equation (3).

Gratio(xc) = �00
s =�

01
s (3)

3. Applying the arc-tangent function on Gratio(:) to get the di�erential ex-180

citation of (xc), as shown in Equation (4).181
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�(xc) = Garctan[Gratio(xc)] = arctan
�
�00
s =�

01
s
�

= arctan

"p�1X

i=0

�
xi � xc
xc

�#

(4)

(x0) (x1) (x2)

(x3)

(x4)(x5)(x6)

(x7) (xc)

Input Image

+1 +1 +1

+1

+1+1

+1 -8

f00

+1

+1

f01

0

00

0 00

00

0

f10

-1

00

+1 00

00

0

f11

-1

00

00

+1

0

vs
00 vs

01 vs
10 vs

11

Excitation (��)=arctan (��s
00/��s

01) Orientation (�� t)=arctan (��s
11/��s

10)

0

 

Calculate WLD Histogram

20 30 50

45

926686

70 50

= -30-20+0-5+42+16+36+20=59 =xc=50 =66-30=36 =70-45=25

Filtering

Figure 1: Illustration of the computation of the WLD algorithm.

3.1.2. Orientation (�t):182

The orientation of a pixel (xc) is computed as follows:183

1. Computing the gradient orientation of the current pixel, xc, by calculating

8



the changes in the horizontal and vertical directions as follows:

�(xc) = arctan

�
�11
s
�10
s

�
= arctan

�
x7 � x3

x5 � x1

�
(5)

2. Quantizing the gradient orientation by transforming it into T dominant184

orientation. This is achieved by �rst mapping � to �� as follows:185

�� = arctan2(�11
s ; �

10
s ) + � (6)

where

arctan2(�11
s ; �

10
s ) =

8
>>>>>><

>>>>>>:

�; �11
s > 0 and �10

s > 0

� � �; �11
s > 0 and �10

s < 0

� � �; �11
s < 0 and �10

s < 0

��; �11
s < 0 and �10

s > 0

(7)

where � 2 [��=2; �=2] and �� 2 [0; 2�].186

3. Finally, the quantization function is calculated as in Equation (8) (Chen187

et al., 2010).188

�t = fq(��) =
2t
T
� ; and t = mod

 $
��

2�=T
+ 0:5

%

; T

!

(8)

3.1.3. WLD Histogram:189

The WLD histogram is computed, as shown in Figure (1), using the values190

of both the Di�erential Excitation (�j) and Orientation (�t) at each pixel. In191

other words, this histogram consists of (�j , �t), j = 0; 1; : : : ; N � 1 and t =192

0; 1; : : : ; T�1, where N represents the dimensionality of an image and T denotes193

the number of the dominant orientation. The steps of WLD algorithm are194

summarized in Algorithm 1.195

3.2. Linear Discriminant Analysis (LDA)196

LDA is a well-known dimensionality reduction technique in machine learning197

applications. LDA aims to �nd a linear combination of features which linearly198

separates two or more classes. Formally, LDA attempts to �nd a transformation199

9



Algorithm 1 : WLD Algorithm

1: Initialize the size of the patch or sub-region, (e.g. 3� 3, 5� 5, 7� 7, etc.).

2: Divide the images into patches or sub-regions.

3: Compute the Di�erential Excitation (�) as follows:

4: for all pixels in an image do

5: Compute the di�erence between the center or current pixel (xc) and all

its surrounding pixels as follows, �00
s =

Pp�1
i=0 (�xi) =

Pp�1
i=0 (xi � xc).

6: Compute the ratio between �00
s and xc as follows, Gratio(xc) = �00

s
�01

s
=

Pp�1
i=0

�
�xi
xc

�
.

7: The �nal function will be as follows, �(xc) = arctan(Gratio) =

arctan
hPp�1

i=0

�
�xi
xc

�i
= arctan

hPp�1
i=0

�
xi�xc
xc

�i
.

8: end for

9: Compute Gradient Orientation (��).

10: for all pixels in an image do

11: Compute the changes in horizontal and vertical directions of the current

pixel (xc) as follows, �(xc) = arctan
h
�11

s
�10

s

i
= arctan

h
x7�x3
x5�x1

i
.

12: Now � 2
�
��2 ;

�
2

�
, to get more texture information, � mapped to

�� 2 [0; 2�], so �� will be as follows, �� = arctan2(�11
s ; �10

s ) + �, where

arctan2(�11
s ; �10

s ) is calculated as in Equation (7).

13: Compute the quantization function as follows, �t = (2t=T )�.

14: end for

15: Compute WLD histogram (WLD(�j ; �t)), where j = 0; 1; : : : ; N � 1; t =

0; 1; : : : ; T � 1.

matrix, W , that maximizes the Fisher's formula, J(W ) =
���W

TSbW
WTSwW

���, where200

Sw =
Pc
j=1

PNj
i=1(xji ��j)(x

j
i ��j)T represents the within-class scatter matrix,201

where xij is the ith sample of class j, �j is the mean of class j, c is the number of202

classes, and Nj is the number of samples in class j, Sb =
Pc
j=1(�j��)(�j��)T203

is the between-classes scatter matrix, where � refers to the mean of all classes,204

and W is the transformation matrix of LDA (Roth and Steinhage, 1999). The205

solution of Fisher's formula is a set of eigenvectors (V ) and eigenvalues (�) ofW206

10



and the LDA space consists of the eigenvectors which have higher eigenvalues.207

In our proposed approach, LDA was used to discriminate between di�erent208

classes, where a class represents a head of cattle and each class consists of seven209

images (samples).210

3.3. Classi�ers211

In the proposed approach, described in Section 4, a number of classi�ers212

were used to achieve the identi�cation of cattle. A brief summary about these213

classi�ers is given below.214

3.3.1. AdaBoost215

AdaBoost (Adaptive Boosting) is a classi�er ensemble algorithm consisting216

of a number of weak learners. A weak learner (classi�er) is a simple, fast, and217

easy to implement classi�er such as single level decision tree or simple neural218

networks (Kuncheva, 2014). The main idea of an ensemble classi�er is to in-219

dividually train its weak learners and then combine their decisions/predictions220

to determine a �nal decision. In other words, in an ensemble classi�er, e.g.221

AdaBoost, a large margin classi�cation is produced by iteratively combining a222

small number of the weighted-weak learners to construct a strong classi�er.223

224

A brief description of the AdaBoost classi�er is as follows. As shown in Al-225

gorithm 2, the parameters of AdaBoost classi�er are �rst initialized. As shown226

in the algorithm, the weights of all samples (w) are equal and they will be ad-227

justed for each iteration. For each iteration (t), the training samples are selected228

based on these weights (w), and these samples are used to build the weak learner229

(Ct). The resubstitution error rate2 of the current weak learner (�t), produced230

from the training data, is then calculated. If the error rate is more than 0:5,231

the weights (w) are reinitialized and the error rate is recalculated again. The232

2In other words, it is the estimation of error based on the di�erence between the predicted

values and the true labels of the training set.
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Algorithm 2 : AdaBoost (Adaptive Boosting) Classi�er

1: Given a training set X = (x1; y1); : : : ; (xN ; yN ), where yi represents the

label of sample xi 2 X and N denotes the total number of samples in the

training set.

2: Initialize the parameters of AdaBoost classi�er, the total number of itera-

tions (T ), type of weak learners, learning rate (�), the weights wij of each

training sample, where wi represents the weights of the ith iteration, and

wi = [wi1; : : : ; wiN ]; wij 2 [0; 1];
PN
j=1 w

i
j = 1. Usually the weights are initial-

ized to be equal as follows, w1
j = 1

N ; j = 1; : : : ; N .

3: for t = 1 to T do

4: Take a sample Dt from X using distribution wt.

5: Use the distribution Dt to train the weak learner (Ct) with a minimum er-

ror (�t), where �t =
PN
j=1 w

t
j ltj , and ltj = 1 if Ct misclassi�es xj ; otherwise,

ltj = 0.

6: while �t >= 0:5 do

7: Reinitialize the weights to wtj = 1
N ; j = 1; : : : ; N .

8: Recalculate �t.

9: end while

10: Compute the weight of each weak learner (�t) as follow, �t = �t
1��t

.

11: Update the weights of the training samples to be used in the next iteration

(t+ 1) as follows:

wt+1
j =

wtj�
(1�ltj)
t

PN
i=1 w

t
i�

(1�lti)
t

; j = 1; 2; : : : ; N (9)

12: end for

13: Final AdaBoost classi�er: Hfinal =
PT
t=1 �tCt(x).
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weight of current weak learner, (�t 2 (0; 1)), is then calculated. As shown in233

the algorithm (step number nine), increasing the error rate increases the weight234

of the weak learner (�t). The weights of the training samples are then updated235

at the end of each iteration to be used in the next iteration (this can be seen at236

the 10th step of the algorithm). As shown in Equation (9), if the jth sample is237

misclassi�ed then ltj = 1; otherwise ltj = 0. Since, the weight of the weak learner238

(�i) is less than one, thus the new weights (wt+1
j ) of the correctly classi�ed239

samples will be decreased; otherwise the weights will be increased. In each iter-240

ation, the AdaBoost will focus on the misclassi�ed patterns and the procedure241

is repeated for many iterations until the performance is satis�ed (Kuncheva,242

2014).243

To classify an unknown sample (xtest), all weak learners of the AdaBoost clas-244

si�er are used as shown in Equation (10). The score of each class is calculated245

and then assigns the class that has a maximum score to the unknown sample.246

�t =
X

Ct(xtest)=!t

ln(
1
�t

) ;8 t = 1; 2; : : : ; T (10)

where T represents the maximum number (a positive integer) of the iterations247

and it ranges from a few dozen to a few thousand, Ct(xtest) denotes the weak248

learner, �t represents the score of a class !t, and �t refers to the weight of the249

tth weak learner.250

The performance of the AdaBoost algorithm is controlled by a parameter251

called Learning rate, (�), or step size which is a numeric value ranged from 0 to252

1. This parameter determines how fast or slow the algorithm will move towards253

the optimal solution. If � is large, the algorithm accuracy may oscillate around254

the optimal solution without reaching to it. If � is too small, there is a need255

for many iterations to converge to the optimal solution. More discussions about256

AdaBoost parameters are given in Section 5.257
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Figure 2: A block diagram of the proposed cattle identi�cation system using muzzle print

images.

3.3.2. Other Classi�ers258

k -Nearest Neighbor (Fix and Hodges Jr, 1951) and Fuzzy-k -NN (Keller et al.,259

1985) were also used to test the performance of the AdaBoost algorithm. The260

k -Nearest Neighbor (k -NN) is one of the oldest and simplest methods for pat-261

tern classi�cation algorithms. It was �rst introduced by Fix and Hodges Jr262

(1951). The performance of the k -NN algorithm crucially depends on the dis-263

tance metric to identify the nearest neighbors. Thus, the distance metric must264

be carefully chosen according to the problem being solved. The fuzzy k -NN (Fk -265

NN) classi�er (Keller et al., 1985) is based on assigning a membership value to266

an unlabeled pattern. This value provides the system with information to de-267

termine a more accurate decision. Thus, the Fk -NN assigns a class membership268

to a test pattern rather than assigning the vector to a particular class.269

4. Proposed Cattle Identi�cation System270

This section describes the proposed approach in detail. Generally speaking,271

the approach depends on using the WLD algorithm to extract robust features272
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and then using the AdaBoost classi�er to recognize the input muzzle print image273

of a given cattle. The approach, as illustrated in Figure 2, generally consists274

of three phases: feature extraction, feature reduction, and classi�cation. These275

phases are explained below.276

4.1. Feature Extraction Phase277

TheWLD algorithm, given in Algorithm 1 was adapted to achieve the feature278

extraction phase of the proposed approach. As shown in Figure 2, WLD was279

used to extract the features from all the training images in the training phase280

to construct a feature matrix. In the testing phase, the WLD also applied to281

extract the features from each an unknown or a test image. The extracted282

features are represented as a vector.283

4.2. Feature Reduction Phase284

The output of the feature extraction phase is usually a high dimension285

features vector (see Table 1). To use these features vectors in the classi�ca-286

tion/identi�cation phase, there will be a high computational cost and time-287

consuming process, thus a�ecting the performance of the proposed approach.288

To address these issues, LDA algorithm, described in Section (3.2), was applied289

on the output of the feature extraction phase. In other words, the LDA was290

applied to the feature matrix which computed in the training phase to �nd the291

LDA space that reduces the dimension of the training data and separate di�er-292

ent classes (head of cattle in this case). The feature vector of an unknown image293

was then projected on the LDA space to reduce its dimension before starting294

the classi�cation phase.295

4.3. Classi�cation Phase296

Finally, in the classi�cation phase, the proposed system gives a decision297

about whether an input (i.e. unknown) muzzle image is for cattle previously298

stored in the database of the system or not. Generally, machine learning-based299

classi�ers use a set of features in order to di�erentiate each object within a300

15



database. In this paper, a supervised learning classi�er (AdaBoost) was used.301

As shown in the algorithm, the feature matrix, after projection onto the LDA302

space, and the labels of the training samples represent the input to the AdaBoost303

classi�er. The AdaBoost classi�er was then built by training one weak learner304

in each iteration and calculating the weight of that weak learner.305

To automatically identify head of cattle from its muzzle image (i.e. an306

unknown cattle), all weak learners were used to classify the unknown image.307

The weighted voting method was then used to calculate the score of each class,308

and assign the class with the maximum score to the unknown image. Hence,309

the image is said to be identi�ed. Otherwise, if all scores were lower than a310

threshold, then the image is said to be not identi�ed.311

5. Experimental Results312

5.1. Dataset Description313

Figure 3: A sample of cattle images with di�erent orientation of the same cattle.

The proposed cattle identi�cation approach was evaluated using 217 gray314

level muzzle print images collected from 31 head of cattle (7 images for each315

head of cattle). These images were collected under di�erent transformations:316

illumination, rotation, quality levels and image partiality. The size of all these317

images is 300� 400 pixels, Figure 3 shows examples of these images. Moreover,318

these images were used without performing any preprocessing operation such as319

gray scaling, cropping, histogram equalization, etc. This was done to evaluate320

the robustness of the feature extraction algorithm. The dataset was randomly321

divided into two sets: training and testing. During the training phase, for each322

head of cattle, the number of training images was increased from 1, 2, 3, 4, 5,323
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and 6 muzzle images whereas in the testing phase the remaining images (one324

muzzle image) of this head of cattle was used.325

5.2. Experiment Setup326

The experiments in this paper were conducted using a PC with Intel(R)327

Core(TM) i5-2400 CPU @ 3.10 GHz, and 4.00 GB RAM. The Matlab platform328

was used and it was run under windows 32-bit operating system. Prior to329

evaluating the proposed approach, we run a number of pre-experiments to tune330

up the parameters of all algorithms that are used in the proposed approach.331

The following subsections explain the tuning process of these parameters and332

their impact on the results presented in Section 5.333

5.2.1. Parameters Tuning334

In our approach, there are di�erent parameters a�ecting the overall results.335

In this section, an overview of the parameters con�gured during the di�erent336

phases of our approach is given. This includes WLD parameters used in the337

feature extraction phase, and AdaBoost, k -NN, and Fk -NN classi�ers used in338

the classi�cation phase.339

5.2.1.1. WLD Parameters. The patch size is a very important parameter340

a�ecting the accuracy and CPU time of the WLD algorithm. A number of ex-341

periments, using di�erent patch sizes for WLD, were conducted to investigate342

the impact of the WLD patch size on the cattle identi�cation rate. Figure 4343

shows WLD features extract using di�erent patch size. The features extracted344

from each experiment were then used for the classi�cation using the AdaBoost,345

k -NN, and Fk -NN classi�ers to evaluate the identi�cation rate. Table 1 sum-346

marizes the identi�cation rate and the CPU time obtained when di�erent patch347

sizes were used.348

5.2.1.2. AdaBoost Parameters. The tuning of AdaBoost parameters (weak349

learners type, number of weak learners (iterations), and learning rate (�)) used350

in our proposed approach are explaining in this section.351
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(a) (b) (c)

(d) (e) (f)

Figure 4: WLD features using di�erent patch sizes, (a) 3 � 3, (b) 5 � 5, (c) 7 � 7, (d) 9 � 9,

(e) 11 � 11, (f) 13 � 13.

Table 1: Length of feature vector, CPU time, and identi�cation rates (in %) of head of cattle

using WLD features using di�erent training images and di�erent sizes' of sub-images.

Patch size
No. of Training Images Length of

Feature Vector

CPU

Time (Secs)6 5 4 3 2 1

3� 3 96.8 96.8 94.6 92.7 92.9 80.1 119301 0.54934

5� 5 100 96.8 98.9 92.7 93.6 85.5 118604 0.5437

7� 7 100 98.4 97.9 92.7 89.7 74.7 117909 0.524767

9� 9 93.6 93.6 92.7 92.7 81.3 84.4 117216 0.5245

11� 11 96.7 96.8 93.6 90.3 88.4 71 116525 0.521

13� 13 93.6 96.8 89.3 90.3 86.5 83.3 115836 0.5153
Bold fonts indicate best identi�cation rate within each number of training images.

� Type of Weak Learners: To evaluate the e�ect of this parameter on the352

results of our approach, a number of experiments were conducted using two353

types of weak learners: Tree, and Discriminant. As shown in Figure 5, the354

results of these experiments showed that the error rate of the Discriminant355

learner is less than that of the Tree learner. These results were obtained356
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when � = 0:1 (default value), and the number of weak learners was 200.357

Also, the results presented in Table 2 shows that the Discriminant learner358

reached to the minimum error more faster than the Tree learner did.359

Table 2: A comparison between the CPU time of the AdaBoost classi�er when using Discrim-

inant and Tree learner where (� )=0.1, and the number of weak learners =200.

Type of Weak Learner CPU Time (Secs)

Discriminant 0.20605

Tree 0.86898
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Figure 5: Resubstitution error curves of AdaBoost classi�er using two types of weak learners,

Tree and Discriminant, where the learning rate=0.1.

� Number of Weak Learners: To tune this parameter, a number of ex-360

periments were run to investigate its e�ect on the resubstitution error3.361

3The resubstitution error is the error rate obtained from running an algorithm on the
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Figure 6: Resubstitution error curves of AdaBoost classi�er using di�erent numbers of weak

learners (iterations), at learning rate=0.1, and the type of learner is Decision Tree.

The results of these experiments are shown in Figure 6 from which it can362

be seen that, when choosing 50, 100, 200 and 300 weak learners, the re-363

substitution error is approximately 0.19, 0.16, 0.13, and 0.12, respectively.364

These results were obtained when the learning rate=0.1 and the type of365

the weak learner was the Tree learner. It can also be noticed that, when366

the number of the weak learners was increased, the accuracy was also in-367

creased until it reached an extent at which increasing the number of the368

learners did not a�ect the accuracy. On the contrary, the CPU usage time369

was increased without achieving noticeable progress in the accuracy (this370

is summarized in Table 3).371

From Figure 6 and Table 3, it can be concluded that: (1) when using 200372

training data
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and 300 weak learners for the AdaBoost classi�er, the di�erence of the373

error rate is small, (2) the error rate is approximately stable starting from374

200 Tree learners to 300 Tree learners, and (3) the running time, using375

300 iterations, is higher than that of using 200 iterations.376

Table 3: The CPU time of the AdaBoost classi�er when using a di�erent number of iterations,

when the weak learner is Tree and (� )=0.1.

Number of Weak Learners Time (Secs)

50 Weak Learners 0.2364

100 Weak Learners 0.44583

200 Weak Learners 0.9245

300 Weak Learners 1.36194

� Learning Rate (�): To tune this parameter, some experiments were377

conducted at di�erent values of � while the other parameters were Tree378

learner, and the number of the iterations = 200. The results of these379

experiments are illustrated in Figure 7. This �gure shows that the Ad-380

aBoost classi�er with low learning rates (0.05 and 0.01) resulted in high381

error values. The reason behind this is that the classi�er with a low learn-382

ing rate takes more iterations to reach the optimal solution. Moreover, it383

can be remarked that increasing the learning rate (0.5 and 0.8) made the384

error rate �uctuated up and down more than other learning rates until it385

reached to the minimum error rate and the classi�er, in this case, maybe386

not stable and will not reach to the minimum error. Moreover, Table 4387

shows that the CPU time, taken by the AdaBoost classi�er with di�er-388

ent learning rates, was approximately the same when the same number of389

iterations was used.390

5.2.1.3. k-NN and Fk-NN Parameters. Both of k -NN and Fk -NN classi-391

�ers may have di�erent values of k. This value is always odd value to enable the392

voting to be smaller than the number of training images in each class (head of393

cattle). For example, if the number of the training images of each class is three,394
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Figure 7: Resubstitution error curves of AdaBoost classi�er when using di�erent learning

rates, Decision Tree learner, and the number of iterations are 200.

Table 4: The CPU time of AdaBoost classi�er when using di�erent learning rates, while Tree

learner and 200 iterations were used.

Learning Rate (�) Time (Secs)

� = 0.8 0.8933

� = 0.5 0.8984

� = 0.2 0.8772

� = 0.1 0.8328

� = 0.05 0.88179

� = 0.01 0.856

thus it does not make sense to set k =7. If this happens, the k -NN classi�er will395

select the nearest seven objects and make a vote on it to determine the class396

label of an unknown pattern, but this is not true as there are four objects out397

of seven are wrong. To investigate this, some experiments were run to check the398
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accuracy and the CPU time under di�erent values of k. Table 5 summarizes the399

results of these experiments. It can be noticed that the accuracy of k -NN and400

Fk -NN classi�ers were the same and it decreased when the value of k decreased.401

In addition, when increasing k, the CPU time were slightly increased in both402

classi�ers.403

Table 5: Recognition rate and CPU time of k -NN and Fk -NN classi�ers using di�erent k

values and using six training images.

Classi�er

Recognition

Rate (in %)

CPU Time

(Secs)

k=1 k=3 k=5 k=1 k=3 k=5

k-NN 96.77 100 100 0.0749 0.0779 0.0814

Fk-NN 96.77 100 100 0.07818 0.0818 0.085

5.3. Experimental Scenarios and Their Results404

Three experimental scenarios were designed to evaluate our proposed ap-405

proach. The aim of the �rst scenario was to investigate the accuracy of our406

approach when changing the number of the training images. The second and407

the third scenarios were designed to test the robustness of the approach against408

rotation and occlusion, respectively. The second and third scenarios were con-409

sidered because of the following reason. Firstly, as reported in (Dahlborn et al.,410

2013), the animals need to be restrained when mechanical or electrical methods411

are used, while using biometric-based identi�cation no need to restrain animals.412

Secondly, unlike the human case, the animals are not fully controlled, thus the413

captured images may be rotated in di�erent angles or partially occluded. Con-414

sidering these issues, the proposed approach investigated their potential e�ective415

on the accuracy of the cattle identi�cation. In all experiments, three classi�ers,416

AdaBoost, k -NN, and Fk -NN, have been applied to the features extracted us-417

ing the WLD algorithm. The AdaBoost was used with parameters: learning418

rate=0.1, Discriminant learners = 200, and both k -NN and Fk -NN were used419

with the parameter k=5.420
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In the �rst scenario, AdaBoost, k -NN, and Fk -NN, were used to (1) under-421

stand the e�ect of changing the number of training data on the identi�cation422

accuracy and (2) evaluate the performance stability over the standardized data.423

The number of training images was ranged from one to six images. Table 6 and424

Figure 8 summarize the identi�cation rate and CPU time obtained from this425

scenario.426

Table 6: Identi�cation rates (in %) and CPU time of the proposed approach using AdaBoost,

k -NN, Fk -NN classi�ers. The rate was calculated for di�erent number of training images while

the CPU time was computed when four training images were used.

Classi�ers
No. of Training Images CPU Time (Secs) using

(four Training Images)6 5 4 3 2 1

AdaBoost 100 96.8 98.9 92.7 93.6 85.5 0.27

Fk-NN 100 96.8 97.9 92.7 92.4 85.5 0.04781

k-NN 100 95.2 96.8 92.7 91.2 84.3 0.27

In the second scenario, testing against image rotation, the training and test-427

ings images consist of four and three images, respectively. The testing images428

were rotated in the following angles: (0�, 15�, 30�, 45�, �15�, �30�, �45�) as429

shown in Figure 9. The rotated testing images were matched with the training430

images for the identi�cation. Table 7 summarizes the results obtained from this431

scenario.432

In the third experiment scenario, testing against the image occlusion, the433

used images were four and three for the training and the testing, respectively.434

As depicted in Figure 10, the testing images were �rst occluded, vertically and435

horizontally with di�erent percentages, and used for the identi�cation. Table 7436

summarizes the results obtained from this scenario.437

6. Discussion438

This section introduces a reasoning and discussion about the results pre-439

sented in Section 5.440
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Figure 8: ROC curves for cattle identi�cation based on AdaBoost, Fk -NN, and k -NN classi�ers

using four training images.

Table 7: Accuracy (in %) of cattle identi�cation when muzzle print images were rotated in

di�erent angles and occluded in di�erent percentages.

Classi�er

Angles of Rotation (�)
Percentage

of Occlusion (%)

0 15 30 45 -15 -30 -45
Vertical Horizontal

10 20 10 20

AdaBoost 98.9 95.7 93.6 89.2 97.6 94.6 92.5 96.8 94.69 95.7 93.6

k-NN 96.8 94.6 92.5 86 96.8 94.6 88.2 94.6 91.4 94.6 92.5

Fk-NN 97.9 94.6 93.6 88.2 95.7 94.6 89.3 94.6 92.5 95.7 92.5

6.1. Parameter Tuning441

As described in Section 5.2, a number of experiments were run to determine442

the best parameters' values for all the techniques used in our approach. For the443
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Figure 9: A sample of di�erent images with di�erent orientations of the same cattle.

Figure 10: A sample of occluded muzzle print images, the top row (a and b) represents the

vertical occlusion, while the bottom row (c and d) represents the horizontal occlusion.

WLD technique, based on the results described in Table 1, it was found that444

the most suitable size for the patch parameter was 7 � 7. This is because it445

allowed our approach to achieve an accuracy rate signi�cantly better than the446

other sizes. Moreover, it can be noticed that increasing the patch size led to447

decreasing the length of the feature vectors, consequently decreasing the CPU448

time for classi�cation. Thus, the 7� 7 patch size did not take more CPU time449

comparing with the other patch sizes (e.g. 3� 3 and 5� 5).450

451

Also, the patch size was a�ecting the length of produced features vectors.452

When it was changed from 3�3 to 13�13, as can be seen in Table 1, the length453

of the vectors ranged from 119301 to 115836 and this caused a high-dimension454

problem. Hence, the LDA was used to reduce such high dimensionality and455
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further extracts more discriminative features.456

For the AdaBoost classi�er, the experiments, conducted to determine its457

best parameters for the accuracy and the CUP time (see Section 5.2.1), showed458

the following remarks. Firstly, the Discriminant weak learner was better than459

Tree weak learner as the former was faster than the latter in reaching the min-460

imum resubstitution error. Secondly, the best accuracy rate and the least CPU461

time taken were achieved when the number of weak learners was 200 learners.462

Thirdly, when the learning rate was decreased, more CPU time was taken to463

reach the optimal solution. Also, when the learning rate was increased, the error464

was ranged from up to down and the best learning rate was =0.1. For the k -NN465

and Fk -NN classi�ers, as can be seen from the results described in Section 5.2.1,466

when the k parameter was changed from value to another, it did not a�ect the467

CPU time and the best accuracy was achieved when k= 3 and k= 5.468

6.2. Experiment Scenarios Discussion469

From the results of the �rst scenario, summarized in Table 6 and depicted in470

Figure 8, the following remarks can be drawn. Firstly, the features extracted by471

the WLD algorithm enabled our approach to achieve a very good identi�cation472

rate using the three used classi�ers. Secondly, using more training images led to473

a high recognition rate. This is very important to avoid the problem of a high474

variance4. As reported in (Brain et al., 1999), using more training images will475

decrease the variance, hence decreases the over�tting. Thirdly, the AdaBoost476

classi�er achieved the best accuracy rate comparing with the k -NN and Fk -477

NN classi�ers. Nonetheless, the AdaBoost took the highest CPU time which478

is not a problem nowadays due to the advance in the high-speed computers.479

The AdaBoost classi�er achieved the highest accuracy because of two main480

reasons. (1) as mentioned in Section 3.3.1, the AdaBoost is an ensemble classi�er481

consisting of other weak learners. Combining the outputs of all these classi�ers482

may help to increase the accuracy while k -NN and Fk -NN are single classi�ers.483

4The variance is the error from sensitivity to small variations in training samples
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(2) the AdaBoost classi�er assigns high weights to the samples which are critical484

or misclassi�ed during the iterations of AdaBoost classi�er.485

From the results of the second scenario, see Table 7, it can be claimed that486

our proposed approach is robust against image rotation. This is because when487

the images were rotated in di�erent angles, the identi�cation rate, achieved by488

the three classi�ers, did not go below 86% and the AdaBoost classi�er achieved489

the best recognition rate in all angles comparing with the other two classi�ers.490

Also, from the experimental results obtained from the third scenario and491

summarized in Table 7, it is proven that our approach is robust against image492

occlusion (10% and 20 % of the original image). Although this occlusion, the493

recognition rate of all the used classi�ers was above 91%. Under 20% occlusion494

of the test images, horizontally or vertically, the best accuracy was achieved by495

the AdaBoost classi�er. On the other hand, the k -NN classi�er has given the496

lowest accuracy rate.497

6.3. Assessment of the Results498

To assess the results obtained by our proposed approach, four benchmark as-499

sessment methods (sensitivity and speci�city, accuracy rate, Area Under Curve500

(AUC), and Equal Error Rate (EER)) were used. The results of these assess-501

ments are summarized in Table 8. From this table, the following remarks can502

be drawn. Firstly, as the sensitivity (i.e. True Positive Rate (TPR)) of the503

AdaBoost was better than both of the k -NN and Fk -NN classi�ers, hence, the504

AdaBoost classi�er could be used to correctly identify head of cattle. Secondly,505

both of the AdaBoost and Fk -NN classi�ers achieved speci�city (True Nega-506

tive Rate (TNR)) better than that of the k -NN classi�er. This means that507

the AdaBoost and Fk -NN are robust against unauthorized cattle identi�cation.508

Thirdly, based on the value of the sensitivity and speci�city of the three clas-509

si�ers, see Table 8, and the AUC shown in Figure 8, the AdaBoost classi�er510

along with the WLD is better to be used for cattle identi�cation. Last but not511
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least, based on the EER5 results given in Table 8, it can be concluded that the512

AdaBoost is a good classi�er for cattle identi�cation as it achieved the minimum513

EER compared with k -NN and Fk -NN classi�ers.514

Table 8: A comparison between AdaBoost, Fk -NN, and k -NN classi�ers based on di�erent

assessment methods (four training images were used).

Assessment Methods AdaBoost Fk-NN k-NN

Accuracy (AC ) (in %) 98.9 97.9 96.8

Sensitivity (TPR) 0.9841 0.9683 0.9683

Speci�city (TNR) 0.9836 0.9836 0.9672

Area Under Curve (AUC ) 0.983 0.976 0.969

Equal Error Rate (EER) 0.0035 0.0046 0.0073

6.4. Performance Analysis515

The performance of the proposed approach was evaluated using two ways:516

the CPU time to get the results and a comparison with the most related work.517

For the CPU time, from Table 6, it can be noticed that the AdaBoost took518

the highest CPU time. This is due to the fact that this algorithm needs to run519

200 weak learners on each cattle image and then combines the results of these520

weak learners to get the �nal result. However, as discussed above, the best521

results were obtained when the AdaBoost was used. In addition, thanks to the522

advance in the parallel computing and the super-computing, this issue could be523

addressed in the real-time implementation.524

To further prove that our approach is better than other related work, as525

illustrated in Table 9, a comparison with the most related work (Minagawa526

et al., 2002; Noviyanto and Arymurthy, 2012; Awad et al., 2013) was conducted.527

From this table, it can be remarked that although our approach used the largest528

dataset (217 images), at the same time it achieved the best accuracy results.529

5The EER represents the failure rate when FPR and TNR are approximately the same
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This is because of two reasons: the use of the WLD algorithm which extracts530

discriminative features (WLD algorithm is discussed in more detail in Section531

3.1) and the strong AdaBoost classi�er.532

Table 9: A comparison between our proposed cattle identi�cation method and some of state-

of-the-art methods in terms of, identi�cation accuracy, size of database images, and feature

extraction methods.

Authors
Feature Extraction

Method
Database Images Results

(Minagawa et al., 2002) Joint Pixels 43 images 30%

(Noviyanto and Arymurthy, 2012) SURF 15 images for each animal 90%

(Awad et al., 2013) SIFT 15 animals (6 images each) 93.3%

Our Proposed Approach WLD 31 animals (7 images each) 99%

6.4.1. WLD vs LBP vs SIFT533

As mentioned in Section 1, there are two main methods to extract local534

invariant features: dense and sparse methods. To justify why WLD was chosen535

as a feature extraction technique in this work, a comparison between two dense536

methods: LBP and WLD, is presented. Another comparison between WLD537

and SIFT is conducted to show the di�erence between the dense and sparse538

methods.539

WLD vs LBP: The WLD is di�erent from the LBP in three ways. Firstly,540

the WLD is more robust than LBP against image rotation. This is because541

the LBP algorithm �rstly builds statistics on the local patterns while the WLD542

�rstly computes the salient patterns and then builds statistics on these salient543

patterns with the gradient orientation of the current pixel. In other words,544

the WLD algorithm not only concentrates on the position or statistics of the545

patterns (di�erential excitation), but also computes the orientation gradient of546

each pixel and then combines the di�erential excitation and the orientation into547

a WLD histogram. On the other hand, the LBP calculates only statistics about548

the local patterns without taking orientation into its consideration. Hence, the549

WLD is more robust against rotation than LBP. Secondly, WLD is more e�cient550
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than LBP against noisy pixels and illumination changes. This occurs because551

the LBP codes are calculated by comparing the pixels with their surrounding552

pixels, while, in the WLD, the ratio of the intensity di�erences to the current553

pixel is calculated as in Equation (4). For this reason, WLD reduces the in�u-554

ence of noisy pixels as well as the e�ects of illumination change as reported in555

(Chen et al., 2010). Thirdly, the time complexity of LBP is simpler than WLD.556

As reported in (Chen et al., 2010), the time complexity for WLD is O(C1mn)557

while the time complexity for LBP is O(C2mn), where m and n are the di-558

mensions of the image, C1 is a constant and it represents the computation of559

each pixel in WLD, and C2 is a constant and it represents the computation of560

each pixel in LBP. The computation of C1 in WLD consists of several additions,561

divisions, and �ltering with arctangent function, while C2 in LBP consists of562

only several additions. Hence, LBP is a little faster than WLD. However, using563

the supercomputer and the parallel computing, the time complexity is not a564

problem as long as WLD could give a high accuracy.565

WLD vs SIFT: The WLD is better than the SIFT in three ways. Firstly,566

WLD is robust than SIFT to capture local features. This is because SIFT al-567

gorithm extracts the features around the selected keypoints while, in the WLD568

algorithm, the features are extracted from each pixel. This means that WLD569

is able to capture more local salient features and identify small objects and570

patterns (i.e. more e�cient). Secondly, WLD has only the patch size parame-571

ter that needs to be tuned to improve the robustness of WLD. While in SIFT572

algorithm, there are many parameters (peak threshold, the number of angles,573

and the number of bins, levels of scale space) which need to be tuned (Lowe,574

1999; Noviyanto and Arymurthy, 2013). Thirdly, the time complexity of WLD575

is more e�cient than SIFT. As reported in (Chen et al., 2010), the time com-576

plexity for SIFT is computed using, O(C1(��)mn + C2k1 + C3k2st + C4k2st),577

where C1; C2; C3; and C4 represent four constants, k1 is the number of keypoint578

candidates, k2 is the number of keypoints, s and t refer to the size of the support579
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regions for each keypoint, and � and � are the levels of octave 6 and scales of580

each octave, respectively. Comparing the time complexity of SIFT and WLD,581

descried earlier, it can be seen that WLD is more e�cient than SIFT.582

6.5. Further Discussion583

When using a large cattle database images, it is expected that our approach584

would be suitable to highly identify head of cattle. This is due to the fact that585

the cattle muzzle pattern is much similar to the human �ngerprint pattern men-586

tioned (Baranov et al., 1993). Also, the WLD was used in (Gragnaniello et al.,587

2013) to detect the human liveness using a large dataset of human �ngerprint588

images. Therefore, it is expected that our proposed approach, using the WLD,589

would also be able to identify head of cattle in case of using a large data set of590

cattle muzzle images.591

Head of cattle could also be identi�ed using dynamic frames (video) to sup-592

port real-life scenarios in a farm. The dynamic frames have been used to identify593

human though capturing di�erent biometrics, such as face and gait biometrics,594

which were then fused using independent biometric methods to improve the ac-595

curacy (Zhou and Bhanu, 2006; Liu and Sarkar, 2007). Similarly, video frames596

could be utilized to identify head of cattle to improve the accuracy. This could597

be achieved by applying fusion approach on di�erent types of biometric, such as598

face, muzzle print, and retina. It is expected that integrating the video frame599

and the fusion approach could support the nature (uncontrollability) of the ani-600

mals during the identi�cation process real-time scenarios. This further could be601

also used for tracing animals activities such as eating, drinking, and movement,602

or any behavior change.603

6Octave is a scale space. For example, the �rst octave starts with the original dimension

of the image, and the scale of the image will be one-half in the next octave and so on (Lowe,

1999).
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7. Conclusion and Future Work604

In this paper, a new approach for cattle identi�cation using muzzle print605

images was proposed. This approach used the Weber Local Descriptor (WLD)606

to extract texture features which are robust against rotation, noise, and illumi-607

nation. It also utilized the LDA algorithm to reduce the dimensions of feature608

vectors and to increase the discrimination between di�erent classes (head of609

cattle). Three classi�ers (AdaBoost, k -NN, and Fk -NN) were used to achieve610

the cattle identi�cation. The parameters of used techniques were �rst tuned611

to determine the ones achieving the best results in terms of accuracy and per-612

formance. The experimental results obtained when the WLD has patch size613

= 7 � 7, the AdaBoost has Discriminant weak learner, 200 weak learners, and614

learning rate = 0:1, and k = 5 for both of the k -NN and the Fk -NN classi-615

�ers. Using these parameters and four training images, the best classi�er was616

the AdaBoost achieved �99% accuracy whereas the k -NN gave the minimum617

accuracy. The results were assessed using di�erent methods (sensitivity, speci-618

�city, AUC, and EER). Moreover, the sensitivity, speci�city, and AUC of the619

proposed approach were approximately 0:9841, 0:9836, and 0:983, respectively,620

which re�ects the robustness of the proposed approach. In addition, the pro-621

posed approach achieved a low error rate (� 0:0035). Furthermore, the results622

of the proposed approach were proven to be superior to the most related work.623

In the future work, our approach will be evaluated against a larger database of624

cattle images. Also, we will investigate the idea of fusing two cattle biometrics:625

muzzle and face.626
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