Perturbation and numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-darcy porous medium with robin boundary conditions

Umavathi, JC and Beg, OA
http://dx.doi.org/10.1007/s10665-019-10022-w

<table>
<thead>
<tr>
<th>Title</th>
<th>Perturbation and numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-darcy porous medium with robin boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Umavathi, JC and Beg, OA</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/52278/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2019</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
ABSTRACT

In the current study a mathematical model is developed for thermo-solutal convection flow in an open two-dimensional vertical channel containing a porous medium saturated with reactive Newtonian fluid is studied. Robin boundary conditions are prescribed, and a first order homogenous chemical reaction is considered. The Darcy-Forchheimer model is used to simulate both first and second order porous medium drag effects. For the general non-Darcy-case, a numerical solution is presented with the Runge-Kutta quadrature and a shooting method. The influence of thermal \((0 \leq \lambda_1 \leq 15)\) and solute Grashof numbers \((0 \leq \lambda_2 \leq 20)\), Biot numbers \((1 \leq Bi_1 \leq 10, Bi_2 = 10)\), Brinkman number \((0 \leq Br \leq 0.5)\), first order chemical reaction parameter \((2 \leq \alpha \leq 8)\), porous medium parameter \((2 \leq \sigma \leq 8)\) and Forchheimer (inertial drag) parameter \((0 \leq I \leq 12)\) on the evolution of velocity, temperature and concentration (species) distributions is visualized graphically. Nusselt number and skin friction at the walls are also computed for specific values of selected parameters. The study is relevant to the analysis of geothermal energy systems with chemical reaction.

Keywords: Non-Darcy porous medium, Robin boundary conditions, perturbation method; thermo-solutal buoyancy; convective heat transfer; chemical reaction; Runge-Kutta method; Nusselt number; geothermal energy systems.

LIST OF SYMBOLS

\(A \) constant

\(Bi_1, Bi_2 \) Biot numbers at the left and right channel walls

\(Br \) Brinkman number

\(c_p \) specific heat at constant pressure
C_F Forchheimer drag term

D Hydraulic diameter, $2L$

D_m mass diffusion coefficient

g acceleration due to gravity

I inertial parameter

λ_1 thermal Grashof number

λ_2 solutal (species) Grashof number

h_1, h_2 external heat transfer coefficients

K thermal conductivity of the fluid

K_m dimensional chemical reaction parameter

L channel width

Nu_1, Nu_2 Nusselt numbers at the left and right channel walls

P Pressure

$P = p + \rho_0gX$ difference between the pressure and the hydrostatic pressure

Re Reynolds number

R_T temperature difference ratio

S dimensionless parameter

T temperature

T_1, T_2 reference temperatures of the external fluid

T_0 reference temperature

u dimensionless velocity in the X direction

U velocity component in the X direction

U_0 reference velocity

X stream wise coordinate

y dimensionless transverse coordinate

Y transverse coordinate

Greek symbols
\[\alpha \] chemical reaction parameter
\[\beta_T \] thermal expansion coefficient
\[\beta_C \] concentration expansion coefficient
\[\Delta T \] reference temperature difference
\[\varepsilon \] dimensionless parameter
\[\theta \] dimensionless temperature
\[\phi \] dimensionless concentration
\[\rho \] density of the fluid
\[\kappa \] permeability of the porous media
\[\rho_0 \] value of the mass density when \(T = T_0 \)
\[\mu \] dynamic viscosity
\[\nu \] kinematic viscosity
\[\sigma \] porous media permeability parameter

1. INTRODUCTION

Thermosolutal buoyancy-driven flows are mobilized by variations in density variation induced by species concentration and temperature. Such flows which feature coupled heat and mass transfer often arise in porous media. Applications of these “double-diffusive” flows include geothermal energy systems, contamination fate in soils, petrochemical reservoir dynamics and chromatography. Double-diffusive natural convection in confined porous media is also of relevance in fuel combustion (e.g. forest fires), thermal insulation, materials processing, room ventilation, packed-bed chemical reactors etc. Thermosolutal transport in porous media has been reviewed extensively by Kaviany [1], Nield and Bejan [2] and Ingham and Pop [3], who have provided an excellent range of modelling approaches and identified many new emerging areas of application of both internal flows (cavities, channels, heat pipes) and external boundary layer flows (polymer fabrication, spray deposition, filtration etc). Many further geological applications of heat and mass transfer in permeable media have been reviewed by Phillips [4]. Interesting studies of double-diffusive convection in porous media include Gupta et al. [5] (on transient micropolar flow in isotropic permeable materials), Mamou et al. [6] (on buoyancy-driven heat
and mass transfer in a saturated vertical porous media cavity) and Narayana and Murthy [7] (on cross-diffusion in thermo-solutal boundary layer flow in homogenous porous media).

In porous media hydrodynamics, the traditional approach is to use the Darcy law which provides the linear relationship between the pressure drop across the porous medium and the Darcian velocity. This model is however only valid for low Reynolds numbers i.e. viscous-dominated “creeping” flows. It has been deployed extensively in recent years in a multiplicity of applications. Relevant studied include Prasad and Kulacki [8], Vasseur et al. [9], and Umavathi et al. [10]-[13]. The Darcy model utilized in these investigations has also considered the porous matrix to be isotropic and homogenous. At higher velocities (which may arise in high-permeability geological formations for example), inertial effects dominate the viscous effect. The pressure drop becomes a quadratic function of the flow rate and a non-Darcy model is required. Two popular methodologies for non-Darcy models have emerged i.e. Brinkman-extended Darcy models [19] and Forchheimer-extended Darcy models [20]. These are accommodated well in viscous fluid dynamic models and respectively simulate the viscous stresses adjacent to the bounding walls (“vorticity diffusion”) and channeling effects, and the non-linear drag effect generated by the solid matrix fibers at higher velocities. Since the inclusion of a Forchheimer quadratic term renders the momentum equation nonlinear, generally numerical methods are required for deriving solutions. Many researchers have implemented the Darcy-Forchheimer model in recent years in both thermal convection and thermo-solutal convection simulations. Bég et al. [21] conducted network electro-thermal computational simulations of Sakiadis flow in a thermally stratified Darcy-Forchheimer medium with the PSPICE code. Chen [22] used a cubic spline collocation method to investigate the influence of Forchheimer quadratic drag on thermosolutal convection boundary layer flow from a vertical wavy surface in a non-Darcy fluid-saturated porous medium. Jena et al. [23] employed a finite control volume integration technique to study the combined heat and mass transfer in a fluid-saturated porous medium composite enclosure with a Darcy Brinkman Forchheimer model. Bég et al. [24] applied the Differential transform method (DTM) to compute buoyancy effects in dusty physiological thermo-convection in a Darcy-Forchheimer vertical porous medium channel. These studies all confirmed the significant modification in transport characteristics both in the bulk flow and at the walls induced with Forchheimer quadratic drag. A rigorous theoretical validation of the Darcy-Forchheimer model has been presented by Chen et al. [25] via
homogenization theory and Whittaker [26] with asymptotic methods. Experimental corroboration of this model has also been presented by Sener et al. [27].

In many geological and engineering systems featuring double-diffusive convection, chemical reaction effects arise. Geochemical flows include precipitation reaction (e.g. acidic brine and a calcium feldspar), mineralogical dissolution, carbon dioxide injection [28], brine chemo-geothermics [29] and pollutant leaching [30]. Further examples in industrial technologies include polymer radical manipulation, catalytic conversion, exothermic chemical reactions in porous media reactors [31], time-dependent corrosion of metallic components [32] and materials synthesis [33]. Mathematical models of reactive flows usually feature either homogeneous or heterogeneous chemical reactions. Homogeneous reactions occur in one phase only whereas heterogeneous reactions occur in two or more phases. Either type may be destructive or constructive. In more complex systems, autocatalytic reactions may also arise in which the reaction product acts as the catalyst for the chemical reaction. Considerable activity in modelling laminar reactive double-diffusive convection flows has emerged in recent years. Anjali Devi and Kandasamy [34] investigated natural convection boundary layer flow with higher order chemical reaction. They showed that with stronger chemical reaction and decreasing Schmidt number there is an acceleration in the flow and depletion in concentration gradient at the wall. Reactive flows in porous media have also been explored extensively. Postelnicu [35] used a finite difference technique to study the influence of order of homogenous chemical reaction, chemical reaction rate parameter and sustentation parameter on thermosolutal reactive flow in a Darcy medium with cross-diffusion effects. Rashad and El-Kabeir [36] deployed a Runge-Kutta integration scheme with shooting method to compute the chemical reaction effects in unsteady non-isothermal, non-isolutal flow from a stretching sheet embedded in a Darcian porous medium. Kandasamy et al. [37] considered variable viscosity and thermophoresis effects on mixed double-diffusive convection in Falkner-Skan flow from a wedge in a non-Darcy porous medium with first order homogeneous chemical reaction. They noted that species concentration is suppressed with increasing reaction parameter and that opposing buoyancy reduces wall mass transfer rates. Zueco et al. [38] studied the effects of Forchheimer inertial drag and permeability on thermosolutal convection from a cylindrical body with homogenous chemical reaction. Nguyen et al. [39] used Fourier spectral element and hybrid Adams-Bashforth and backward Euler numerical schemes to investigate the thermal convection in a fluid-saturated non-Darcy
anisotropic porous medium generated by a surface nth order irreversible reaction. They showed that Forchheimer drag and chemical reaction modify the momentum, heat and species diffusion characteristics substantially.

Convective heat exchange at a bounding surface is also an important consideration in thermo-solutal convection flows. It arises in transpiration cooling processes, cooling or heating of geological strata, material drying, heat exchangers, geothermal bore wells etc. Very few studies have incorporated the Robin boundary condition i.e. mixed boundary condition. Also known as the boundary condition of the third kind, inclusion of this type of boundary condition has been shown to produce results which deviate non-trivially from those computed with classical isothermal or isosolutal boundary conditions. Zanchini [40] was among the first researchers to analyze in detail with a perturbation method, the fully developed mixed convection in a parallel-plate vertical channel in which the walls exchange heat with an external fluid. He applied Robin boundary conditions (also known as boundary conditions of the third kind) and considered both conditions of equal and of different reference temperatures of the external fluid and furthermore included viscous heating effects. Building on Zanchini’s work, Umavathi et al. [41] considered the supplementary effects of heat generation and absorption. Umavathi et al. [42] further extended the Zachini model to consider non-Darcy effects.

In the present investigation, a mathematical model is developed to study the collective effects of first order homogeneous chemical reaction on double-diffusive convection in a viscous fluid flowing in a vertical duct containing an isotropic, homogenous porous medium. The Brinkman-Forchheimer extended Darcy model is employed and Robin boundary conditions are imposed. This work therefore further generalizes the study in [42] to consider chemical reaction and viscous heating effects and this constitutes the novelty of the present study. Viscous heating is known to arise in a number of geological applications including mantle convection [43] and enhanced oil recovery [44]. Both perturbation and numerical solutions are presented, the former for the case of small Brinkman number (dissipation parameter) in the absence of Forchheimer inertial drag. Extensive visualization of the influence of non-Darcy, buoyancy, reaction, dissipation and boundary conditions on momentum, species and heat transfer characteristics are provided. Increasing porous media parameter (decreasing medium permeability) reduces temperatures for both equal and unequal Biot numbers. Increasing thermal Grashof number accelerates the flow and elevates temperatures for both equal and unequal Biot numbers. With
higher values of solutal Grashof number velocity and temperature near the cold plate (wall) are reduced whereas the converse behaviour is induced at the hot wall. Increasing chemical reaction parameter elevates the species concentration in the left half space of the channel whereas it suppresses concentration in the right half space and in both scenarios a parabolic distribution is observed. In the absence of chemical reaction, a linear growth in concentration is computed from the left plate to the right plate. With increasing porous medium parameter and Forchheimer inertial parameter the flow is strongly decelerated across the channel span whereas there is a much weaker reduction in temperatures. Skin friction is consistently lowered at both plates with increasing thermal Grashof number for equal Biot numbers. However, with unequal Biot numbers, skin friction at the left plate is increased whereas it is still reduced at the right plate. With increasing solutal Grashof number, skin friction is always reduced at both plates for both equal and unequal Biot numbers. There is also a consistent decrease in Nusselt numbers at both plates with increasing solutal Grashof number. The present simulations are relevant to multi-physico-chemical flows in geothermal energy systems.

2. MATHEMATICAL FORMULATION

Steady-state, incompressible, fully developed flow driven by buoyancy due to temperature and concentration gradients in a vertical channel containing a saturated non-Darcy porous medium is considered, as model of a geothermal energy system. Viscous dissipation and first order homogenous chemical reaction of the solute are assumed. An (X,Y) coordinate system is employed and the origin is located at the mid-plane of the channel. The reference temperatures are taken as symmetric or asymmetric. Viscous heating is also included in the model. The conservation equations are written in dimensionless form taking into account the effects of viscous dissipation. The concentration of diffusing species is assumed to be very small in comparison with the other chemical species. Dufour (diffuso-thermal) and Soret (thermo-diffusion) effects are neglected. The distance between the plates is L as shown in Figure 1. The fluid properties are assumed to be constant except for density variations in the buoyancy force terms. Thermal dispersion, cross-diffusion and stratification effects are neglected. In addition, the concentration of the solute constituent in the solution that saturates the porous medium at the left wall is \(C_1 \) and at the right wall is \(C_2 \) in such way that \(C_2 \geq C_1 \). The velocity is taken as zero on the walls of the duct. The duct walls are infinite in the \(X \)-direction. Therefore the flow
become one-dimensional along the X-axis, and hence velocity is a function of Y only. The governing equations for momentum, energy and species conservation with the Darcy-Forchheimer model after adopting the Boussinesq approximations may be shown to take the form: (following Zanchini [40], Umavathi et al. [42] and Muthucumaraswamy and Ganesan [45])

$$\rho_0 g \beta T \left(T - T_0 \right) + \rho_0 g \beta C \left(C - C_0 \right) - \frac{\partial p}{\partial X} + \mu \frac{d^2 U}{dY^2} - \frac{\mu U}{\kappa} U - \frac{\rho C_F}{\sqrt{\kappa}} U^2 = 0 \quad (1)$$

$$K \frac{d^2 T}{dY^2} + \mu \left(\frac{dU}{dY} \right)^2 + \frac{\mu}{\kappa} U^2 = 0 \quad (2)$$

$$D_m \frac{d^2 C}{dY^2} - K_m C = 0 \quad (3)$$

The thickness of the channel walls is neglected, and the walls are assumed to exchange convective heat with the external fluid. The convective heat co-efficient is taken as h_1 at the left wall and h_2 at the right wall of the duct (channel). The reference temperature is T_1 at $Y = -L/2$ and T_2 at $Y = L/2$ such that $T_2 \geq T_1$. The pressure gradient is treated as constant $\left(\frac{\partial P}{\partial X} = A \right)$. With these assumptions the conditions on the boundary for the velocity, temperature and concentration now can be written as:
Figure 1. Schematic diagram for thermosolutal reactive convection in a vertical porous medium channel

\[
U \left(-\frac{L}{2} \right) = U \left(\frac{L}{2} \right) = 0
\]

(5)

\[-K \frac{dT}{dY} \bigg|_{Y = \frac{L}{2}} = h_1 \left[T_1 - T \left(X, -\frac{L}{2} \right) \right], \quad
-K \frac{dT}{dY} \bigg|_{Y = \frac{L}{2}} = h_2 \left[T \left(X, \frac{L}{2} \right) - T_2 \right]
\]

(4)

\[C \left(-\frac{L}{2} \right) = C_1, \quad C \left(\frac{L}{2} \right) = C_2
\]

(6)

It is pertinent to invoke the following dimensionless parameters, following Zanchini [40], Umavathi et al. [42] and Muthucumaraswamy and Ganesan [45]:

\[
u = \frac{U}{U_0}; \quad \theta = \frac{T - T_0}{\Delta T}; \quad y = \frac{Y}{D}; \quad GR_T = \frac{g \beta_T \Delta T D^3}{\nu^2}; \quad GR_c = \frac{g \beta_c \Delta C D^3}{\nu^2}; \quad Re = \frac{U_0 D}{\nu}
\]

\[
Br = \frac{\mu U_0^2}{K \Delta T}; \quad R_T = \frac{T - T_0}{\Delta T}; \quad Bi_1 = \frac{h_1 D}{K}; \quad Bi_2 = \frac{h_2 D}{K}; \quad \sigma = \frac{D}{\sqrt{\kappa}}; \quad U_0 = \frac{-AD^3}{48 \mu}
\]

\[
\alpha = \frac{K_m D^3}{D_m}; \quad S = \frac{Bi_1 Bi_2}{Bi_1 + 2Bi_2 + 2Bi_2^2}; \quad \phi = \frac{C - C_0}{\Delta C}; \quad I = \frac{\rho C_F D^2 U_0}{\mu \sqrt{\kappa}}; \quad D = 2L
\]
\[T_0 = \frac{T_1 + T_2}{2} + S \left(\frac{1}{Bi_1} - \frac{1}{Bi_2} \right)(T_2 - T_1); \quad \lambda_1 = \frac{GR_T}{Re}; \quad \lambda_2 = \frac{GR_C}{Re}; \quad \Delta T = T_2 - T_1; \quad \Delta C = C_2 - C_1; \]

\[C_0 = \frac{C_1 + C_2}{2} \]

(7)

Implementing Eqn. (7) in Eqns. (1)–(6) yields the following system of coupled ordinary differential equations:

\[\frac{d^2 u}{dy^2} + \lambda_1 \theta + \lambda_2 \phi + 48 - \sigma^2 u - I \, u^2 = 0 \]

(8)

\[\frac{d^2 \theta}{dy^2} + Br \left(\frac{du}{dy} \right)^2 + \sigma^2 Br \, u^2 = 0 \]

(9)

\[\frac{d^2 \phi}{dy^2} - \alpha^2 \phi = 0 \]

(10)

The associated boundary conditions are:

\[u \left(- \frac{1}{4} \right) = u \left(\frac{1}{4} \right) = 0 \]

(11)

\[\left(\frac{d\theta}{dy} \right)_{y = \frac{1}{4}} = Bi_1 \left(\theta \left(- \frac{1}{4} \right) + \frac{R_s}{2} \left(1 + \frac{4}{Bi_1} \right) \right), \quad \left(\frac{d\phi}{dy} \right)_{y = \frac{1}{4}} = Bi_2 \left(-\theta \left(\frac{1}{4} \right) + \frac{R_s}{2} \left(1 + \frac{4}{Bi_2} \right) \right) \]

(12)

\[\phi \left(- \frac{1}{4} \right) = -0.5, \quad \phi \left(\frac{1}{4} \right) = 0.5 \]

(13)

Here all parameters are defined in the notation.

3. NUMERICAL SOLUTIONS

The closed form solution of the linear species diffusion Eqn. (10) is readily obtained:

\[\phi = \frac{\text{Sinh} \left(\alpha \, y \right)}{2 \, \text{Sinh} \left(\alpha / 4 \right)} \]

(14)

However, the problem represented by Eqns. (8) and (9) i.e. the transformed momentum and energy equations, is nonlinear and has no closed form solutions. The momentum and energy Eqns. (8) and (9) are solved numerically using an efficient Runge-Kutta procedure with an appropriate shooting method. This may be executed in any number of symbolic software including Maple, Mathematica and Matlab. Details of this technique are given in [46]-[48].
3.1 SKIN FRICTION AND NUSSELT NUMBER

The dimensionless skin friction (surface shear stress i.e. velocity gradient) and Nusselt number (surface heat transfer rate i.e. temperature gradient) are given by:

\[\tau_1 = \left(\frac{du}{dy} \right)_{y = -\frac{1}{4}}, \quad \tau_2 = \left(\frac{du}{dy} \right)_{y = \frac{1}{4}} \]

\[Nu_1 = \left(\frac{d\theta}{dy} \right)_{y = -\frac{1}{4}}, \quad Nu_2 = \left(\frac{d\theta}{dy} \right)_{y = \frac{1}{4}} \]

4. RESULTS AND DISCUSSION

Figures 2-12 display the profiles for the velocity, temperature and solute concentration obtained with the numerical method. These results illustrate the effects of Brinkman number \(Br \), thermal Grashof number \(\lambda_1 \), solutal (concentration) Grashof number \(\lambda_2 \), chemical reaction parameter \(\alpha \), Forchheimer inertial parameter \(I \) for different values of porous parameter \(\sigma \), Biot numbers and temperature difference ratio \(R_T \). Eqns. (8) to (10) along with boundary conditions (11) to (13) are solved numerically with the Runge-Kutta and shooting method.

The effects of thermal Grashof number \(\lambda_1 \) and porous medium parameter \(\sigma \) on the velocity characteristics is shown in Fig. 2. In the absence of viscous dissipation \((Br = 0) \), there is a flow reversal near the cold wall for strong thermal buoyancy cases with values of \(\lambda_1 = 500, 1000 \). Figure 2 also indicates that increasing porous medium parameter \(\sigma \) decelerates the flow for all values of thermal Grashof number \(\lambda_1 \). \(\sigma = \frac{D}{\sqrt{\kappa}} \) and evidently this parameter is inversely proportional to the medium permeability, \(\kappa \). It arises in the Darcian linear impedance term in the normalized momentum eqn. (8) i.e. - \(\sigma^2 u \). Clearly as - \(\sigma \) increases the medium permeability is reduced and this increases the resistance of porous medium fibers (fabric) to the flow. Velocity is therefore depleted. The temperature profiles as seen Figs. 3 and 4 are drawn for different values of Brinkman number \(Br \) and porous parameter \(\sigma \) in the absence of thermal Grashof number \(\lambda_1 \) for equal and unequal Biot numbers. In the absence of viscous dissipation, the temperature profile is linear as the heat transfer contribution is dominated by thermal
conduction. The effect of viscous dissipation ($Br \neq 0$) is to increase the temperature field for equal and unequal Biot numbers. This is due to the conversion of kinetic energy into heat via viscous heating which increases temperatures in the regime. However, the nature of profiles is markedly different for equal and unequal Biot numbers. There is a convective heat transfer domination over conduction heat transfer in the boundary layer region adjacent to the walls. Figures 3 and 4 also imply that the effect of increasing permeability parameter σ is to reduce the temperature magnitudes for both equal (symmetric case) and unequal (asymmetric case) Biot numbers. Decreasing permeability offers less fluid volume for thermal convection and greater solid fibers for thermal conduction. This cools the regime. The results obtained in Figs. 2 to 4 in the absence of porous medium parameter, inertial parameter and concentration Grashof number are similar to those obtained by Zanchini [40].

The impact of thermal Grashof number on velocity and temperature evolution in the regime is illustrated in Figs. 5 to 7 for various values of Brinkman number Br and porous medium parameter σ. The effect of viscous dissipation (simulated in the nonlinear term, $\sigma^2 Br u^2$ in the energy eqn. (9)) is to enhance the flow for all values of porous medium parameter σ and Biot numbers (Bi_1 and Bi_2). The large values of σ as noted earlier, decrease medium permeability and therefore inhibit thermal convection. The frictional drag resistance and inertial quadratic drag significantly retard the flow for both equal and unequal Biot numbers. The velocity profiles show similar nature for the effects of Brinkman number Br and porous medium parameter σ for asymmetric Biot numbers and hence not shown graphically. Temperatures are significantly elevated with greater Brinkman number and higher magnitudes are obtained for the asymmetric Biot number case (fig. 7) compared with the symmetric Biot number case (fig. 6). Evidently therefore the inclusion of Robin boundary conditions produces substantially different magnitudes compared with conventional boundary conditions.

The effect of thermal Grashof number λ_1 and porous parameter σ on the temperature fields are displayed in Figs. 8 and 9 for equal and unequal Biot numbers. The effect of thermal Grashof number λ_1 and porous parameter σ on the velocity field for equal and unequal Biot numbers show the similar effect as that of Brinkman number Br (fig 5) and hence not shown pictorially. The effect of thermal Grashof number λ_1 is to enhance the velocity and temperature fields for both equal and unequal Biot numbers. This is due to the fact that with higher values of
thermal Grashof number there is an enhancement in thermal buoyancy force in the body force term, \(+ \lambda_1 \theta \) in Eqn. (8) which serves to accelerate the flow, as noted in many studies including Gebhart et al. [49]. The effect of porous parameter \(\sigma \) is again to suppress the convection motion and reduce temperatures in the regime owing to the increased Darcian drag counteracting the flow for both equal and unequal Biot numbers.

The effect of concentration Grashof number \(\lambda_2 \) and porous parameter \(\sigma \) is analysed for equal and unequal Biot numbers. As the concentration Grashof number \(\lambda_2 \) increases, the species buoyancy force modeled via the term \(+\lambda_2 \phi \) is increased. The velocity and temperature near the cold wall decreases, whereas it increases at the hot wall for different values of porous parameter \(\sigma \) for both equal and unequal Biot numbers. However the magnitude of increase is not very significant and therefore not shown in the form of profiles. The effect of chemical reaction parameter \(\alpha \) on the concentration field is to increase the velocity field near the left wall and decrease it at the right wall as shown in Fig. 10. The impact of chemical reaction is therefore not consistent across the vertical channel span. The homogenous chemical reaction is both destructive (in the right half space) and constructive (in the left half space). Equation (10) implies that the concentration field is influenced only by the chemical reaction parameter \(\alpha \) and remains invariant with the other parameters. In the absence of chemical reaction effect there is clearly a linear ascent in concentration from the left wall to the right wall. This is warped into an increasingly parabolic profile with stronger chemical reaction effect.

Figures 11 and 12 display the effect of Forchheimer inertial parameter \(I \) and porous medium parameter \(\sigma \) on the temperature distributions for equal and unequal Biot numbers. The effect of Forchheimer inertial parameter \(I \) and porous medium parameter \(\sigma \) on the velocity filed show the parabolic nature as shown in Fig. 5 except that the velocity profiles are suppressed as the Forchheimer inertial parameter \(I \) increases and therefore not figured. The effect of inertial parameter is to decelerate the flow for both equal and unequal Biot numbers. The impact of inertial parameter \(I \) is more prominent at smaller values of porous parameter \(\sigma \) as noted by Lai and Kulacki [50]. Clearly the neglection of Forchheimer second order drag leads to over-predictions in the velocity magnitudes. The effect of Forchheimer inertial parameter \(I \) and porous medium parameter \(\sigma \) on the velocity filed for asymmetric Biot numbers show the similar effect as that of equal Biot numbers and hence not pictured. Temperatures are also strongly
suppressed with increasing inertial parameter, I and the distributions for the both equal (symmetric) and unequal (asymmetric) Biot number cases are distinctly *monotonic* in nature at high permeability parameters (σ) whereas they are morphed into *parabolic profiles* at lower values of σ.

Figures 2 to 12 are drawn for asymmetric condition i.e. temperature difference ratio is non-zero ($R_T \neq 0$). The effect of Brinkman number for the *symmetric* condition is similar to that observed for the *asymmetric* condition (Figs. 5 to 7). In view of this the graphs are not depicted for symmetric wall conditions. That is to say that, Brinkman number *accelerates* the flow for equal and unequal Biot numbers whereas the porous medium parameter consistently *decelerates* the flow. The effect of Brinkman number for equal and unequal Biot numbers is again in good agreement with the nature of the results observed by Zanchni [40] in the absence of porous medium and chemical reaction effects.

The values of skin friction and Nusselt numbers are shown in Tables 1 respectively for all the emerging thermophysical parameters for both equal Biot numbers. For equal Biot numbers, as the Brinkman number Br and chemical reaction parameter α are increased, skin friction increases at the left wall whereas it decreases at the right wall with greater values of thermal Grashof number λ_1, solutal (concentration) Grashof number λ_2, porous parameter σ and inertial parameter I. The skin friction at the right wall increases in magnitude with an elevation in values of thermal Grashof number, solutal Grashof number and Brinkman number whereas the converse behavior is observed with increasing the values of chemical reaction parameter, porous parameter and inertial parameter. A similar trend is observed for the asymmetric case of unequal Biot numbers.

The rate of heat transfer i.e. Nusselt number Nu_1 at the left wall increases with greater values of thermal Grashof number, Brinkman number and chemical reaction parameter whereas it decreases with concentration Grashof number, porous medium parameter and Forchheimer inertial parameter. The Nusselt number Nu_2 at the right wall however decreases with increasing the values of thermal Grashof number, concentration Grashof number and Brinkman number whereas it increases with chemical reaction parameter, porous medium parameter and Forchheimer inertial parameter. A similar trend is observed for the asymmetric case of unequal Biot numbers.
5. CONCLUSIONS:

Thermosolutal dissipative chemically-reacting flow in a vertical channel containing a non-Darcy porous medium with Robin boundary conditions has been studied theoretically. The transformed, non-dimensional equations for momentum, energy and species conservation have been solved with Runge-Kutta quadrature and a shooting method in the presence of inertial effects. For the non-Darcy case, an increase in Brinkman number and thermal Grashof number induces significant flow acceleration. With increasing solutal (concentration) Grashof number the velocity distribution is less significantly affected and the flow decreases at the cold wall and increases at the hot wall for both equal and unequal Biot numbers. An increase in homogenous first order chemical reaction parameter decreases the velocity magnitudes. Increasing porous medium (Darcy inverse permeability) parameter and Forchheimer second order inertial parameter both inhibit flow and manifest in strong retardation. The skin friction at the left wall is elevated with greater viscous dissipation (i.e. Brinkman number), chemical reaction parameter whereas it is reduced with increasing thermal Grashof number, concentration Grashof number, porous medium and Forchheimer inertial parameters for both equal and unequal Biot numbers. At the right wall, the skin friction is enhanced with greater thermal Grashof number, concentration Grashof number, Brinkman number and the contrary effect is induced with higher values of chemical reaction parameter, porous medium and Forchheimer inertial parameter. The Nusselt number at the left wall is boosted with greater thermal Grashof number, Brinkman number, chemical reaction parameter whereas it is suppressed with greater concentration Grashof number, porous medium and Forchheimer inertial parameter for equal Biot numbers. At the hot wall the rate of heat transfer (Nusselt number) decreases with an increase in the values of thermal Grashof number, (solutal) concentration Grashof number and Brinkman number and the opposite behavior is generated with an increase in the chemical reaction parameter, porous medium and Forchheimer inertial parameters. Overall the inclusion of viscous dissipation, chemical reaction and Robin (mixed) boundary conditions modifies the transport phenomena characteristics significantly and provides for more realistic simulations of geological and industrial double-diffusive convection flows. The current study has been confined to Newtonian fluids. Future studies will consider non-Newtonian models and will be communicated imminently.
Figure 2 Plots of u for different values of λ_1 in the absence of viscous and Darcy dissipations

Figure 3 Plots of θ for different values of Br in the absence of thermal Grashof number
Figure 4 Plots of θ for different values of Br in the absence of thermal Grashof number

Figure 5 Plots of u for different values of Br in the presence of thermal Grashof number
Figure 6 Plots of θ for different values of Br in the presence of thermal Grashof number

Figure 7 Plots of θ for different values of Br in the presence of thermal Grashof number
Figure 8 Plots of θ for different values of λ_1
for symmetric Biot numbers

$R_f = 1.0, \alpha = 4.0$
$Br = 0.1, \lambda_2 = 5.0$
$Bi_1 = Bi_2 = 10$
$I = 0.5$
$\sigma = 8.0, \lambda_1 = 0, 5, 10$

Figure 9 Plots of θ for different values of λ_1
for asymmetric Biot numbers

$R_f = 1.0, \alpha = 4.0$
$Br = 0.1, \lambda_2 = 5.0$
$Bi_1 = 1$
$Bi_2 = 10$
$I = 0.5$
$\sigma = 2.0, \lambda_1 = 0, 5, 10$
Figure 10 Plots of ϕ for different values of α.

Figure 11 Plots of θ for different values of I and σ.

$R_r = 1.0, Br = 0.1, \lambda_1 = 10, \lambda_2 = 25, Bi_1 = 10, Bi_2 = 10, I = 0.5, \sigma = 2.0$

$R_r = 1.0, \alpha = 4.0, \lambda_1 = 5.0, \lambda_2 = 5.0, Bi_1 = 10, Bi_2 = 10, I = 0, \sigma = 2$

$R_r = 1.0, \alpha = 4.0, \lambda_1 = 5.0, \lambda_2 = 5.0, Bi_1 = 10, Bi_2 = 10, I = 0, 4, 8, \sigma = 10$
Figure 12 Plots of θ for different values of I

Table 1. Values of skin friction and Nusselt number for $R_\tau=1.0$, $Br=0.1$, $\lambda_1=5.0$, $\lambda_2=5.0$, $\alpha=4.0$, $\sigma=4$, $I=2.0$

<table>
<thead>
<tr>
<th></th>
<th>τ_1</th>
<th>τ_2</th>
<th>Nu_1</th>
<th>Nu_2</th>
<th>τ_1</th>
<th>τ_2</th>
<th>Nu_1</th>
<th>Nu_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>8.20961</td>
<td>-9.6697</td>
<td>2.20590</td>
<td>0.58641</td>
<td>8.92198</td>
<td>-9.1997</td>
<td>2.25330</td>
<td>0.59097</td>
</tr>
<tr>
<td></td>
<td>8.02258</td>
<td>-9.9040</td>
<td>2.20274</td>
<td>0.57056</td>
<td>8.55619</td>
<td>-9.5656</td>
<td>2.23799</td>
<td>0.57332</td>
</tr>
<tr>
<td></td>
<td>8.17853</td>
<td>-10.202</td>
<td>2.24398</td>
<td>0.51993</td>
<td>8.37333</td>
<td>-9.7486</td>
<td>2.23083</td>
<td>0.56401</td>
</tr>
<tr>
<td></td>
<td>8.17471</td>
<td>-10.482</td>
<td>2.26612</td>
<td>0.48278</td>
<td>8.19050</td>
<td>-9.9316</td>
<td>2.22400</td>
<td>0.55437</td>
</tr>
<tr>
<td>λ_2</td>
<td>8.02258</td>
<td>-9.9040</td>
<td>2.20274</td>
<td>0.57056</td>
<td>8.55619</td>
<td>-9.5656</td>
<td>2.23799</td>
<td>0.57332</td>
</tr>
<tr>
<td>Br</td>
<td>8.73908</td>
<td>-9.3826</td>
<td>2.24548</td>
<td>0.58231</td>
<td>8.73908</td>
<td>-9.3826</td>
<td>2.24548</td>
<td>0.58231</td>
</tr>
<tr>
<td></td>
<td>8.93370</td>
<td>-9.5795</td>
<td>3.56829</td>
<td>-0.78642</td>
<td>8.75094</td>
<td>-9.3707</td>
<td>2.24622</td>
<td>0.58315</td>
</tr>
<tr>
<td>σ</td>
<td>8.61880</td>
<td>-9.2609</td>
<td>1.42857</td>
<td>1.42857</td>
<td>8.73066</td>
<td>-9.3910</td>
<td>2.24495</td>
<td>0.58170</td>
</tr>
<tr>
<td>α</td>
<td>8.73908</td>
<td>-9.3826</td>
<td>2.24548</td>
<td>0.58231</td>
<td>8.73908</td>
<td>-9.3826</td>
<td>2.24548</td>
<td>0.58231</td>
</tr>
<tr>
<td>I</td>
<td>8.02258</td>
<td>-9.9040</td>
<td>2.20274</td>
<td>0.57056</td>
<td>8.55619</td>
<td>-9.5656</td>
<td>2.23799</td>
<td>0.57332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>τ_1</th>
<th>τ_2</th>
<th>Nu_1</th>
<th>Nu_2</th>
<th>τ_1</th>
<th>τ_2</th>
<th>Nu_1</th>
<th>Nu_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.92198</td>
<td>-9.1997</td>
<td>2.25330</td>
<td>0.59097</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.55619</td>
<td>-9.5656</td>
<td>2.23799</td>
<td>0.57332</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8.37333</td>
<td>-9.7486</td>
<td>2.23083</td>
<td>0.56401</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8.19050</td>
<td>-9.9316</td>
<td>2.22400</td>
<td>0.55437</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

