Non-similar radiative bioconvection nanofluid flow under oblique magnetic field with entropy generation

Shukla, N, Rana, P, Kuharat, S and Beg, OA

10.22055/JACM.2020.33580.2250

<table>
<thead>
<tr>
<th>Title</th>
<th>Non-similar radiative bioconvection nanofluid flow under oblique magnetic field with entropy generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Shukla, N, Rana, P, Kuharat, S and Beg, OA</td>
</tr>
<tr>
<td>Publication title</td>
<td>Journal of Applied and Computational Mechanics</td>
</tr>
<tr>
<td>Publisher</td>
<td>Shahid Chamran University of Ahvaz, Iran</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>USIR URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/57739/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2022</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: library-research@salford.ac.uk.
Non-similar Radiative Bioconvection Nanofluid Flow under Oblique Magnetic Field with Entropy Generation

Nisha Shukla1, Puneet Rana2, S. Kuharat3, O. Anwar Bég4

1 Department of Mathematics, Institute of Applied Science and Humanities, GLA University, Mathura-281406, Uttar Pradesh, India
2 School of Mathematical Sciences, College of Science and Technology, Wenzhou Kean University, Wenzhou 325060, China
3 Department of Mathematics, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201309, India
4 Aeronautical and Mechanical Engineering, University of Salford, Newton Building, M54WT, UK

Abstract. Motivated by exploring the near-wall transport phenomena involved in bioconvection fuel cells combined with electrically conducting nanofluids, in the present article, a detailed analytical treatment using homotopy analysis method (HAM) is presented on the similar/non-similar bioconvection nanofluid flow under the influence of magnetic field (Lorentz force) and gyrotactic microorganisms. The flow is induced by a stretching sheet under the action of an oblique magnetic field. In addition, nonlinear radiation effects are considered which are representative of solar flux in green fuel cells. A second thermodynamic law analysis has also been carried out for the present study to examine entropy generation (irreversibility) minimization. The influence of magnetic parameter, radiation parameter and bioconvection Rayleigh number on skin friction coefficient, Nusselt number, micro-organism flux and entropy generation number (EGN) is visualized graphically with detailed interpretation. Validation of the HAM solution and stability analysis has been reported by Dhanai Uddin. The similar type of analysis on bioconvection involving Lie symmetries, slip flow, inclination of sheet, dual solution and stability analysis has been reported by Dhanai et al. [17]. Khan et al. [18] have applied RK7 shooting method to carried out the natural bioconvection nanofluid flow induced by a truncated cone. Waqas et al. [19] have investigated the influence of physical parameters on the second grade nanofluid flow induced by stretching surface with motile microorganism rate. They have observed that motile microorganism profile decreases with Prandtl number and Browninan motion parameter. Rashad et al. [20] have examined the bioconvection nanofluid flow with motile gyrotactic microorganisms over a horizontal circular cylinder using finite difference technique. The second law analysis of bioconvection MHD nanofluid flow examined by Khan et al. [21] between two stretchable rotating disk. They have applied the homotopy analysis method in this study. Recently, Aneja et al. [22] have investigated the effect of non-uniform magnetic field in the study of nanofluid flow containing the motile gyrotactic microorganisms induced by a inclined nonlinear stretching sheet. They observed that as the thermophoresis parameter increases, the

Keywords: Non-similar; Bioconvection; Entropy; Oblique magnetic field; Homotopy Analysis Method.

1. Introduction

Solar energy is the one of the best source of renewable energy. The addition of solid nanoparticles in convective fluids can significantly enhance solar energy collection and heat transfer processes and has further benefits in terms of inexpensive implementation and sustainability. The suspension of nanoparticles in a base fluid is termed as “nanofluid” [1–5]. Hunt [6] was the first researcher who used deployed nanoparticles to collect solar energy. Shehzad et al. [7] have investigated a solar energy model for MHD three-dimensional flow of Jeffrey nanofluid. Das et al. [8] have extended this study and considered the nonlinear thermal radiation effect on mixed convection stagnation flow of nanofluid induced by a sheet with the effects of chemical reactions. Uddin et al. [9] have applied a FEM to investigate the multiple slips and nonlinear radiation effects on nanofluid flow. Khan et al. [10] have considered the thermal radiation effect on an electrically-conducting nanofluid flow over a moving wedge.

The study of Bioconvection flows arises due to up-swimming of microorganism (cause density variation) has significant importance in different regimes such as environmental systems, micro-channel/systems, fuel cells and biological polymer synthesis [11], [12]. Initially, Kuznetsov and Avrachenko [13] have successfully studied the problem of bio-thermal stability utilizing nanofluids considering different boundary conditions. In 1992, the literature was successfully reviewed by Hill and Pedley [14] and later, Allouit et al. [15] has analyzed patterns in cylindrical domain to study the fluid momentum equation. The investigation of bioconvection fluid flow model induced by moving flat plate considering Stefan blowing effect is carried out by Uddin et al. [16]. The similar type of analysis on bioconvection involving Lie symmetries, slip flow, inclination of sheet, dual solution and stability analysis has been reported by Dhanai et al. [17]. Khan et al. [18] have applied RK7 shooting method to carried out the natural bioconvection nanofluid flow induced by a truncated cone. Waqas et al. [19] have investigated the influence of physical parameters on the second grade nanofluid flow induced by stretching surface with motile microorganism rate. They have observed that motile microorganism profile decreases with Prandtl number and Brownian motion parameter. Rashad et al. [20] have examined the bioconvection nanofluid flow with motile gyrotactic microorganisms over a horizontal circular cylinder using finite difference technique. The second law analysis of bioconvection MHD nanofluid flow examined by Khan et al. [21] between two stretchable rotating disk. They have applied the homotopy analysis method in this study. Recently, Aneja et al. [22] have investigated the effect of non-uniform magnetic field in the study of nanofluid flow containing the motile gyrotactic microorganisms induced by a inclined nonlinear stretching sheet. They observed that as the thermophoresis parameter increases, the

Published online: March 29 2021
rate of heat transfer decreases. Additionally, Khan et al. [23] have analyzed the Williamson nanofluid bioconvection flow through an oscillatory surface. Lu et al. [24] have investigated microorganism gyrotactic study on nanofluid flow in the neighborhood of stagnation point. They observed that microorganism distribution decreases for increasing the value of Peclet number. The thermodynamic performance of any engineering system can be quantified by second law analysis which is based on the premise that the entropy generation rate always increases in irreversible systems. Viscous dissipation, Ohmic dissipation, rate of heat transfer and diffusion of nanoparticles are major sources which can generate entropy in electrically-conducting nanofluids. Entropy generation analysis has many applications in the optimization of industrial thermal devices and stores, geothermal energy systems, solar collector designs, heat transfer pipes, cooling of electronic devices etc. Singh et al. [25] have considered entropy generation in alumina-water nanofluids. Aliboud and Saouli [26] have examined the entropy generation in viscoelastic fluid flow induced by stretching sheet. Butt et al. [27] studied entropy generation with thermal radiation and viscous dissipation effects in Blasius flow. Bhatti et al. [28] have analyzed the entropy generation for Eyring-Powell nanofluid flow over a stretching sheet. Bég et al. [29] presented the first solutions for magnetohydrodynamic swirling disk flow in hybrid nuclear propulsion with entropy generation, also plotting streamline and entropy distributions. Further studies of entropy generation minimization in energy and medical engineering sciences include Rashidi et al. [30] on hydromagnetic blood flows with lateral mass flux, Srinivas et al. [31] on radiative convection non-Newtonian channel flows, Akbar et al. [32] on biological cilia-generated propulsion of nanofluids with thermal convection and very recently Jangila and Bég [33] on hydromagnetic micropolar natural convection flows. Ramzan et al. [34] have studied the entropy generation for the carbon nanofluid bioconvection flow. Khan et al. [35] have investigated the effect of binary chemical reaction on entropy generation.

The important findings related to thermal transport in nanofluids including mathematical modeling (single/two phase), types and shape of nanoparticles, thermophysical properties and applications are discussed in reviews [36]–[42] and books [43]–[45] in detail. Further, Lyu et al. [46] have examined the experimental and theoretical study of MWCNT water nanofluid flow. The present article, motivated by hybrid magnetohydrodynamic (MHD) bioconvection nanofluid fuel cells, considers the entropy generation analysis of non-similar MHD bioconvection flow of nanofluid over a stretching sheet with nonlinear solar radiation flux. In the literatures [47]–[51] authors have transformed the boundary layer PDE equations of non-similarity flow into ODE using nondimensional parameters and then applied homotopy analysis method (introduced by Liao [52]) to solve these equations. Farooq et al. [53] have used the Mathematica package BVPH 2.0 to solve the nonsimilar boundary layer flow problem. In present article, we have successfully applied HAM to solve the dimensionless form of momentum, energy, nanoparticles mass and bioconvection (motile micro-organism species) equations which are the PDE with suitable boundary conditions. Extensive graphical and tabulated results are presented with validation where possible.

2. Mathematical Model

2D boundary layer incompressible MHD nanofluid flow with gyrotactic microorganisms is assumed through a stretching sheet. The swimming direction of microorganism is not affected by metallic nanoparticles. Heat transfer is considered along the sheet (horizontal axis) and solar flux is simulated with a non-linear thermal radiation model (Fig. 1). A constant magnetic field B_0 is applied at inclination β to the sheet. Maxwell displacement and magnetic induction effects are neglected. According these assumptions, the mathematical model of present problem can be written as

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = 0. \tag{1}$$

$$\rho_f \left[\frac{\partial u_x}{\partial x} + u_x \frac{\partial u_x}{\partial y} \right] = \mu_f \frac{\partial^2 u_x}{\partial y^2} + \left((T - T_c)(1 - C_1 - N_x)(\rho_u - \rho_f) + \rho_f \gamma \right) g - \sigma_\gamma B_0^2 \cos^2 \beta u_x, \tag{2}$$

Fig. 1. Physical model for magnetic bioconvection nanofluid boundary layer flow under solar radiative flux.
(\rho C_p) \left[\frac{\partial T}{\partial x} + u_y \frac{\partial T}{\partial y} \right] = k \frac{\partial^2 T}{\partial y^2} + D_b (\rho C_p) \left[\frac{\partial T}{\partial y} \right] + \frac{D_c}{D_T} \left[\frac{\partial T}{\partial y} \right]^\gamma - \frac{\partial q_y}{\partial y}, \tag{3}

u_x \frac{\partial C}{\partial x} + u_y \frac{\partial C}{\partial y} = D_c \left[\frac{\partial^2 C}{\partial y^2} + \frac{D_c}{D_T} \frac{\partial^2 T}{\partial y^2} \right], \tag{4}

u_x \frac{\partial N}{\partial x} + u_y \frac{\partial N}{\partial y} = N \frac{b W (\rho C_p)}{C_s} = D_m \frac{\partial^2 N}{\partial y^2}, \tag{5}

\text{restricted with the conditions}

\text{at } y = 0, \quad u_x = u_{sw}, \quad u_y = 0, \quad T = T_u, \quad \frac{\partial C}{\partial y} + \frac{D_c}{D_T} \frac{\partial T}{\partial y} = 0, \quad N = N_u \tag{6}

\text{as } y \to \infty, \quad u_x = 0, \quad T = T_u, \quad C = C_u, \quad N = N_u.

Here the Rosseland's approximation \(q_y = -4\sigma / 3k_y \times \partial T / \partial y \) is used for radiative heat flux \(q_y \). Apply transformations \(x = x', y = y', u_x = u_x', u_y = u_y', \) on eqs. (1)-(6), leading to:

\[\rho_c \left[u_x \frac{\partial u_x'}{\partial x'} + u_y \frac{\partial u_y'}{\partial y'} \right] = \rho_c \left[\frac{u_x}{u_{sw}} \frac{\partial u_x'}{\partial y'} + \frac{u_y}{u_{sw}} \frac{\partial u_y'}{\partial y'} \right] + \left[1 - C_d \right] (T - T_u) \beta \rho_f - (\rho_f - \rho) \left(C - C_d \right) \left(N - N_u \right) (\rho_f - \rho) \gamma \left[3k_y \frac{u_y}{u_{sw}} \right] \sigma \beta \rho_d \cos \gamma \frac{1}{u_{sw}} u_y', \tag{7} \]

\[\left(\rho C_p \right) \left[u_x \frac{\partial T}{\partial x'} + u_y \frac{\partial T}{\partial y'} \right] = k \frac{\partial^2 T}{\partial y^2} + D_c \left[\frac{1}{u_{sw}} \frac{\partial^2 T}{\partial y^2} \right] + \frac{D_c}{D_T} \frac{\partial^2 T}{\partial y^2} \right] + \frac{16 \sigma \beta \rho_d \cos \gamma}{3k_y u_{sw}} \left(T \frac{\partial^2 T}{\partial y^2} + 3T^2 \left[\frac{\partial \sigma}{\partial y} \right]^\gamma \right). \tag{8} \]

\[u_x \frac{\partial C}{\partial x'} + u_y \frac{\partial C}{\partial y'} = D_c \left[\frac{1}{u_{sw}} \frac{\partial^2 C}{\partial y^2} \right] + \frac{D_c}{D_T} \frac{\partial^2 T}{\partial y^2} \right] \tag{9} \]

\[u_x \frac{\partial N}{\partial x'} + u_y \frac{\partial N}{\partial y'} + \frac{\partial}{\partial u_{sw}} \left(\frac{N b W \left(\rho C_p \right)}{C_s} \right) = D_m \frac{\partial^2 N}{\partial y^2}, \tag{10} \]

The transformed boundary conditions emerge as:

\text{at } y' = 0, \quad u_x' = 1, \quad u_y' = 0, \quad T = T_u, \quad \frac{\partial C}{\partial y'} + \frac{D_c}{D_T} \frac{\partial T}{\partial y'} = 0, \quad N = N_u \tag{11}\text{as } y' \to \infty, \quad u_x' = 0, \quad T = T_u, \quad C = C_u, \quad N = N_u.

we invoke the following relations and dimensionless parameters in eqs. (7)-(11):

\[u_x' = \frac{\partial \psi'}{\partial y'}, \quad u_y' = -\frac{\partial \psi'}{\partial x'}, \quad \theta' = \frac{T - T_u}{T_c - T_u}, \quad \phi = \frac{C - C_d}{C_s}, \quad \chi = \frac{N - N_u}{N_u - N_u}, \quad \text{Re} = \frac{u_{sw}}{v}, \quad \text{Pr} = \frac{\nu}{\alpha}, \quad \text{M} = \frac{\sigma_B k}{\rho_d u_{sw}}, \quad \text{Nb} = \frac{\rho_c}{\rho_d}, \quad \text{Sc} = \frac{b W}{D_m} \tag{12} \]

\[\text{Next we introduce the scaling variables:} \]

\[x' = x, \quad y' = \frac{y'}{\sqrt{\text{Re}}}, \quad \psi' = \frac{\psi'}{\sqrt{\text{Re}}}, \quad \theta' = \theta, \quad \phi' = \phi \quad \text{and} \quad \chi' = \chi. \tag{13} \]

After then, we apply the following non-similarity transformations on eqs. (9)-(11):

\[\eta = \frac{y'}{\sqrt{\text{Re}}}, \quad \xi = x', \quad \psi = f(\eta, \xi) \sqrt{\text{Re}}, \quad \theta = \theta(\eta, \xi), \quad \phi = \phi(\eta, \xi), \quad \chi = \chi(\eta, \xi) \tag{14} \]

and obtained following dimensionless system of nonlinear partial differential equations

\textbf{Momentum}

\[
\frac{\partial^2 f}{\partial \eta^2} + \frac{1}{2} \frac{\partial^2 f}{\partial \xi^2} - M \cos^2 \beta \left(\frac{\partial f}{\partial \eta} \right) \left(\frac{\partial^2 f}{\partial \xi^2} \right) + \text{Ric} (\theta - N \phi - R \chi) = 0, \tag{15} \]
Energy

\[
\frac{1}{Pr} \left\{ \frac{\partial \theta}{\partial \eta} + \text{Nu} \frac{\partial \phi}{\partial \eta} - \text{Sh} \frac{\partial \phi}{\partial \eta} \right\} + \frac{1}{2} f \frac{\partial f}{\partial \eta} - \zeta \left(\frac{\partial f}{\partial \eta} \frac{\partial \phi}{\partial \eta} - \frac{\partial f}{\partial \xi} \frac{\partial \phi}{\partial \xi} \right) + \frac{4R}{3Pr} \left(\theta(t, -1) + 1 \right)^2 \left(\theta(t, -1) + 1 + \frac{\partial f}{\partial \eta} + 3(t, -1) \frac{\partial \phi}{\partial \eta} \right) = 0, \tag{16}
\]

Nanoparticle Species

\[
\frac{1}{Sc} \left(\frac{\partial f}{\partial \eta} \text{Nu} \frac{\partial \theta}{\partial \eta} + \frac{1}{2} f \frac{\partial f}{\partial \eta} - \zeta \left(\frac{\partial f}{\partial \eta} \frac{\partial \phi}{\partial \eta} - \frac{\partial f}{\partial \xi} \frac{\partial \phi}{\partial \xi} \right) \right) = 0, \tag{17}
\]

Microorganism Species

\[
\frac{\partial \chi}{\partial \eta} + \frac{Sc}{f} \left(\frac{1}{2} f \frac{\partial f}{\partial \eta} - \zeta \left(\frac{\partial f}{\partial \eta} \frac{\partial \phi}{\partial \eta} - \frac{\partial f}{\partial \xi} \frac{\partial \phi}{\partial \xi} \right) \right) - \text{Pe} \left(\chi + \Theta \right) \frac{\partial f}{\partial \eta} + \frac{\partial \phi}{\partial \eta} = 0, \tag{18}
\]

Boundary Conditions

at \(\eta = 0, \ f = 0, \ \frac{\partial f}{\partial \eta} = 1, \ \theta = 1, \ \chi = 1, \ \frac{\partial \phi}{\partial \eta} + \frac{\text{Nu} \ \frac{\partial \theta}{\partial \eta}}{\text{Nb} \ \frac{\partial \eta}{\partial \eta}} = 0, \tag{1}\)

as \(\eta \to \infty, \ \frac{\partial f}{\partial \eta} \to 0, \ \theta \to 0, \ \chi \to 0, \ \phi \to 0. \)

In fuel cell (solar) systems, key engineering design parameters include the sheet surface shear stress (skin friction), the wall heat transfer gradient, wall nano-particle mass transfer gradient and wall motile micro-organism flux gradient which can be written respectively as follows:

(i) Skin friction coefficient \(C_f \)

\(C_f = \frac{\tau_w}{\rho u_w u_w}, \) where the shear stress \(\tau_w \) is given as \(\tau_w = \mu \frac{\partial u}{\partial y} \). Using the non-similarity transformations on \(C_f \) we obtain:

\[
\sqrt{Re \xi} C_f = \frac{\partial f}{\partial \eta}(0, \xi) = f''(0, \xi) = \text{Cfr}(\xi), \tag{20}
\]

(ii) Local Nusselt number \(Nu \)

This defines the wall heat transfer gradient and also the ratio of convection to conduction heat transfer. It is given mathematically as follows:

\[
\text{Nu} = \frac{l(q_{w} + q_{v})}{k_{w}(T_{w} - T_{l})}. \tag{21}
\]

Here

\[
q_{w} = -k_{w} \frac{\partial T}{\partial y}_{y=0} - D_{w} h_{w} \frac{\partial C}{\partial y} \frac{D_{w} \frac{\partial T}{\partial y}}{D_{w} \frac{\partial y}{\partial y}} \quad \text{and} \quad q_{v} = -\frac{4\sigma_{e}}{3k_{e}} \frac{\partial T^{4}}{\partial y}, \quad h_{v} = c_{v} T. \tag{22}
\]

Using eq. (20) and the definitions of \(q_{w} \) and \(q_{v} \) in \(\text{Nu} \) then we obtain:

\[
\sqrt{\frac{\xi}{Re}} \text{Nu} = - \frac{\partial \theta}{\partial \eta}(0, \xi) \left| 1 + \frac{4R}{3} t^{4} \right| = -\phi'(0, \xi) \left| 1 + \frac{4R}{3} t^{4} \right| \quad \text{Nur}(\xi). \tag{23}
\]

(iii) Local Sherwood number \(Sh \)

This defines the wall mass transfer gradient for nano-particle species, and takes the form:

\[
\text{Sh} = \frac{l q_{m}}{D_{m}(C_{m} - C_{l})}. \tag{24}
\]

Here wall nano-particle mass flux is given by:

\[
q_{m} = \frac{j_{m}}{\rho_{m}} = \left(\frac{\partial C}{\partial y} + \frac{D_{w} \frac{\partial T}{\partial y}}{D_{w} \frac{\partial y}{\partial y}} \right)_{y=0} = 0. \tag{25}
\]

Hence Sherwood number is zero.

(iv) Local wall motile microorganism flux \(Nn \)

Micro-organism species gradient at the wall (sheet) is quantified by \(Nn \) which is defined as:
Here the wall motile microorganism flux q_w is given by:

$$q_w = -D_n \left(\frac{\partial N}{\partial y} \right)_{y=0}. \tag{27}$$

Using eq. (20) we arrive at

$$\sqrt{\frac{\xi}{\text{Re}}} N_n = -\frac{\partial \chi}{\partial y}(0, \xi) = -\chi'(0, \xi) = Nn(\xi). \tag{28}$$

3. Second Law Thermodynamic Analysis

Bejan [54] has derived the expression of volumetric rate of entropy generation S_c. For the present problem S_c is defined as:

$$S_c = k_m \left(\frac{T_m}{T_a}\right)^{3} \left[1 + \frac{16\sigma T_m^3}{3 k_b k_l} \left(\frac{\partial T}{\partial y}\right)^2 \right] + \frac{1}{T_a} \left[\mu \left(\frac{\partial u}{\partial y}\right)^2 \right] + \frac{\sigma B_k^2 \cos^2 \alpha}{T_a} u_s^2 + \frac{R_D E_b}{C_s} \left(\frac{\partial C}{\partial y}\right)^2 \left(\frac{\partial C}{\partial y}\right) = S_1 + S_2 + S_3 \tag{29}$$

In eq. (29), $S_1 = k_m / T_a \left[1 + \left(16\sigma T_m^3 / (3 k_b k_l) \left(\frac{\partial T}{\partial y}\right)^2 \right) \right]$, $S_2 = 1 / T_a \left[\mu \left(\frac{\partial u}{\partial y}\right)^2 \right]$, $S_3 = \sigma B_k^2 \cos^2 \alpha / T_a$ and $S_j = R_D / C_s \left(\frac{\partial C}{\partial y}\right)^2$ are the entropy generation (EG) generated by heat transfer, viscous dissipation, Ohmic dissipation and nanoparticles diffusion, respectively.

The characteristic entropy S_c is defined as:

$$S_c = \frac{k_m (T_m - T_a)^3}{T_a^3} \tag{30}$$

Apply the non-similarity transformations defined in Eq. (14) to the ratio of S_c to S_1 then we obtain:

$$N_n = \frac{\text{Re}}{\xi} \left[1 + \frac{4 \text{Re} \text{Ec} \text{Pr}}{\Omega} \left(f'' + \zeta \cos^2 \alpha \right) \right] + \frac{\chi_s}{\Omega} \left[\frac{1}{\Omega} \phi' + \theta' \phi' \right], \tag{31}$$

where $\chi_s = RD_c \tau_a$ and $\Omega = (T_a - T_m) / T_a$.

4. Homotopy Analysis Method

Although many semi-analytical and numerical methods are available for solving nonlinear coupled systems of partial differential equations, here we implement the excellent homotopy analysis method (HAM). The definitive treatise on this approach is given by Liao [52]. The technique has been implemented in an extensive range of fluid dynamics applications in the past decade. These include bio-rheological smart magnetic lubrication analysis [55], coating of industrial components with nanoparticles diffusion, respectively. Further applications are provided in Abdallah [61] (on magneto-convection), Hayat et al. [62] (on slip Sakiadi flows), Liao [63] (on variations of HAM), Gupta and Gupta [64] (on nonlinear Cauchy problems), Van Gorder et al. [65] (on convergence aspects of HAM) and Yin et al. [66] (on fractional wave equations). Applying HAM to Eqns. (15)-(18), we define the following initial guesses, linear operators and auxiliary parameter:

$$f_0(\eta, \xi) = 1 - e^{-\eta}, \quad \phi_0(\eta, \xi) = e^{-\frac{\eta}{\text{Re} \text{Ec} \text{Pr}}}, \quad \phi_0(\eta, \xi) = -\frac{\text{Re} \text{Ec} \text{Pr}}{\text{Nb} \text{Re} \text{Ec} \text{Pr}} e^{-\eta}, \quad \chi_0(\eta, \xi) = e^{-\eta}. \tag{32}$$

$$L_f = \frac{\partial f(\eta, \xi)}{\partial \eta} + \frac{\partial \Omega f(\eta, \xi)}{\partial \xi}, \quad L_\theta = \frac{\partial \Omega \phi(\eta, \xi)}{\partial \eta} + \frac{\partial \Omega \chi(\eta, \xi)}{\partial \eta}, \text{ where } \Omega = \theta, \phi \text{ and } \chi. \tag{33}$$

The mth order deformation equations are defined as:

$$L_m[\Theta_m(\eta, \xi) - \Psi_m(\eta, \xi)(\eta, \xi)] = h_m R_m^\text{st}(\eta, \xi), \text{ and } H_m = 1, \tag{34}$$

where $\Theta = f, \theta, \phi$ and χ with boundary conditions

$$\begin{align*}
\text{at } \eta = 0, \quad f_m = 0, \quad \phi_m & = 0, \quad \chi_m = 0, \\
\text{and } \eta = \infty, \quad \phi_m & = 0, \quad \chi_m = 0.
\end{align*} \tag{35}$$

Here the functions $R_m^\text{st}(\eta, \xi)$ are defined as
\[R_m^{\infty}(y, \zeta) = \frac{1}{m-1} \left\{ \frac{\partial^{m-1} N_y}{\partial q^{m-1}} \right\}_{q=0}, \]

(36)

where \(\Theta = f, \theta, \phi \) and \(\chi \) are obtained from eqs. (15)-(18). The function \(\Psi_m = 0 \) for \(m \leq 1 \) and \(\Psi_m = 1 \) for \(m > 1 \). The convergence is dependent upon the parameters \(h_f, h_\theta, h_\phi \) and \(h_\chi \). The solutions \(f(y, \zeta) \), \(\theta(y, \zeta) \), \(\phi(y, \zeta) \) and \(\chi(y, \zeta) \) are generated thereby as the following power series expansions:

\[\Phi(y, \zeta) = \Phi_0(y, \zeta) + \sum_{n=1}^{\infty} \Phi_n(y, \zeta), \]

(37)

where \(\Phi = f, \theta, \phi \) and \(\chi \).

4.1. Convergence of HAM

To determine suitable values of the auxiliary parameters \(h_f, h_\theta, h_\phi \) and \(h_\chi \) we have plotted \(h \)-curves with \(f'(0, \zeta), \theta'(0, \zeta), \phi'(0, \zeta) \) and \(\chi'(0, \zeta) \) for different values of the non-similar parameter \(\xi \) which are shown in Fig. 2. In Fig. 2, horizontal lines are obtained in the ranges \(h_f = [-0.65, -0.3], h_\theta = [-0.5 - 0.005], h_\phi = [-0.5 - 0.005], h_\chi = [-0.6 - 0.025] \). It has been observed that the values of \(f''(0, \zeta), \theta'(0, \zeta), \phi'(0, \zeta) \) and \(\chi'(0, \zeta) \) are convergent up to four decimal places for \(h_f = -0.4, h_\theta = -0.3, h_\phi = -0.3, h_\chi = -0.3 \). These values are shown in Table-1. The residual errors \(E_\phi, E_\theta, E_\phi, E_\chi \) for the velocity, temperature, concentration and microorganism respectively are defined as

\[E_\Phi = \frac{1}{L^2} \frac{1}{K^2} \sum_{i=1}^{L} \sum_{j=1}^{K} N_y \left| \left(\Phi_n(y, \zeta) \right|_{\zeta=0} \right| \beta, \]

(38)

where \(\Phi = f, \theta, \phi \) and \(\chi \), and \(\delta_\eta, \delta_\xi \) are step lengths (increment) and \(L K \) corresponds to total number of data. The 2500 data set are compared and residual errors are displaced in Table-2 for different order of approximations, \(m \) which shows that error decreases with increment in the value of \(m \). Thus, it gives us confidence that selected value of auxiliary parameters led us to get convergent solution with desired accuracy for \(m = 12 \).

5. Computational Results and Discussion

The HAM solutions have been evaluated numerically with MAPLE symbolic software. in Figs. 3-8. These figures allow a parametric analysis of the influence of magnetic parameter \(M \), radiation parameter \(R \) and Prandtl number \(Pr \) on temperature, skin friction, Nusselt number and rate of motile microorganism density at the surface and entropy generation number, values of involving parameters are fixed as:

\[Pr = 5, M = 1, \text{Nb} = \text{Nt} = \text{Nr} = 0.1, \text{Ri} = 0.5, \text{Sc}_{\beta} = 1, \text{Sc} = 2, \beta = \frac{\pi}{4}, \text{Pe} = 1, \Omega = 0.1, \text{Rb} = R = 0.1, \text{tr} = 0.5, \chi_{\beta} = 0.005, \Omega = 0.1. \]
whereas without microorganism has maximum heat transfer for default set of parameters. Increment in \(R_b \) enhances \(\text{Nusselt number} \) and fixed values of \(\Omega_1, M, R_b = R = 0.1, N_r = 0.1, \text{tr} = 0.1, \xi = 0.1 \).

Table 1. Order of Convergence: \(Pr = 1, M = 0.1, Nb = N_t = 0.1, Sc_e = 2, \beta = \pi / 4, Ri = 3, S\chi_b = 1, Pe = 1, \Omega_1 = 0.1, R_b = R = 0.1, N_r = 0.1, \text{tr} = 0.1, \xi = 0.1 \).

<table>
<thead>
<tr>
<th>Order of approximation</th>
<th>(-f''(0, \xi))</th>
<th>(-\phi''(0, \xi))</th>
<th>(\phi'(0, \xi))</th>
<th>(-\chi'(0, \xi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-0.3915</td>
<td>0.4658</td>
<td>0.4110</td>
<td>-0.0401</td>
</tr>
<tr>
<td>9</td>
<td>-0.2975</td>
<td>0.4724</td>
<td>0.4168</td>
<td>-0.1096</td>
</tr>
<tr>
<td>12</td>
<td>-0.2676</td>
<td>0.4802</td>
<td>0.4237</td>
<td>-0.1242</td>
</tr>
<tr>
<td>15</td>
<td>-0.2697</td>
<td>0.4812</td>
<td>0.4246</td>
<td>-0.1265</td>
</tr>
<tr>
<td>20</td>
<td>-0.2687</td>
<td>0.4811</td>
<td>0.4246</td>
<td>-0.1264</td>
</tr>
</tbody>
</table>

Table 2. Convergence of HAM via squared residual error \(Pr = 1, M = 0.1, Nb = N_t = 0.1, Sc_e = 2, \beta = \pi / 4, Ri = 3, S\chi_b = 1, Pe = 1, \Omega_1 = 0.1, R_b = R = 0.1, N_r = 0.1, \text{tr} = 0.1, \xi = 0.1 \).

<table>
<thead>
<tr>
<th>Order of approximation</th>
<th>(E_r)</th>
<th>(E_r)</th>
<th>(E_r)</th>
<th>(E_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.1342 \times 10^{-4}</td>
<td>4.5899 \times 10^{-4}</td>
<td>3.3387 \times 10^{-4}</td>
<td>5.6566 \times 10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>9.7085 \times 10^{-5}</td>
<td>8.7869 \times 10^{-5}</td>
<td>2.7893 \times 10^{-5}</td>
<td>2.6946 \times 10^{-5}</td>
</tr>
<tr>
<td>6</td>
<td>2.6726 \times 10^{-6}</td>
<td>4.5972 \times 10^{-6}</td>
<td>2.2762 \times 10^{-6}</td>
<td>1.0217 \times 10^{-6}</td>
</tr>
<tr>
<td>8</td>
<td>1.3005 \times 10^{-7}</td>
<td>3.9521 \times 10^{-7}</td>
<td>1.9032 \times 10^{-7}</td>
<td>3.5005 \times 10^{-7}</td>
</tr>
<tr>
<td>10</td>
<td>3.7030 \times 10^{-7}</td>
<td>2.0927 \times 10^{-7}</td>
<td>7.6156 \times 10^{-7}</td>
<td>1.6960 \times 10^{-7}</td>
</tr>
<tr>
<td>12</td>
<td>7.4016 \times 10^{-8}</td>
<td>8.3083 \times 10^{-8}</td>
<td>1.7122 \times 10^{-8}</td>
<td>8.9124 \times 10^{-8}</td>
</tr>
</tbody>
</table>

Table 3. Comparison of Present Results with Previous Published Results, \(M = N_t = Nb = 0, \xi = 0 \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.1691</td>
<td>0.1692</td>
<td>0.1691</td>
<td>0.1691</td>
<td>0.1691</td>
</tr>
<tr>
<td>0.7</td>
<td>0.4539</td>
<td>0.4539</td>
<td>0.4539</td>
<td>0.4539</td>
<td>0.5348</td>
</tr>
<tr>
<td>2</td>
<td>0.9114</td>
<td>0.9113</td>
<td>0.9114</td>
<td>0.9113</td>
<td>0.9114</td>
</tr>
<tr>
<td>7</td>
<td>1.8954</td>
<td>1.8954</td>
<td>1.8954</td>
<td>1.8954</td>
<td>1.8904</td>
</tr>
</tbody>
</table>

Table 4. Present values of skin friction coefficient \(Cfr \), Nusselt number \(Nur \), wall motile microorganism flux \(Nnr \) with variation of \(\xi \) and fixed values of other parameters for twelfth order of convergence.

<table>
<thead>
<tr>
<th>(R_b = 0.1)</th>
<th>(R_b = 0.2)</th>
<th>(R_b = 0.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi)</td>
<td>(Cfr)</td>
<td>(Nur)</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.4450</td>
<td>1.1801</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.4330</td>
<td>1.1812</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.4210</td>
<td>1.1824</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.4089</td>
<td>1.1836</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.3969</td>
<td>1.1851</td>
</tr>
</tbody>
</table>

Table 5. Effect of the thermophoresis parameter \(N_t \), nonlinear radiation parameter \(R \), magnetic parameter \(M \) and Rayleigh number \(R_b \) on the Nusselt number for the fixed values of others parameters with twelfth order of convergence.

<table>
<thead>
<tr>
<th>((M,R_b))</th>
<th>(N_t)</th>
<th>(R)</th>
<th>((0.1,0.1))</th>
<th>((0.2,0.1))</th>
<th>((0.1,0.2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.4802</td>
<td>0.4795</td>
<td>0.4753</td>
<td>0.4968</td>
<td>0.4979</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4968</td>
<td>0.4979</td>
<td>0.5174</td>
<td>0.5166</td>
<td>0.5134</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4689</td>
<td>0.4681</td>
<td>0.4571</td>
<td>0.4563</td>
<td>0.4467</td>
</tr>
</tbody>
</table>

We have compared the values of rate of heat transfer \(-\phi''(0, \xi) \) with the previous published values in the absence of magnetic field, nanoparticles and bioconvection in Table-3. This comparison is performed for self-similar flow in the absence of magnetic field (i.e. electrically non-conducting nanofluids) and evidently very good agreement with Wang [67], Khan and Pop [68] and Gorla and Sidawi [69].

It is noticed from Table-4 that the values of skin friction coefficient are decreased with an increase in the value of \(\xi \) whereas the rate of heat transfer (Nusselt number) and motile organism flux are increased with this parameter. The present HAM values of Nusselt number with variation of thermophoresis parameter \(N_t \), nonlinear radiation parameter \(R \), magnetic parameter and Rayleigh number \(R_b \) are tabulated in Table-5. This table shows that the nonlinear parameter is the key factor to increase the rate of heat transfer at the surface. Consequently, other parameters are retarding parameters for the local Nusselt number.

Fig. 3 is plotted to check the behavior of streamlines (Contour ranges: 0.1820 to 1.3821) and isotherms (Contour ranges: 0.8633 to 0.0770). It can be easily seen that momentum boundary layer (impact reaches \(y^+>1 \)) is higher than thermal boundary layer. The influence of several parameters is also shown on Nusselt number (Fig.4). The micro-organism parameters, Pe and \(\Omega \) has same and diminishing effect on Nusselt number and Prandtl number \(Pr \) has significant influence as compared to \(N_t \) on Nur. The value of \(Ri = 3.5 \) without microorganism has maximum heat transfer for default set of parameters. Increment in \(R_b \) enhances temperature in boundary layer thus causes decrement in Nusselt number (shown in Fig. 4(c)).
Fig. 3. Representation of streamlines (left) and isotherms (right).

Fig. 4. Influence of various parameters (a) Micro-organism (Pe, Ω) (b) (Nt, Pr) (c) Buoyancy parameter (Rb, Ri) on Nusselt number.

Fig. 5. Influence of magnetic parameter (M, ξ) on skin friction, Nusselt number and motile microorganism flux.
Fig. 5 and Fig. 6 are examined the influence of magnetic and non-similar (streamwise coordinate), parameters on skin friction coefficient (C_f), Nusselt number (N_u) and motile microorganism density number gradient (N_{nr}), respectively. Fig. 5 shows that these numbers, skin friction and motile microorganism flux are all decreasing functions of magnetic parameter, M. The magnetic body force term generates impedance to the flow which induces deceleration throughout the boundary layer. This effectively decreases the shearing stress at the wall and suppresses skin friction (C_f). The magnetic field therefore clearly has an inhibiting effect on the flow and enhances momentum boundary layer thickness. The additional work which must be expended to drag the nanofluid against the action of the magnetic field (the oblique orientation is considered, nevertheless there is still a transverse component which manifests as the Lorentz body force) is dissipated as thermal energy (heat) within the body of the nanofluid. This causes heat to be drawn away from the wall also and results in a decrease in heat transfer rate to the wall i.e. a reduction in Nusselt number (N_u). Simultaneously the thermal boundary layer thickness is enhanced. These trends concur with numerous other studies in the literature including the classical work of Cramer et al. [70] and more recently for nanofluid magnetic bioconvection in the work of Dhanai et al. [17]. The opposition to momentum development and the retardation in the flow encourages the diffusion of micro-organisms within the boundary layer and the migration of this species away from the wall, as noted in Uddin et al. [16], [71]. This decreases the rate of motile micro-organism diffusion to the wall (sheet) and the upshot is therefore depletion in motile microorganism flux (N_{nr}). Overall therefore the significant influence of magnetic field on transport characteristics is confirmed with our results and the deployment of magnetized bioconvection nanofluids in fuel cells would appear to be a promising venture for energy resources technologies, as further corroborated in Katz et al. [72] and Goh et al. [73].

In Fig. 6, an increase in radiation parameter is observed to substantially enhanced skin friction (C_f) and motile microorganism flux (N_{nr}) whereas it significantly reduces the Nusselt number (N_u). The Rosseland approximation which has been used to simulate radiative solar flux is valid for optically-thick nanofluids which can absorb or emit radiation at their boundaries. The energization of the magnetic nanofluid results in the progressive removal of heat from the wall (sheet) which decreases Nusselt number magnitudes. However, the acceleration in the boundary layer flow results in a boost in skin friction at the wall. Although radiative flux does not feature in either the momentum or micro-organisms species conservation equations, via the thermal modification in the flow, both velocity and micro-organism density number fields are significantly altered. The acceleration in the flow aids in the diffusion of micro-organisms towards the wall which manifests in an elevation in motile microorganism flux (N_{nr}). Solar radiative flux therefore is observed to work quite well in conjunction with nanofluid species and micro-organism species diffusion and this would suggest that hybrid nano-bio-fuel cells holds some promise in renewable energy systems.

From Fig. 7, it can be observed that C_f, N_u and N_{nr} are all decreased with increment in the value of bioconvection Rayleigh number R_b. The bioconvection Rayleigh number $R_b = \left[\left(\frac{N_{nf} - N_{nf}}{\nu_{nf} - \nu_{nf}}\right)\right]/\left[\left(\frac{\nu_{nf}(1 - C) N_{nf} - T_n}\right)\right]$ features in the momentum equation (15) in the term $-R_i R_b \chi$ and effectively couples the momentum (velocity) field with the micro-organism density number field. The dominant effect of increasing R_b is to decelerate the magnetic nanofluid boundary layer and to effectively reduce the momentum (velocity) boundary layer thickness. Skin friction is therefore also reduced since the nanofluid shears slower past the stretching wall. The reduction in skin friction however serves to enhance the diffusion into the boundary layer of nano-particles and micro-organisms. The rate of transfer of nanoparticles and micro-organisms to the wall is therefore stifled and this will manifest in a plummet in both Nusselt number (N_u) and motile microorganism flux (N_{nr}), as visualized in Fig. 7 b, c, respectively.

Fig. 8 is plotted to express the impact of radiation parameter R and Prandtl number on temperature. It indicates that the increasing value of radiation parameter improves the temperature of nanofluid whereas higher Prandtl number induces the opposite behavior. As noted earlier greater solar radiative flux energizes the nanofluid which elevates temperatures (and reduced Nusselt numbers). The Prandtl number (Pr) is prescribed values higher than unity which are appropriate for highly-doped water-based magnetic nano-particle suspensions. For Prandtl number of unity, both the boundary layers (momentum and temperature) are of the same thickness. However, when Prandtl number exceeds unity, the thickness of temperature boundary layer is less than the momentum boundary layer thickness. Generally, higher Pr fluids lower nanofluid temperatures in the boundary layer regime which is undesirable in solar nano-materials.
Fig. 7. Effect of bioconvection Rayleigh number on skin friction, Nusselt number and motile organism flux.

Fig. 8. Effect of radiation parameter and Prandtl number on temperature.

Fig. 9. Effect of β, Re, M and Pr on entropy generation number.
Fig. 9 depicts the influence of magnetic field inclination (β), Reynolds number (Re), magnetic parameter (M) and Prandtl number (Pr) on entropy generation number. This figure illustrates that Re, M and Pr are responsible for enhancing the entropy generation in the system whereas greater inclination of magnetic field generates a reduction in entropy generation (the magnetic body force is reduced with increasing values of inclination angle and is a maximum only for the zero inclination case, for which cosine function attains a maximum value of unity). A combined influence of physical parameters on entropy generation number is shown in Fig. 10, which represents that Ns is an increasing function of several controlling parameters such as Prandtl number, Eckert number, mixed convection parameter, Rayleigh number Rb and thermophoresis parameter whereas it decreases with an enhancement in the value of Brownian motion parameter.

6. Concluding Remarks

A mathematical study has been presented for the heat and mass transfer in non-similar bioconvection flow of nanofluid under oblique magnetic field with nonlinear radiation solar flux. In this study, second law thermodynamic analysis is also performed. Homotopy analysis method is implemented to find out the series solution of the transformed dimensionless system of nonlinear partial differential equations. The influence of leading parameters on temperature, skin friction coefficient, Nusselt number and motile microorganism flux is presented graphically. The principal findings of the present study can be summarized as follows:

- Skin friction coefficient decreases with magnetic parameter as well as bioconvection Rayleigh number whereas it increases with radiation parameter.
- Local Nusselt number is found to be a decreasing function of magnetic parameter, radiation parameter and bioconvection Rayleigh number.
- Motile microorganism flux rate is depressed with magnetic parameter and bioconvection Rayleigh number whereas it is enhanced with radiation parameter.
- Temperature of nanofluid increases with radiation parameter whereas it is decreased with Prandtl number.
- The entropy generation analysis demonstrates that the entropy generation number increases with inertial effect ($Reynolds$ number), radiation parameter and Prandtl number whereas it decreases with increasing orientation of the magnetic field (i.e. decreasing Lorentz magnetic body force).

The present simulations provide a solid benchmark for more advanced computational simulations of solar magnetic nanofluid bioconvection fuel cell analysis and efforts in this direction, with a particular emphasis on more complex geometries (annular, pipe, cubic, etc.), are currently underway.

Author Contributions

N. Shukla (NS) initiated the project and suggested the appropriate non-similar mathematical model for present nanofluid problem. P. Rana (PR) performed the HAM analysis and developed the MAPLE codes after discussion with NS. S. Kuharat (SK) and O. Anwar Bég (OB) examined the validation of result. The manuscript was written through the contribution of all authors. All authors discussed the results, reviewed and approved the final version of the manuscript.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The authors received no financial support for the research, authorship and publication of this article.

References

Non-similar Radiative Bioconvection Nanofluid Flow under Oblique Magnetic Field with Entropy Generation

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.