Household food insecurity, diet quality and obesity: an explanatory model

Keenan, GS, Christiansen, P and Hardman, CA

http://dx.doi.org/10.1002/oby.23033

Title
Household food insecurity, diet quality and obesity: an explanatory model

Authors
Keenan, GS, Christiansen, P and Hardman, CA

Type
Article

URL
This version is available at: http://usir.salford.ac.uk/id/eprint/58227/

Published Date
2021

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Objective: Food insecurity (a lack of stable access to nutritious food) is reliably associated with poor diet, malnutrition, and obesity; however, the underlying mechanisms are unclear. In this study, the hypothesis that these relations are explained by higher levels of distress, which are due to the experience of food insecurity, and unhealthy coping behaviors (eating high-calorie foods, drinking alcohol) was tested.

Methods: Adults from the United Kingdom (N = 604), who were recruited online and at food banks, completed questionnaire measures of household food insecurity, physical stress, psychological distress, eating to cope, drinking to cope, diet quality, and self-reported height and weight to calculate BMI.

Results: Structural equation modeling was used to test the hypothesized relationships, including a multilevel structural model controlling for the effect of income. As predicted, food insecurity was indirectly associated with higher BMI via greater distress and eating to cope. Food insecurity was directly associated with poorer diet quality, but this relationship was not explained by distress and eating to cope.

Conclusions: Our data provide novel insight into the psychological experience of being food-insecure and how maladaptive coping mechanisms might play some role in the association between food insecurity, diet, and obesity.

Introduction

Food insecurity refers to unreliable access to nutritionally adequate and safe foods, which is usually the result of a lack of financial resources. On a global scale, over 2 billion people are estimated to experience food insecurity, including 8% of the population in North America and Europe, with this number currently rising (1). In addition to food insecurity being associated with many noncommunicable diseases (2,3), it is a robust predictor of obesity in children and adults (4).

According to the Insurance Hypothesis, greater fat storage occurs in response to food insecurity because it is an adaptive strategy to protect against starvation (5). Indeed, in nonhuman animals, fat reserves have been shown to increase under conditions of food restriction (5). However, it is unclear how increases in body fat are achieved when access to food is limited or unpredictable (6).

Study Importance

What is already known?

► Food insecurity (a lack of stable access to nutritious food) is reliably associated with obesity and a less nutritious diet, but the underlying mechanisms are not yet clear.
► Research has identified links between food insecurity and increased distress and between distress and maladaptive coping mechanisms (e.g., eating to cope). However, no studies to date have explored whether household food insecurity might be associated with elevated BMI via the mediating pathway of increased distress and eating to cope.

What does this study add?

► Household food insecurity was indirectly associated with higher BMI via greater experienced distress and the use of food as a coping mechanism.
► Food insecurity was directly associated with poorer diet quality, but this relationship was not explained by distress and eating to cope.

How might these results change the direction of research or focus of clinical practice?

► Interventions seeking to reduce obesity prevalence in food-insecure populations will likely benefit from targeting sources of distress and subsequent coping mechanisms.
► Further investigation of the psychological mechanisms that might drive eating behavior in response to household food insecurity will be of benefit in the future.
In humans, the greater availability of low-cost, energy-dense foods in neighborhoods where food insecurity is high is thought to play a key role in the association between food insecurity and BMI (7,8). Food insecurity is also robustly associated with anxiety and depression (9,10), and emotional distress may be fundamental in explaining the relationship between socioeconomic disadvantage and obesity (11,12). Emotional distress is associated with increased food intake and higher BMI (13,14). More specifically, individuals may seek to alleviate distress through maladaptive coping behaviors, such as eating energy-dense palatable foods or consuming alcohol. Consistent with this, lower socioeconomic status is indirectly associated with higher BMI via increased emotional distress and subsequent emotional eating (15). Although socioeconomic disadvantage and food insecurity are closely related, they are distinct constructs (16,17), and the potential for psychological distress and unhealthy coping behaviors to explain the food insecurity–obesity association has not been examined previously.

In the current study, we collected primary data and used structural equation modeling to test a theoretical model of the associations between household food insecurity (HHFI), poor diet quality, and obesity. Distress plays a central role in the model and was operationalized as both physical symptoms of stress (including wear and tear on the body, or “allostatic load”) and psychological distress (depression, stress, anxiety). Maladaptive coping via eating unhealthy foods and drinking alcohol were included as both and are associated with more frequent consumption of unhealthy foods and increased BMI (15,18,19). Adults from the United Kingdom (UK) completed online questionnaire measures of the target constructs.

We predicted that HHFI would be indirectly associated with higher BMI and poorer diet quality via distress and subsequent eating and drinking to cope. Specifically, greater HHFI would be associated with greater distress (emotional and physical stress); greater distress would be associated with greater eating and drinking to cope; and greater eating and drinking to cope would be associated with higher BMI and poorer diet quality.

Methods

Participants

Individuals were recruited via (1) visits to food banks in the city of Liverpool (northwest of the UK), (2) a database of individuals who had given consent to be contacted about university research studies, and (3) advertisements on social media (Facebook) targeted at individuals aged between 18 and 75 years and living within a 25-mile radius of the city of Liverpool. As reimbursement for time and effort to complete the questionnaires, participants were anonymously entered into a prize drawing to win shopping vouchers (1 × £100, 1 × £50, 2 × £25 prizes). Based on the formula by Kim (20), a minimum of 467 participants were needed to observe a close-fitting root-mean-square error of approximation (RMSEA) ($df=24$, $\alpha<0.05$, 90% power). We rounded this up to 500 and aimed to recruit more than this number to account for any incomplete responses. Ethical approval for the study was granted by the University of Liverpool’s Research Ethics Committee.

Demographic information. Participants reported their age (in years), gender, ethnicity, and the first three characters of their post code. Their total household income (nine-point scale: 1 = £<5,200, 2 = £5,200-£10,399, 3 = £10,400-£15,599, 4 = £15,600-£20,799, 5 = £20,800-£25,999, 6 = £26,000-£36,399, 7 = £36,400-£51,999, 8 = £52,000-£77,999, and 9 = ≥£78,000) and highest level of education (eight-point scale: 1 = none, 2 = General Certificate of Secondary Education grade D or below, 3 = General Certificate of Secondary Education grade C or above, 4 = A-level or equivalent, 5 = university degree or equivalent, 6 = postgraduate qualification or equivalent, 7 = master’s degree or equivalent, 8 = PhD or equivalent) were reported using ordinal scales. They also reported their employment status (employed full time, employed part time, unemployed looking for work, unemployed not looking for work, retired, student, unable to work because of health or disability, housewife/husband, voluntary employment), the number of adults living in their household (including themselves; options: one, two, three, four, five, or six or more), and the number of children (under 18 years of age) living in their household (options: none, one, two, three, four, five, or six or more). For BMI, participants provided self-reported height (in feet and inches or in centimeters) and weight (in either kilograms or stones and pounds). BMI (kg/m^2) was computed using the following formula: weight in kilograms divided by height in meters squared. Self-reported BMI has been shown to be highly correlated with objectively measured BMI (21,22).

HHFI. The United States Department of Agriculture Household Food Security Survey Module was used (23) to quantify difficulties experienced by individual households over the past 12 months in obtaining a sufficient amount of nutritionally adequate food. Participants completed a total of 10 questions from modules 1, 2, and 3. Answers of “often true,” “sometimes true,” “almost every month,” “some months but not every month,” and “yes” were coded as 1 and all other responses as zero. The sum of positive responses reflects household food insecurity with scores ranging from 0 (low food insecurity) to 10 (very high HHFI).

Psychological distress. The 21-item self-report Depression, Anxiety, and Stress Scale (DASS) (24) was administered (response options: 0 = never, 1 = sometimes, 2 = often, 3 = almost always). Cronbach α values for each of the three subscales were: depression $\alpha=0.93$, anxiety $\alpha=0.84$, stress $\alpha=0.88$, and overall distress scale $\alpha=0.95$.

Physical symptoms of stress. Participants reported the extent to which nine symptoms of physical stress had troubled or distressed them during the past month (e.g., sleep problems, headaches, constant fatigue/feeling run down). Responses ranged from 0 to 4, with 0 being “not been bothered at all” and 4 being “extreme bother.” Scores were averaged across items, with higher scores indicating greater symptoms of physical stress. For the current data, $\alpha=0.83$.

Allostatic load. Participants were asked about having elevated blood pressure and elevated blood glucose and whether they were currently taking medication to lower their cholesterol (response options: “yes” or “no”). Responses were coded as 1 (yes) or 0 (no). These items have been shown to be strong predictors of allostatic load (25). Participants were also asked how many times they had visited a medical general practitioner for themselves in the past month (“never,” “once,” “twice,” “three times,” “four times,” or “five times or more”). Responses were scored as 1 (never) to 6 (five times or more). These scores were then summed.

Eating to cope. The coping subscale from the Palatable Eating Motives Scale was used, which has good internal reliability and validity (26). It consists of five items (e.g., “How often do you eat tasty foods...
to forget about your problems?”) (Response options: “never/almost never,” “some of the time,” “half of the time,” “most of the time,” “almost always/always”). Scores were averaged across items, with higher scores indicating higher levels of the behavior. For the current data, α = 0.92.

Drinking to cope. The three items from the coping subscale of the abbreviated Motivating Motives Questionnaire, which has good reliability and validity, were used (27). Participants read the statement “Thinking of all the times you consume alcohol, how often would you say that you drink for each of the following reasons?” (e.g., “To forget about your problems?”) Responses were on a five-point scale (“never/almost never,” “some of the time,” “half of the time,” “most of the time,” “almost always/always”). Scores were averaged across items, with higher scores indicating higher levels of the behavior. For the current data, α = 0.86.

Diet quality. Diet quality was assessed via a short food frequency questionnaire taken from the Yorkshire Health Survey (28). Participants rated the frequency with which they consumed the following: whole wheat bread, white bread, chips, fried chicken, processed meats, beer, wine, sugary drinks, oily fish, other fish (“more than once a day,” “once a day,” “4-6 times a week,” “2-3 times a week,” “once a month,” “less than once a week,” “never”). Abbreviated food frequency questionnaires of this kind have been shown to have good reliability and validity (29). Participants were then asked how many portions of fruit and vegetables, excluding potatoes, they ate on a typical day (“none,” “one,” “two,” “three,” “four,” “five or more”). Scores for chips, white bread, fried chicken, processed meats, and sugary drinks were all coded as: more than once a day = 1 to never = 7, whereas scores for fish and oily fish were reverse scored (i.e., more than once a day = 7, never = 1). Daily fruit and vegetable consumption was counted as portions per day (none = 1 to five or more = 6). Scores for white bread, chips, fried chicken, processed meats, sugary drinks, oily fish (reverse scored), fish (reverse scored), fruit, and vegetables were then summed, with low values representing poorer diet quality.

Procedure
The questionnaires were hosted online via Qualtrics (Provo, Utah). Participants recruited via online methods (e.g., advertisements on social media) accessed the questionnaire via a Web link. Participants recruited at foodbanks (approximately 5% of total sample) were approached with an electronic tablet connected to the Internet or they were provided with paper copies of the questionnaire, depending on their preferred completion method. All participants read an information sheet and provided written informed consent followed by the questions on demographic information, height, and body weight. The following questionnaires were then presented in a randomized order: DASS, symptoms of physical stress, allostatic load, household food insecurity, eating to cope, drinking to cope, and diet quality. Finally, participants were debriefed and given the option to be entered into the prize draw to win shopping vouchers.

Planned analyses
A structural equation model was created to test the hypothesis that HHFI would be indirectly associated with higher BMI and poorer diet quality via distress and maladaptive coping mechanisms (eating to cope and drinking to cope). All modeling was conducted in Mplus version 8.4 (Los Angeles, California). A total of 759 responses were initiated, but only 606 completed all fields necessary to complete the analysis. A further two cases were removed for providing unfeasible weight values ≥34 kg (30); therefore, responses from 604 participants were included in the analysis.

Because of the non-normality of household food insecurity, eating to cope, drinking to cope, and BMI, a maximum likelihood estimator with a Satorra-Bentler correction was used for model fitting (31). A range of fit indices were produced to test the models. The standardized root mean residual (SRMR) absolute fit was computed, with values under 0.08 being indicative of good fit. Two baseline comparisons, the Tucker Lewis index (TLI) and Comparative Fit Index (CFI), were deemed acceptable at >0.90 and good at >0.95 (32). Finally, the RMSEA parsimony adjusted measure is reported with values <0.06 being good fit and values >0.06 but <0.08 being acceptable (32).

Before running the model, the effects of gender and age on each variable in the model were investigated via correlations and independent samples t tests. When gender or age had a statistically significant influence, they were included as covariates in the model.

Results
Descriptive statistics
The sample (N = 604) was mostly female (90%); 47.2% were employed full time, 20.5% were employed part time, 32.3% were unemployed, retired, students, in voluntary work, or identified as housewives/husbands; 58.8% had achieved an undergraduate degree or higher. The level of moderate food insecurity (defined as providing a positive response to three or more instances of food insecurity on the United States Department of Agriculture Household Food Security Survey Module) was 21.5%, which is higher than the typical 6% to 10% reported in the UK (1). In terms of living circumstances, 22.5% were the only adult in the household, 53.6% lived with one other adult, 23.9% with two or more adults; 62.6% had no children under the age of 18 in the household, 18.5% lived with one child, and 18.9% with two or more children; 41.2% had an annual household income of less than £25,999 per annum, 19.4% earned between £26,000 and £36,399, 19.4% between £36,400 and £51,999, and 20% earned over £52,000 per annum. Of the sample, 22.8% ate five or more portions of fruit and vegetables a day, and mean BMI (SD) was 29.19 (7.86) kg/m² (scores >25 were indicative of having overweight), with 2.8% of the sample classified as underweight, 30.8% of healthy weight, 28.6% with overweight, and 37.8% with obesity (Table 1).

Three separate measurements of distress were taken: (1) physical symptoms, (2) psychological symptoms using the DASS (23), and (3) allostatic load. A confirmatory factor analysis was performed, which showed that each measurement had a highly significant loading onto the latent variable “distress” (β > 0.74, P < 0.001 for all). The overall fit of the model was good to acceptable (CFI = 0.99sb, TLI = 0.99sb, RMSEA = 0.066, SRMR = 0.01). When allostatic load was included, the model still showed a good fit, but the individual loading of allostatic load was substantially lower (β = 0.237, P < 0.001) than all other variables. Therefore, allostatic load was not included in the final latent factor.

Model evaluation
The final model (Figure 1) was a good to acceptable fit for the data (CFI = 0.95, TLI = 0.91, RMSEA = 0.072, SRMR = 0.032).
A covariance was added between eating to cope and drinking to cope based on modification indices. Direct associations between the variables and hypothesized indirect effects are shown in Tables 2 and 3, respectively. For ease of interpretation, the values in Figure 1 are standardized (β) coefficients, whereas those in Table 2 are regression coefficients.

HHFI, BMI, and diet quality

As can be seen in Table 2, HHFI was directly associated with distress, drinking to cope, and poorer diet quality but it did not directly contribute to eating to cope or BMI. There were no direct associations between distress and diet quality or BMI.

Consistent with predictions, distress was directly associated with increased eating to cope, which in turn was associated with increased BMI, although the association between eating to cope and poorer diet quality was not statistically significant. Distress was also associated with elevated drinking to cope, which, although not associated with diet quality, did have a marginal association with (lower) BMI.

Indirect effects were calculated for the hypothesized effect of HHFI on BMI and diet quality through distress and eating or drinking to cope (while controlling for other variables in the model; Table 3). The hypothesized indirect effect via distress and eating to cope was significant for BMI but not for diet quality. There was a marginal indirect effect through distress and drinking to cope on (lower) BMI but not on diet quality.

Secondary analysis

In order to control for the effect of income on the model, we ran a multilevel structural model with the levels of weekly household income added as a random intercept (<£100, N = 21; £100-£199, N = 43; £200-£299, N = 48; £300-£399, N = 45; £400-£499, N = 77; £500-£699, N = 110; £700-£999, N = 110; £1,000-£1,499, N = 82; £1,500+, N = 32). The smaller sample (N = 568) in this analysis is due to 36 participants not reporting household income.

This approach enabled us to explore the effects in the model at the lower level (participants) controlling for the higher level (income). Income was instead not added as a predictor in the model due to collinearity with HHFI and ordinal measurement (necessitating generalized modeling). In addition, we were only interested in ascertaining whether the associations in the model held after controlling for income; taken together, this made the multilevel structural model the most appropriate analysis.

The model after controlling for income was a good fit (lower level SRMR = 0.038). The pattern of results (Table 4) was almost the same as the single-level model (Table 2). It is notable that after removing variance associated with income there was neither direct association between drinking to cope and BMI nor between HHFI and drinking to cope.
Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.

Our findings have practical implications for interventions and policy agendas to tackle HHFI. Transitioning people to more healthy and sustainable plant-based diets and reducing socioeconomic inequities in diet-related noncommunicable diseases, including obesity, is high on international agendas (1,38). However, to effectively intervene and change consumer behavior, it is critical to first understand the broader context and drivers of dietary intake in populations characterized by high levels of HHFI. Interventions must also be tailored to the needs of high-risk groups (39), further consideration of motivations for alcohol use in the context of HHFI is warranted. However, the direct association between drinking to cope and lower BMI was no longer statistically significant in the multilevel model that controlled for participants’ level of income.
effective intervention strategy. The necessity of these interventions is all the more timely in light of the coronavirus disease 2019 global pandemic in 2020, which increased HHFI, widened inequalities in access to safe, nutritious foods, and had a profound impact on mental health (41,42).

Our study recruited a broad spectrum of participants, including those who were visiting food banks, to ensure sufficient representation of individuals experiencing HHFI. However, the data are cross-sectional, therefore, it is not possible to infer direct causal relations between variables; longitudinal data sets will be informative on this issue. The relationships between variables are relatively modest, which likely reflects the myriad of factors that influence the association between food insecurity and eating behavior (e.g., exercise, genetic factors) (e.g., 5, 8, 9). Future research should include such variables to establish how they influence the relationships observed in this study. Future research should, therefore, consider these alternative pathways that link HHFI with higher body weight. Because the sample was predominately female (90%), it was not possible to test the gender differences observed in previous studies (5,43) whereby food insecurity is associated with higher BMI in females but not males. However, gender was controlled for in the model. Our sample was also predominantly white, and it is not clear if the same pathways and associations would exist across all ethnic groups. Finally, although the hypotheses and analyses were based on previous research (15), they were not formally preregistered, and preregistration is recommended for future studies in this area to enhance transparency and reproducibility (44).

Conclusion

In this study of UK-based adults, we show that HHFI was indirectly associated with higher body weight via greater distress and eating to cope. HHFI was directly associated with poorer diet quality; however, this relationship was not explained by distress and eating to cope. HHFI was indirectly associated with lower diet quality; however, the data are cross-sectional, therefore, it is not possible to infer direct causal relations between variables; longitudinal data sets will be informative on this issue. The relationships between variables are relatively modest, which likely reflects the myriad of factors that influence the association between food insecurity and eating behavior (e.g., exercise, genetic factors) (e.g., 5, 8, 9). Future research should include such variables to establish how they influence the relationships observed in this study. Future research should, therefore, consider these alternative pathways that link HHFI with higher body weight. Because the sample was predominately female (90%), it was not possible to test the gender differences observed in previous studies (5,43) whereby food insecurity is associated with higher BMI in females but not males. However, gender was controlled for in the model. Our sample was also predominantly white, and it is not clear if the same pathways and associations would exist across all ethnic groups. Finally, although the hypotheses and analyses were based on previous research (15), they were not formally preregistered, and preregistration is recommended for future studies in this area to enhance transparency and reproducibility (44).

Acknowledgments

The authors thank Dr. Christian Reynolds and Dr. Neil Boyle for advice on the measures of diet quality and symptoms of stress, respectively, and Professor Jason Halford for helpful comments on an earlier draft of the manuscript.

Funding agencies: This work was supported by grants from N8 AgriFood (to CAH) and Global Food Security’s “Resilience of the UK Food System Programme,” with support from BBSRC, ESRC, NERC, and the Scottish Government (KnorrFood) (to PC).

Disclosure: CAH and PC receive research funding from the American Beverage Association for work outside of the submitted manuscript. CAH has also received speaker fees from International Sweeteners Association. GSK declared no conflict of interest.

References

12. Keenan et al. Household Food Insecurity, Diet, and Obesity Keenan et al. 2019 Obesity...

