Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions: theoretical and numerical study

Umavathi, JC and Beg, OA
http://dx.doi.org/10.1177/09544089211052025

<table>
<thead>
<tr>
<th>Title</th>
<th>Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions: theoretical and numerical study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Umavathi, JC and Beg, OA</td>
</tr>
<tr>
<td>Publisher</td>
<td>SAGE Publishing</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>USIR URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/61909/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2021</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: library-research@salford.ac.uk.
Augmentation of Heat Transfer via Nanofluids in Duct Flows using Fourier-Type Conditions: Theoretical and Numerical Study

J.C. Umavathi
Professor of Applied Mathematics, Department of Mathematics, Gulbarga University, Gulbarga-585 106, Karnataka, India. Email: drumavathi@rediffmail.com

O. Anwar Bég
Professor of Engineering Science, Aeronautical/Mechanical Engineering Dept., School of Science, Engineering and Environment (SEE), Salford University, Manchester, M54WT, UK. Email: O.A.Beg@salford.ac.uk

ABSTRACT:

Motivated by developments in thermal duct processing, an investigation is presented to study the behavior of viscous nanoparticle suspensions flowing in a vertical duct subject to *Fourier-type* conditions. The left wall temperature is kept lower than that of the right wall. Brownian motion and thermophoresis which are invoked via the presence of nanoparticles are incorporated in the study. Implementing suitable transformations, the balance equations are rendered in dimensionless form. These non-linear and coupled conservation equations for momentum, heat and nanoparticle concentration are solved with appropriate boundary conditions using a regular perturbation method for low values of emerging parameters. Numerical solutions with an efficient Runge-Kutta shooting method, are also presented at all values of the control parameters. The impact of thermal Grashof number $(0 \leq \Lambda \leq 15)$, Eckert number $(0.01 \leq Ec \leq 0.04)$, and thermophoresis $(0.05 \leq Nt \leq 2)$ and Brownian motion parameters $(0.05 \leq Nt \leq 2)$, on the velocity, temperature and nanoparticle concentration distributions for
identical \((Bi_1 = Bi_2 = 10)\) and differing Biot numbers \((Bi_1 = 1, Bi_2 = 10)\) (at the duct walls) are computed and visualized graphically. With vanishing thermophoresis and Brownian motion parameters, the solutions match exactly with the earlier Newtonian viscous flow computations. Symmetric and asymmetric wall heat conditions are also acknowledged. Intensifying the thermal Grashof number, Eckert number, thermophoresis parameter and Brownian parameter serves to amplify magnitudes of the velocity and temperature whereas the nanoparticle concentration field is suppressed. The skin friction and Sherwood number are also computed with various combinations of the flow control parameters. Nusselt number values at the hot duct wall, are enhanced with an increment in thermal buoyancy parameter, Eckert number, Brownian motion parameter and thermophoresis parameter for equal Biot numbers. The opposite trend is computed for different Biot numbers. For any given values of Biot numbers, the mean velocity and bulk temperature are boosted with increment in thermal buoyancy parameter, Eckert number, Brownian motion parameter and thermophoresis parameter. Hence it may be inferred that the transport characteristics computed using *Fourier type* boundary conditions are substantially different from those based on isothermal boundary conditions in nanofluid duct flows.

KEYWORDS: Nanofluids, Convective boundary conditions, Perturbation Solutions, Thermal duct flows, Fourier conditions, Runge-Kutta Shooting method, Dissipation, Nusselt number, Sherwood number.

NOMENCLATURE:

- \(A\) Constant \([Pa \ m^{-1}]\)
- \(Bi_1, Bi_2\) Biot Numbers at the duct walls [-]
- \(Br\) Brinkman number [-]
- \(Cp\) Isobaric specific heat (constant pressure) \([J/K]\)
- \(C_f\) Skin friction coefficient \([\text{Moles/m}^3]\)
- \(C_0\) Reference nanoparticle volume fraction \([\text{Moles/m}^3]\)
- \(C\) nanoparticle volume fraction \([\text{Moles/m}^3]\)
- \(C_1, C_2\) Nanoparticle volume fraction on the boundaries (duct walls) \([\text{Moles/m}^3]\)
- \(D_B\) Brownian diffusion coefficient [-]
\[D_T \quad \text{Thermophoretic diffusion coefficient [-]} \]
\[D(=2L) \quad \text{Hydraulic diameter [m]} \]
\[E_c \quad \text{Eckert number [-]} \]
\[f \quad \text{Dimensionless stream function [-]} \]
\[g \quad \text{Acceleration due to gravity [ms}^{-2}] \]
\[GR_T \quad \text{Grashof number \(g\beta\Delta T/D^3/\nu^2 \)} [-] \]
\[h_1, h_2 \quad \text{Convective heat transfer coefficients at the walls [W/(m}^2\text{K}]} \]
\[k \quad \text{Thermal conductivity [W/(mK)]} \]
\[L \quad \text{Channel width [m]} \]
\[n \quad \text{Non-negative integer number [-]} \]
\[Nt \quad \text{Thermophoresis parameter [-]} \]
\[Nb \quad \text{Brownian motion parameter [-]} \]
\[Nu_1, Nu_2 \quad \text{Nusselt numbers at the duct walls [-]} \]
\[p \quad \text{Pressure [Pa]} \]
\[P = p + \rho_0 gX \quad \text{Hydrostatic pressure [Pa]} \]
\[Pr \quad \text{Prandtl number \(\nu/\alpha \)} [-] \]
\[Re \quad \text{Reynolds number \(U_0D/\nu \)} [-] \]
\[R_T \quad \text{Temperature difference ratio \((T_2-T_1)/\Delta T \)} [-] \]
\[S \quad \text{Dimensionless parameter [-]} \]
\[T \quad \text{Temperature [K]} \]
\[T_0 \quad \text{Reference temperature [K]} \]
\[T_1, T_2 \quad \text{Temperature at the hot duct walls [K]} \]
\[T_\infty \quad \text{Ambient temperature [K]} \]
\[u \quad \text{Dimensionless velocity in the X -direction [-]} \]
\[u_n(y) \quad \text{Dimensionless functions [-]} \]
\(\bar{u} \) Mean value of \(u \) \([ms^{-1}]\)

\(U \) Dimensional velocity component in the \(X \) -direction \([ms^{-1}]\)

\(U_0 \) Reference velocity \([ms^{-1}]\)

\(y \) Dimensionless transverse coordinate [-]

\(X \) Streamwise coordinate \([m]\)

\(Y \) Transverse coordinate \([m]\)

Greek Symbols

\(\alpha \) Thermal diffusivity \((K/\rho_0 c_0)\) \([m^2s^{-1}]\)

\(\beta_T \) Thermal expansion coefficient \([K^{-1}]\)

\(\Delta T \) Reference temperature difference \([K]\)

\(\Delta C \) Reference nanoparticle volume fraction difference \([\text{Moles/m}^3]\)

\(\tau_1, \tau_2 \) Skin friction components \([\text{N/m}^2]\)

\(\tau \) Skin friction \([\text{N/m}^2]\)

\(\varepsilon \) Dimensionless perturbation parameter [-]

\(\theta \) Dimensionless temperature [-]

\(\theta_b \) Dimensionless bulk temperature [-]

\(\phi \) Dimensionless nanoparticle volume fraction [-]

\(\nu \) Kinematic viscosity \((\mu/\rho_0)\) \([m^2s^{-1}]\)

\(\Lambda \) Thermal Grashof number \((GR_T/Re)[-]\)

\(\mu \) Dynamic viscosity \([\text{kg/(ms)}]\)

\((\rho c)_p \) Heat capacity of the nanoparticle material \([\text{J/K}]\)

\((\rho c)_f \) Heat capacity of the base fluid \([\text{J/K}]\)

\(\rho_0 \) Mass density when \(T=T_0 \) \([\text{kg/m}^3]\)
1. Introduction

Thermal convection is an important phenomenon in mechanical engineering and features extensively in many diverse applications including geothermal power, OTEC (ocean thermal energy conversion) plants, architectural ventilation systems, solar energy, materials processing, nuclear energy, fire propagation and thermal insulation. A major limitation against optimizing the energy transfer in engineering systems is the inherently poor thermal conductivity of conventional fluids, including oil, water and ethylene glycol mixture. Therefore, for more than a century since Maxwell’s original work in 1873, scientists and engineers have made a great effort to break this fundamental limit by dispersing millimeter or micrometer sized particles in liquids. However, the major problem with the use of such large particles is the rapid sedimentation of these particles in fluids. Maxwell’s concept, albeit old laid the foundation for new innovative developments in the late 20th century, specifically nanofluids. Nanofluids are colloidal suspensions which are synthesized by dispersing nanometer-sized particles in conventional base fluids, to create stable and highly conductive suspensions, which demonstrate improved dynamic thermal interactions. Recognizing an excellent opportunity to apply nanotechnology, Eastman et al. pioneered the novel concept of nanofluids by hypothesizing that it is viable to break down these century-old technical barriers by exploiting the unique properties of nanoparticles. The original application area was automotive radiator systems but new areas including flame retardants, geothermal energy, aerospace fuels, rheological materials processing, tribology, thermal insulation systems, commercial heat exchangers, biomedical pharmaceutics, petroleum drilling technology, solar technology, food manufacturing, coating protection systems, soft robotics, thermal engineering, environmental systems (remediation) and biomicrofluidics have also been explored using nanofluids.

Metallic or metallic oxide nanoparticles such as alumina, titania and copper oxide, unlike larger-sized particles, can be suspended stably within the fluids without settling out of suspension. Thus, these nanofluids avoid numerous problems such as abrasion, clogging and high-pressure loss, and are contemplated to be next-generation fluids in 21st century heat transfer technologies. The excellent thermal conductivity of nanofluids was verified experimentally by Massuda et al. Following their report, a substantial number of both experimental and theoretical publications on nanofluids emerged in the open literature in the last two decades –
see15-18. Cooling performance of a microchannel heat sink with nanofluids was presented by Jang and Choi19. Heris \textit{et al.}20 carried out experiment on convective heat transfer of Al\textsubscript{2}O\textsubscript{3} / water nanofluid in a circular tube. Pak and Cho21 researched on the hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental microchannel heat sink performance studies was carried out by Chein and Chuang22 using nanofluids. Lee and Mudawar23 assessed the effectiveness of nanofluids for single phase and two- phase heat transfer in microchannels. Heat transfer characteristics of nanofluids was studied and reviewed by Dring \textit{et al.}24 and Wang and Mujumdar25 respectively.

The theoretical investigation was explored by Hu \textit{et al.}26 on heat and mass transfer behavior of magnetohydrodynamic radiative Ferro fluid flow caused by a cone in the presence of source or sink. They concluded that the impact of Brownian motion parameter is less in CoFe\textsubscript{2}O\textsubscript{4}+ water at 50\textdegree{}C when compared with CoFe\textsubscript{2}O\textsubscript{4}+water at 10\textdegree{}C and hence the mass transfer rate was high for CoFe\textsubscript{2}O\textsubscript{4} at 50\textdegree{}C. Also the heat source or sink parameter acted as a controlling parameter for the flow and also for the heat transport phenomena. Mahesh \textit{et al.}27 reported on the hybrid nanofluid for the influence of Reynolds number, stretching of lower and upper disks on the dynamics of water conveying grapheme and silver between rotating disks when Lorentz’s force, Joule heating, suction, thermal radiation of thermal energy and Catteneo-Christov heat flux. They highlighted that increasing the Reynolds number improves the thermal field but reduces the tangential velocity. The entropy generation was an increasing property of stretching lower and upper disks but this were yardsticks for decreasing Bejan number. The finite element analysis of water-conveying iron (III) oxide and silver nanoparticles in a rectangular cavity mounted with two heat fins on the bottom wall subject to Buoyancy and Lorentz forces was investigated by Soumya \textit{et al.}28. Their analysis claimed that the lower Rayleigh number and higher Hartman number caused for the laminar flow whereas higher Rayleigh number and lower Hartman number resulted in the turbulent flow. Also by increasing the length and width of the fins led for the intense velocity profiles, stream line function and increased the temperature.

Nehad \textit{et al.}29 examined the significance of increasing radius of nanoparticles, energy flux due to concentration gradient and mass flux due to temperature gradient in the dynamics of chemically reactive fluid subject to suction and inclined magnetic strength. They pointed that
the velocity was enhanced with the reduction in the viscosity of water based nanofluid due to a higher radius of copper nanoparticles. Significance reduction in temperature was attained across the domain due to increasing radius of copper nanoparticles when energy flux due to concentration gradient was sufficiently large. Thanaa et al.30 also researched the signification of of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities using ternary-hybrid nanofluids. Nehad et al.31 examined the dynamics of hybrid nanofluids using type-I and type-II hybrid models with emphasis on the difference. They found that the local skin friction coefficient and temperature coefficient are decreasing property of suction. Using seven different hybrid nanofluids with base fluid as water, the optimal Nusselt number was attained at a larger value of stretching ratio and suction.

Although nanofluids are solid-liquid mixtures, the approach adopted conventionally in most mathematical modeling studies is to simulate the nanofluid as a single-phase (homogenous) fluid. In fact, irrespective of the extreme size and low concentration of the dispersed nanaoparticles, the particles are assumed to move with the same velocity as the base fluid. Also, by assuming local thermal equilibrium, the solid particle-liquid mixture may then be approximately considered to behave as a conventional single-phase fluid with properties that are to be evaluated as functions of those of the constituents.

Several authors have tried to establish convective transport models for nanofluids. A nanofluid is a two-phase mixture in which the solid phase consists of nano-sized particles. In view of nanoscale size, it may be questionable whether the theory of two-phase flow can be applied in describing nanofluid dynamics. On the other hand, several factors such as gravity, friction between the solid and fluid particles and Brownian forces, Brownian diffusion, sedimentation and dispersion, may substantially influence nanofluid transport phenomena. Consequently, the slip velocity between the particles and fluid cannot be neglected for simulating nanofluid flows.

Since the two-phase approach considers the movement between the solid and fluid molecules, it may provide improved predictions in nanofluid flow simulations. To fully describe and predict the flow and behavior of complex flows, different multiphase theories have been proposed and used. A large number of articles concerning multiphase flows have employed the mixture theory to predict the behavior of nanofluids32-34. Considerable progress was made by
Buongiorno who carefully developed a theoretical analysis to estimate the relative magnitudes of the terms associated with all possible slip mechanisms, namely, inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect (lift of particles associated with circular motion), fluid drainage and gravity. However, in nanofluid convective transport phenomena only Brownian diffusion and thermophoresis were established as having a significant role. He derived a two-component four-equation model for nanofluids, which has been used by many researchers including Tzou, Hwang et al., Nield and Kuznetsov and many others. Yet, there still exist some controversies as to specifically which particular conditions are amenable for nanoparticle heat transfer enhancement. Furthermore, there is still an open debate pertaining to whether or not, the nanofluids convective heat transfer enhancement exceeds in a sustained fashion the base fluid thermal performance.

Gao and co-workers first considered whether the effect of thermal conductivity increment may be dependent on the shape of nanoparticles. They also implemented an alternative theory with the help of Bruggeman’s model to approximate the thermal conductivity of dispersion with non-spherical solid nanoparticles. Recently, with the help of Buongiorno’s nanoscale formulation, the effect of local thermal non-equilibrium on the stability of nanofluid convective transport was investigated theoretically by Kim et al. and Nield and Kuznetsov.

Omid et al. conducted a study to determine the influences of perforated anchors on heat transfer intensification of turbulence nanofluid flow in a pipe. The conclusions drawn were that the thermal enhancement factor decreases as the Reynolds number decreased. The addition of nanoparticles increased the friction factor. At Re = 25,000 the friction factor increased to 11.48% by adding the 5% of nanoparticles when compared with the base fluid without nanoparticles. Saeedreza et al. simulated Al₂O₃-water nanofluid flow and forced convection around a rotating circular cylinder. The important results drawn by them was that there was an augmentation of heat transfer rate by adding the nanoparticles to the base fluid and reduction in drag coefficient by creating the rotation at Re = 100, and 0.05% nanoparticle concentration. Hence applying the nanoparticles in a rotating system enables the energy management at higher values of Reynolds number. For 0.05% nanoparticle concentration and for Reynolds number 5 and 100, the Nusslet number was reduced with increasing rotation rate to 6.9% and 32% respectively. Magnetohydrodynamic and Al₂O₃-water nanofluid flow around a vortex facing
triangular obstacle was discussed by Rashidi et al.48. The main results concluded was that a stronger magnetic field was needed for vanishing the recirculating wake and stabilizing the flow in nanofluid in comparison with regular fluid. The drag coefficient decreased with increased Stuart number. Further the impact of magnetic filed on reduction of heat transfer increased with increasing the concentration of nanoparticles.

Rashidi et al.49 also discussed on the structural optimization of nanofluid flow around an equilateral triangular obstacle. Numerical and optimization techniques were used to determine the optimum thermal and flow condition for nanofluids around an equilateral obstacle. Their study marked that the drag coefficient and Nusselt number were sensitive to the orientation of obstacle rather than the solid volume fraction and Reynolds number. The minimum drag coefficient was occurred between the diagonal and vortex facing flows.

Mahla et al.50 presented the two-way couple of Eulerian-Lagrangian model for particle transport with different sizes in an obstructed channel. The governing equations for flow and particle motions were solved by using Finite volume and trajectory analysis. The highlights of the study was that the particle deposition percentage increased with increasing particle size, the thermophoresis effect on cross-steam particle velocity was negligible, the mass diffusion boundary layer grows along the channel and the nanometer particle does not follow the flow stream line. Mosoud et al.51 analysed the flow of nanofluid in duct using Eulerian-Lagrangina model. The important finding were that, for the reflect boundary conditions, the concentration on nanoparticles were almost constant with slight change near the wall and the concentration profiles were nearly convergent to a single graph for low values of solid volume fraction (0.01%) and there were some deviation for high values (0.05%). There was a slight increase in the average Nusselt number for the reflect boundary conditions in comparison to trap boundary.

Boundary conditions can have a profound influence on thermophysical characteristics of many flow configurations including thermal ducts, enclosures, external boundary layers etc. The convective boundary condition also known as the Newton/Robin boundary condition, corresponds to the existence of convection heating (or cooling) at the surface (boundary). It is based on the energy Robin condition and is probably the most common boundary condition encountered in practice since most heat transfer surfaces are exposed to a convective environment under working conditions. In other words, this condition assumes that the heat
conduction at the exterior is equal to the thermal convection at the surface in the same direction. Since the boundary cannot store energy, the net heat entering the surface from the convective side must leave the surfaces from the conduction side. The Robin conditions set the values of a consolidation of the unknown function and its normal gradient. Other heat transfer problems in the literature – see Aung and Worku52, Cheng \textit{et al.}53, Barletta54, Grosan and Pop55 etc. used Neumann boundary conditions for temperature. Limited authors such as Javeri56, Zanchini57 have used the Dirichlet boundary condition on the temperature. Novy \textit{et al.}58, Bixler59, Papanastasiou \textit{et al.}60 described analytically the influence of different types of wall conditions on temperature distributions in various convective flow regimes.

It was proven that the Fourier-type condition gives the most accurate solutions in convective heat transfer. Arturo \textit{et al.}61 studied the influence of Fourier-type, Dirichlet, and Neumann conditions on complex geometries using the immersed-boundary techniques. Umavathi and Bég62, 63 implemented Robin boundary conditions for various thermophysical duct flows with multiple effects including porous media drag and chemical reactions. Recently, Jaewook \textit{et al.}64 analyzed the thermal properties in rough channel forced convection flow observing that Robin–type effective boundary conditions quite adequately describe the effect of the rough layer on the heat transfer.

In the present study, dissipative nanofluid buoyancy-driven flow in a thermal duct is considered with Fourier-type boundary conditions which provide greater accuracy than Dirichlet and Neumann conditions. The two-component Bungiorno nanoscale model17 is implemented. The duct left wall temperature is kept lower than that of the right wall. The non-dimensional coupled conservation equations for momentum, heat and nanoparticle concentration are solved with appropriate boundary conditions using a regular perturbation method for low values of emerging parameters. Numerical solutions with an efficient Runge-Kutta shooting method, are also presented at all values of the control parameters. The influence of thermal Grashof number, Eckert number, thermophoresis and Brownian motion parameters, on the velocity, temperature and nanoparticle concentration distributions for identical and differing Biot numbers are computed and visualized graphically. Skin friction, Nusselt numbers and Sherwood numbers at both duct walls are also computed. Validation for vanishing nanoscale effects are included with the earlier study of Zanchini57. The work is relevant to improving thermal
performance in engineering duct systems65, air conditioning systems66, channel process operations in manufacturing67, 68 and heat exchanger designs69.

2. Mathematical formulation

Steady, two-dimensional, incompressible, laminar fully developed free convection flow in an open-ended vertical conduit (duct) as shown in Fig. 1. The X-axis is taken as vertically upward, and parallel to the direction of the buoyancy forces, and the Y-axis is normal to it. This vertical channel occupies the region $-L/2 \leq Y \leq L/2$ and it is maintained at a constant temperature. The properties of the nanofluid are constant and furthermore the nanoparticle concentration at the left duct wall is C_1 and at the right duct wall is C_2 with Fourier-type conditions. The thermal conductivity, thermal diffusivity, dynamic viscosity and thermal expansion coefficient of the nanofluid are fixed.

Figure 1. Physical configuration for nanofluid duct flow
The momentum balance equation takes the form (Zanchini):\[\beta_{r} g(T - T_{0}) - \frac{1}{\rho_{0}} \frac{\partial P}{\partial X} + \nu \frac{d^2 U}{dY^2} = 0 \] (1)

In the presence of viscous dissipation, the heat (energy) balance equation can be written as: (Buongiorno)
\[\alpha \frac{d^2 T}{dY^2} + \tau \left[D_{\beta} \left(\frac{\partial C}{\partial Y} \frac{\partial T}{\partial Y} \right) + \frac{D_{\tau}}{T_{\infty}} \left(\frac{\partial T}{\partial Y} \right)^2 \right] + \frac{\nu}{C_{p}} \left(\frac{dU}{dY} \right)^2 = 0 \] (2)

The nanoparticle volume fraction equation has the form: (Buongiorno)
\[D_{n} \frac{d^2 C}{dY^2} + \frac{D_{\tau}}{T_{\infty}} \frac{d^2 T}{dY^2} = 0 \] (3)

Here P is the pressure, ν is kinematic viscosity, $\tau = \rho C_{f} / \rho C_{i}$ is the ratio of nanoparticle heat capacity and the base fluid, α is the thermal diffusivity of the base fluid, D_{τ} is the thermophoretic diffusion coefficient, D_{β} is the Brownian diffusion coefficient, T is the local temperature. The associated boundary conditions for the velocity field are imposed as:
\[u(-L/2) = u(L/2) = 0 \] (4)

For the temperature field, the boundary conditions are:
\[-k \frac{\partial T}{\partial Y} \bigg|_{-L/2} = h_{1} [T_{1} - T(X, -L/2)] \] (5)
\[-k \frac{\partial T}{\partial Y} \bigg|_{L/2} = h_{2} [T(X, L/2) - T_{2}] \] (6)

Finally, the boundary conditions for the nanoparticle volume fraction field are prescribed as:
\[C = C_{1} \text{ at } Y = -L/2 \text{ and } C = C_{2} \text{ at } Y = L/2 \] (7)

The primitive boundary value problem is defined by Eqns. (1) to (7) which determine the velocity, temperature and nanoparticle volume fraction distribution. However, it is judicious to transform this system into non-dimensional form by introducing the following dimensionless parameters:
Here the hydraulic diameter is $D = 2L$ and the reference velocity, reference temperature and reference nanoparticle volume fraction are written as:

$$U_0 = \frac{-AD^2}{48\mu}, \quad T_0 = \frac{T_1 + T_2}{2} + S \left(\frac{1}{B_{i_1}} - \frac{1}{B_{i_2}} \right) [T_2 - T_1], \quad C_0 = \frac{C_1 + C_2}{2}$$

Moreover, the temperature difference $\Delta T = T_2 - T_1$, if $T_1 < T_2$ and the concentration difference $\Delta C = C_2 - C_1$ if $C_1 < C_2$. Therefore, the reference temperature field difference $\Delta T = T_2 - T_1 = \frac{v^2}{C_p D^2}$, if $T_1 = T_2$. As a consequence, the dimensionless parameter R_f can be either 0 or 1. More precisely, $R_f = 1$ for asymmetric fluid temperatures at $T_1 < T_2$ and $R_f = 0$ for symmetric fluid temperatures at $T_1 = T_2$. The dimensionless equations along with the boundary conditions are:

$$\frac{d^2 u}{dy^2} = -48 - \Lambda \theta$$

$$\frac{d^2 \theta}{dy^2} + Nb \operatorname{Pr} \frac{d \phi}{dy} \frac{d \theta}{dy} + Nt \operatorname{Pr} \left(\frac{d \theta}{dy} \right)^2 + Ec \operatorname{Pr} \left(\frac{du}{dy} \right)^2 = 0$$

$$\frac{d^2 \phi}{dy^2} + Nt \frac{d^2 \theta}{dy^2} = 0$$

$$u(-1/4) = u(1/4) = 0$$

$$\left. \frac{d \theta}{dy} \right|_{y=-1/4} = B_{i_1} \left[\theta + \frac{R_f S}{2} \left(1 + \frac{4}{B_{i_1}} \right) \right]$$
\[\frac{d\theta}{dy}\bigg|_{y=1/4} = Bi_2 \left[-\theta + \frac{R_t S}{2} \left(1 + \frac{4}{Bi_2} \right) \right] \] (15)

\[\phi(-1/4) = -\frac{1}{2}, \quad \phi(1/4) = \frac{1}{2} \] (16)

Clearly in Eqns. (14), (15) at the left duct wall a Biot number, \(Bi_1 \) is imposed and at the right duct wall a Biot number \(Bi_2 \) is prescribed. Biot number quantifies the relative importance of conduction and convection. The last term in the momentum Eqn. (10) denotes the thermal buoyancy force and the final term in the energy Eqn. (11) designated the viscous heating contribution.

3. Solutions of the boundary value problem

3a. Regular perturbation solutions

The transformed dimensionless boundary value problem defined by Eqns. (10)-(16) may be solved with a variety of methods. First a regular perturbation technique – see Rice and Do70 is deployed to obtain analytical solutions wherein Prandtl number is selected as the perturbation parameter. The solutions for velocity, temperature and nanoparticle volume fraction (concentration) are therefore assumed in the following form:

\[u(y) = u_0(y) + (Pr) u_1(y) + (Pr)^2 u_2(y) + \ldots = \sum_{n=0}^{\infty} (Pr)^n u_n(y). \] (17)

\[\theta(y) = \theta_0(y) + (Pr) \theta_1(y) + (Pr)^2 \theta_2(y) + \ldots = \sum_{n=0}^{\infty} (Pr)^n \theta_n(y). \] (18)

\[\phi(y) = \phi_0(y) + (Pr) \phi_1(y) + (Pr)^2 \phi_2(y) + \ldots = \sum_{n=0}^{\infty} (Pr)^n \phi_n(y). \] (19)

Substituting Eqns. (17) to (19) into Eqns. (10) to (16) and comparing the like powers of Eckert number, one obtains a sequence of boundary value problems.

In the absence of Prandtl number \((n = 0) \), Eqns. (10) to (16) take the form:

\[\frac{d^2 u_0}{dy^2} = 0 \] (20)

\[\frac{d^2 \theta_0}{dy^2} = 0 \] (21)
\[
\frac{d^2 \phi_0}{dy^2} = 0
\]
(22)

\[
u_0(-1/4) = u_0(1/4) = 0
\]
(23)

\[
\left. \frac{d \theta_0}{dy} \right|_{y=-1/4} = Bi_1 \left[\theta_0 + \frac{R_t S}{2} \left(1 + \frac{4}{Bi_1} \right) \right]
\]
(24)

\[
\left. \frac{d \theta_0}{dy} \right|_{y=1/4} = Bi_2 \left[-\theta_0 + \frac{R_t S}{2} \left(1 + \frac{4}{Bi_2} \right) \right]
\]
(25)

\[
\phi_0 \left(-\frac{1}{4} \right) = -\frac{1}{2}, \quad \phi_0 \left(\frac{1}{4} \right) = \frac{1}{2}
\]
(26)

The exact solutions of Eqns. (20) to (22) can be obtained by integrating twice and the integration constants can be readily obtained via Eqns. (23) to (26) and are not presented for brevity.

In the presence of Prandtl number \((n>1)\), the boundary value problem emerges as:

\[
\frac{d^2 u_n}{dy^2} = \sum_{n=0}^{\infty} \Lambda \theta_n
\]
(27)

\[
\frac{d^2 \theta_n}{dy^2} = \sum_{j=0}^{n-1} Nb \frac{d \phi_j}{dy} \frac{d \theta_{n-j-1}}{dy} + \sum_{j=0}^{n-1} Nt \frac{d \theta_j}{dy} \frac{d \theta_{n-j-1}}{dy} + \sum_{j=0}^{n-1} Ec \frac{du_j}{dy} \frac{du_{n-j-1}}{dy}
\]
(28)

\[
\frac{d^2 \phi_n}{dy^2} = \frac{Nt}{Nb} \frac{d^2 \theta_n}{dy^2}
\]
(29)

\[
u_n(-1/4) = u_n(1/4) = 0
\]
(30)

\[
\left. \frac{d \theta_n}{dy} \right|_{y=-1/4} = Bi_1 [\theta_n]
\]
(31)

\[
\left. \frac{d \theta_n}{dy} \right|_{y=1/4} = Bi_2 [-\theta_n]
\]
(32)

\[
\phi_n \left(-\frac{1}{4} \right) = \phi_n \left(\frac{1}{4} \right) = 0
\]
(33)

The solutions of Eqns. (27) to (29) along with the conditions on the boundaries as provided in Eqns. (30)-(33) are solved by an iteration procedure. The solutions of zeroth order \((n=0)\) which are provided via Eqns. (20)-(23) are utilized to compute the solutions for the first order
(n = 1) and the process is continued for the required values of n. The solutions for (n > 1) are found using the symbolic software MATHEMATICA.

The skin friction, Nusselt and Sherwood number are key physical quantities defining the gradients of velocity, temperature and nanoparticle concentration at the duct walls. They are defined in non-dimensional form as follows:

\[\tau_1 = \left(\frac{du}{dy} \right)_{y=-\frac{1}{4}}, \quad \tau_2 = \left(\frac{du}{dy} \right)_{y=\frac{1}{4}} \quad (34) \]

\[Nu_1 = \left(\frac{1}{R_T \left[\theta(1/4) - \theta(-1/4) \right] + (1-R_T)} \right) \left[\frac{d\theta}{dy} \right]_{y=-\frac{1}{4}} \quad (35) \]

\[Nu_2 = \left(\frac{1}{R_T \left[\theta(1/4) - \theta(-1/4) \right] + (1-R_T)} \right) \left[\frac{d\theta}{dy} \right]_{y=\frac{1}{4}} \quad (36) \]

\[Sh_1 = \left(\frac{d\phi}{dy} \right)_{y=-\frac{1}{4}}, \quad Sh_2 = \left(\frac{d\phi}{dy} \right)_{y=\frac{1}{4}} \quad (37) \]

The average velocity \(\bar{u} \) and the bulk temperature \(\bar{\theta}_b \) are given by:

\[\bar{u} = 2 \int_{-\frac{1}{4}}^{\frac{1}{4}} u \, dy \quad (38) \]

\[\bar{\theta}_b = \frac{2}{\bar{u}} \int_{-\frac{1}{4}}^{\frac{1}{4}} u \, \theta \, dy \quad (39) \]

3b. Numerical Solutions

The perturbation solutions obtained in the Section 3.1 are valid for values of Prandtl number less than one. However, this is a severe limitation for engineering applications, since it is known that the values of Prandtl number cannot be less than one if the working fluid is water \((Pr = 7.56)\), n-butanol \((Pr = 50)\), engine oil \((Pr > 100)\), glycerin \((Pr >1000)\) etc. In view of this the non-linear boundary value problem is therefore solved numerically using a Runge-Kutta shooting method for general values of all parameters. The solution values obtained numerically are verified where possible with the perturbation solutions obtained in section 3.1 and are also documented in Tables 1, 2 for identical and differing Biot numbers at the duct walls.
Table 1. Comparison analysis when $Bi_1 = Bi_2 = 10$ (symmetric case)

<table>
<thead>
<tr>
<th>y</th>
<th>Velocity $Pr = 0$</th>
<th>$Pr = 0.01$</th>
<th>$Pr = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analytical</td>
<td>Numerical</td>
<td>Analytical</td>
</tr>
<tr>
<td>-0.25</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>-0.15</td>
<td>0.95285714</td>
<td>0.95285714</td>
<td>0.95381995</td>
</tr>
<tr>
<td>-0.05</td>
<td>1.43642857</td>
<td>1.43642857</td>
<td>1.43789193</td>
</tr>
<tr>
<td>0.05</td>
<td>1.44357142</td>
<td>1.44357143</td>
<td>1.44503574</td>
</tr>
<tr>
<td>0.15</td>
<td>0.96714286</td>
<td>0.96714286</td>
<td>0.96810773</td>
</tr>
<tr>
<td>0.25</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>Temperature $Pr = 0$</th>
<th>$Pr = 0.01$</th>
<th>$Pr = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analytical</td>
<td>Numerical</td>
<td>Analytical</td>
</tr>
<tr>
<td>-0.25</td>
<td>-0.35714285</td>
<td>-0.35714286</td>
<td>-0.35104914</td>
</tr>
<tr>
<td>-0.15</td>
<td>-0.21428571</td>
<td>-0.21428571</td>
<td>-0.20481394</td>
</tr>
<tr>
<td>-0.05</td>
<td>-0.07142857</td>
<td>-0.07142857</td>
<td>-0.06140120</td>
</tr>
<tr>
<td>0.05</td>
<td>0.07142857</td>
<td>1.44357143</td>
<td>0.08146984</td>
</tr>
<tr>
<td>0.15</td>
<td>0.21428571</td>
<td>0.21428571</td>
<td>0.22382221</td>
</tr>
<tr>
<td>0.25</td>
<td>0.35714285</td>
<td>0.35714286</td>
<td>0.36331946</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>Nanoparticle concentration $Pr = 0$</th>
<th>$Pr = 0.01$</th>
<th>$Pr = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analytical</td>
<td>Numerical</td>
<td>Analytical</td>
</tr>
<tr>
<td>-0.25</td>
<td>-0.500000000</td>
<td>-0.500000000</td>
<td>-0.500000000</td>
</tr>
<tr>
<td>-0.15</td>
<td>-0.300000000</td>
<td>-0.300000000</td>
<td>-0.29957078</td>
</tr>
<tr>
<td>-0.05</td>
<td>-0.100000000</td>
<td>-0.100000000</td>
<td>-0.09956478</td>
</tr>
<tr>
<td>0.05</td>
<td>0.10000000</td>
<td>0.10000000</td>
<td>0.10043201</td>
</tr>
<tr>
<td>0.15</td>
<td>0.30000000</td>
<td>0.30000000</td>
<td>0.30042135</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50000000</td>
<td>0.50000000</td>
<td>0.50000000</td>
</tr>
</tbody>
</table>
Table 2. Comparison analysis when $Bi_1=1$, $Bi_2=10$ (asymmetric case)

<table>
<thead>
<tr>
<th>y</th>
<th>Velocity $Pr = 0$</th>
<th>$Pr = 0.01$</th>
<th>$Pr = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analytical</td>
<td>Numerical</td>
<td>Analytical</td>
</tr>
<tr>
<td>-0.25</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>-0.15</td>
<td>0.95687499</td>
<td>0.95687500</td>
<td>0.95783782</td>
</tr>
<tr>
<td>-0.05</td>
<td>1.43843749</td>
<td>1.43843750</td>
<td>1.4390086</td>
</tr>
<tr>
<td>0.05</td>
<td>1.44156250</td>
<td>1.4415625</td>
<td>1.44302681</td>
</tr>
<tr>
<td>0.15</td>
<td>0.96312499</td>
<td>0.96312500</td>
<td>0.96408987</td>
</tr>
<tr>
<td>0.25</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>Temperature $Pr = 0$</th>
<th>$Pr = 0.01$</th>
<th>$Pr = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analytical</td>
<td>Numerical</td>
<td>Analytical</td>
</tr>
<tr>
<td>-0.25</td>
<td>-0.15625000</td>
<td>-0.15625000</td>
<td>-0.15015628</td>
</tr>
<tr>
<td>-0.15</td>
<td>-0.09375000</td>
<td>-0.09375000</td>
<td>-0.08427823</td>
</tr>
<tr>
<td>-0.05</td>
<td>-0.03124999</td>
<td>-0.03125000</td>
<td>-0.02122263</td>
</tr>
<tr>
<td>0.05</td>
<td>0.03125000</td>
<td>0.03125000</td>
<td>0.04129127</td>
</tr>
<tr>
<td>0.15</td>
<td>0.09375000</td>
<td>0.09375000</td>
<td>0.10328650</td>
</tr>
<tr>
<td>0.25</td>
<td>0.15625000</td>
<td>0.15625000</td>
<td>0.16242661</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>Nanoparticle concentration $Pr = 0$</th>
<th>$Pr = 0.01$</th>
<th>$Pr = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analytical</td>
<td>Numerical</td>
<td>Analytical</td>
</tr>
<tr>
<td>-0.25</td>
<td>-0.50000000</td>
<td>-0.50000000</td>
<td>-0.50000000</td>
</tr>
<tr>
<td>-0.15</td>
<td>-0.30000000</td>
<td>-0.30000000</td>
<td>-0.29957078</td>
</tr>
<tr>
<td>-0.05</td>
<td>-0.10000000</td>
<td>-0.10000000</td>
<td>-0.09956478</td>
</tr>
<tr>
<td>0.05</td>
<td>0.10000000</td>
<td>0.10000000</td>
<td>0.10043201</td>
</tr>
<tr>
<td>0.15</td>
<td>0.30000000</td>
<td>0.30000000</td>
<td>0.30042134</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50000000</td>
<td>0.50000000</td>
<td>0.50000000</td>
</tr>
</tbody>
</table>
Table 3 Validation with Zanchini45

<table>
<thead>
<tr>
<th>y</th>
<th>Velocity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zanchini57</td>
<td>Present $Nt = Nb = 0$</td>
</tr>
<tr>
<td>-0.25</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>-0.15</td>
<td>0.81752467</td>
<td>0.81715247</td>
</tr>
<tr>
<td>-0.05</td>
<td>1.36916041</td>
<td>1.36858603</td>
</tr>
<tr>
<td>0.05</td>
<td>1.51202552</td>
<td>1.51144318</td>
</tr>
<tr>
<td>0.15</td>
<td>1.10325604</td>
<td>1.10286677</td>
</tr>
<tr>
<td>0.25</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Tables 1 to 3 show the comparison of solutions for u, θ and ϕ which are estimated by the regular perturbation method described in section 3.1, considering seven terms of the series and also those obtained numerically by the Runge-Kutta shooting method for the symmetric heating case, $Bi_1 = Bi_2 = 10$ (Table 1) and the asymmetric heating case, $Bi_1 = 1$, $Bi_2 = 10$ (Table 2) for variation in Prandtl number, Pr. The parameter values are fixed are $Nt = Nb = 0.1, Ec = 0.01, \Lambda = 5, R_T = 1$ in Tables 1 and 2. These physically imply weak thermophoresis ($Nt = 0.1$), large nanoparticle diameters ($Nb = 0.1$), weak viscous heating ($Ec = 0.01$), strong thermal buoyancy ($\Lambda = 5$) and a asymmetric fluid temperature case between the duct walls ($R_T = 1$). These represent realistic scenarios in buoyancy-driven nanofluid duct transport as noted in Das et al.71 and Gebhart et al.72 and also concur with data specification in other recent simulations in nanofluid mechanics based on the Buongiorno formulation33-35, 45. In the absence of Prandtl number the analytical and numerical values are equal for all values of Bi (Tables 1 and 2). The perturbation and numerical shooting values match for up to four decimal places for identical Bi and up to two decimal places for dissimilar Bi when $Pr = 0.01$. The analytical and numerical values concur up to two decimal places ($Bi_1 = Bi_2 = 10$) although they
deviate considerably \((Bi_1=1, Bi_2=10)\) when \(Pr = 0.5\). The solutions are also validated against Zanchini\(^57\) in the absence of nanoparticles as presented in Table 3 and found to be in excellent agreement. Overall confidence in the perturbation and shooting numerical solutions is therefore justifiably high. In the next section computations based on the shooting method are visualized in graphs and Tables.

4. Results and discussion

The transport characteristics for the nanofluid flow in a vertical duct have been computed via Runge-Kutta quadrature solutions of Eqns. (10) to (16) and the results are depicted graphically in Figs. 2-6. The impact of thermal Grashof number \(\Lambda\), Prandtl number \(Pr\), Eckert number \(Ec\), thermophoresis parameter \(Nt\) and Brownian dynamics parameter \(Nb\) for identical and dissimilar wall temperatures and Biot numbers is examined in detail in these figures. Tables 4-6 furthermore provide results for skin friction values (dimensionless wall shear stress), Nusselt numbers at both duct walls (dimensionless wall heat transfer rate), mean velocity, bulk temperature and Sherwood numbers at the two duct boundaries (dimensionless wall nanoparticle mass transfer rate) with selected thermophysical parameters to furnish additional insights into the convective flow transport in the duct.

Figures 2a to 2d shows the response of \(\Lambda\) on the velocity field, temperature field and nanoparticle volume fraction \(\phi\) for equal Biot numbers. An increment in \(\Lambda\), produces an amplification in thermal buoyancy force (i.e. \(\Lambda \theta\) in the momentum eqn. (10)). This inflates both velocity \((u)\) and temperature \((\theta)\) (Figs. 2a, b) whereas nanoparticle concentration \((\phi)\) (Fig. 2c) is declined for all values of transverse coordinate, \(y\). A symmetric velocity distribution is computed between the duct walls as per the symmetric heating case. For \(\Lambda = 0\) the forced convection case is retrieved, and the momentum and energy equations are decoupled. Thermal buoyancy therefore clearly energizes the regime but inhibits nanoparticle diffusion in the duct.
Figure 2a. Effects of \(A \) on velocity profile for equal Biot number

\[
R_T = 1.0 \\
Bi_1 = Bi_2 = 10.0 \\
Nt = Nb = 0.1 \\
Pr = 5.0 \\
Ec = 0.01
\]

Figure 2b. Effects of \(A \) on temperature with equal Biot numbers

\[
R_T = 1.0 \\
Bi_1 = Bi_2 = 10.0 \\
Nt = Nb = 0.1 \\
Pr = 5.0, \ Ec = 0.01
\]
Figure 2c. Effects of Λ on nanoparticle volume fraction field with equal Biot numbers

$R_T = 1.0$
$Bi_1 = Bi_2 = 10.0$
$Nt = Nb = 0.1$
$Pr = 5.0$
$Ec = 0.01$

$\Lambda = 0, 5, 10, 15$

Figure 2d. Effects of Λ on temperature field with unequal Biot numbers

$R_T = 1.0$
$Bi_1 = 1.0, Bi_2 = 10.0$
$Nt = Nb = 0.1$
$Pr = 5.0, Ec = 0.01$
Figure 3a. Effects of Ec on temperature field with equal Biot number

$Ec = 0.01, 0.02, 0.03, 0.04$

$\Lambda = 5.0, \, R_T = 1.0$
$Bi_1 = Bi_2 = 10.0$
$Nt = Nb = 0.1$
$Pr = 5.0$

Figure 3b. Effects of Ec on nanoparticle volume fraction field with equal Biot numbers

$Ec = 0.01, 0.02, 0.03, 0.04$

$\Lambda = 5.0, \, R_T = 1.0$
$Bi_1 = Bi_2 = 10.0$
$Nt = Nb = 0.1$
$Pr = 5.0$
Figure 3c. Effects of Ec on temperature field with unequal Biot numbers

$Ec = 0.01$, $\Theta = 5.0$, $RT = 1.0$, $Bi_1 = 1.0$, $Bi_2 = 10.0$, $Nt = Nb = 0.1$, $Pr = 5.0$

Figure 4a. Effects of Nt on velocity field with equal Biot numbers

$A = 5.0$, $R_r = 1.0$, $Bi_1 = Bi_2 = 10.0$, $Pr = 5.0$, $Nb = 0.1$, $Ec = 0.01$
Figure 4b. Effects of Nt on temperature field with equal Biot numbers

$\Lambda = 5.0, \quad R_T = 1.0$
$Bi_1 = Bi_2 = 1.0$
$Pr = 5.0$
$Nb = 0.1, \quad Ec = 0.01$

Table 4. Nusselt numbers at the duct walls, mean velocity and bulk temperature

<table>
<thead>
<tr>
<th>$Bi_1 = Bi_2 = 10$</th>
<th>$Bi_1 = 1.0, Bi_2 = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ν_1</td>
</tr>
<tr>
<td>Λ</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6.28571</td>
</tr>
<tr>
<td>5</td>
<td>6.21932</td>
</tr>
<tr>
<td>10</td>
<td>6.15447</td>
</tr>
<tr>
<td>15</td>
<td>6.09115</td>
</tr>
<tr>
<td>Ec</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>3.74505</td>
</tr>
<tr>
<td>0.4</td>
<td>5.39652</td>
</tr>
<tr>
<td>0.6</td>
<td>7.04018</td>
</tr>
<tr>
<td>0.8</td>
<td>8.67609</td>
</tr>
<tr>
<td>Nb</td>
<td></td>
</tr>
<tr>
<td>N_t</td>
<td>τ_1</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>0.5</td>
<td>6.41814</td>
</tr>
<tr>
<td>1.0</td>
<td>6.66666</td>
</tr>
<tr>
<td>1.5</td>
<td>6.91518</td>
</tr>
<tr>
<td>2.0</td>
<td>7.16369</td>
</tr>
<tr>
<td>0.5</td>
<td>6.36133</td>
</tr>
<tr>
<td>1.0</td>
<td>6.53885</td>
</tr>
<tr>
<td>1.5</td>
<td>6.71636</td>
</tr>
<tr>
<td>2.0</td>
<td>6.89388</td>
</tr>
</tbody>
</table>

Table 5. Skin friction at the duct walls

<table>
<thead>
<tr>
<th>$Bi_1 = Bi_2 = 10$</th>
<th>$Bi_1 = 1.0, Bi_2 = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12.00000</td>
</tr>
<tr>
<td>5</td>
<td>12.42669</td>
</tr>
<tr>
<td>10</td>
<td>12.85145</td>
</tr>
<tr>
<td>15</td>
<td>13.27469</td>
</tr>
<tr>
<td>Ec</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>12.08980</td>
</tr>
<tr>
<td>0.4</td>
<td>12.31437</td>
</tr>
<tr>
<td>0.6</td>
<td>12.53895</td>
</tr>
<tr>
<td>0.8</td>
<td>12.76353</td>
</tr>
<tr>
<td>Nb</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>12.45941</td>
</tr>
<tr>
<td>1.0</td>
<td>12.50032</td>
</tr>
<tr>
<td>1.5</td>
<td>12.54125</td>
</tr>
<tr>
<td>2.0</td>
<td>12.58217</td>
</tr>
<tr>
<td>Nt</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Sherwood numbers at the duct walls

<table>
<thead>
<tr>
<th></th>
<th>Sh_1</th>
<th>Sh_2</th>
<th>Sh_1</th>
<th>Sh_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Bi_1 = Bi_2 = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Bi_1 = 1.0, Bi_2 = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>-1.08736618</td>
<td>5.03454007</td>
<td>-0.99475944</td>
<td>4.98130461</td>
</tr>
<tr>
<td>0</td>
<td>-1.40624107</td>
<td>5.41013820</td>
<td>-2.00147219</td>
<td>5.91705800</td>
</tr>
<tr>
<td>5</td>
<td>-1.84693384</td>
<td>5.91476734</td>
<td>-5.82171186</td>
<td>9.40026140</td>
</tr>
<tr>
<td>10</td>
<td>-2.51343205</td>
<td>6.65587803</td>
<td>-0.74800028</td>
<td>9.45692636</td>
</tr>
<tr>
<td>Ec</td>
<td>0.68692558</td>
<td>3.31456569</td>
<td>0.67275847</td>
<td>3.31222724</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.67620980</td>
<td>4.67958332</td>
<td>-0.97966397</td>
<td>4.92670672</td>
</tr>
<tr>
<td>0.4</td>
<td>-2.17281857</td>
<td>6.17691432</td>
<td>-3.21943416</td>
<td>7.09209462</td>
</tr>
<tr>
<td>0.6</td>
<td>-3.83149355</td>
<td>7.83483138</td>
<td>-6.72699001</td>
<td>10.46155367</td>
</tr>
<tr>
<td>Nb</td>
<td>1.27245427</td>
<td>2.69887885</td>
<td>1.20836910</td>
<td>2.74070990</td>
</tr>
<tr>
<td>0.5</td>
<td>1.60626747</td>
<td>2.35894131</td>
<td>1.61061527</td>
<td>2.34034039</td>
</tr>
<tr>
<td>1.0</td>
<td>1.71677939</td>
<td>2.24486494</td>
<td>1.74545474</td>
<td>2.20440879</td>
</tr>
<tr>
<td>1.5</td>
<td>1.77146532</td>
<td>2.18725323</td>
<td>1.81344648</td>
<td>2.13457734</td>
</tr>
<tr>
<td>Nr</td>
<td>-4.90142387</td>
<td>8.85639533</td>
<td>-6.07302842</td>
<td>9.97803437</td>
</tr>
<tr>
<td>0.2</td>
<td>-12.1634587</td>
<td>15.8505076</td>
<td>-14.4380157</td>
<td>18.5849291</td>
</tr>
<tr>
<td>0.4</td>
<td>-19.7962755</td>
<td>22.9690351</td>
<td>-23.1198214</td>
<td>27.9433111</td>
</tr>
<tr>
<td>0.6</td>
<td>-27.8109358</td>
<td>30.1992474</td>
<td>-32.1465766</td>
<td>38.2078054</td>
</tr>
</tbody>
</table>
The forced convection case \((\Lambda = 0)\) therefore achieves maximum nanoparticle concentration magnitudes whereas the strong natural convection case \((\Lambda = 15)\) achieves maximum flow acceleration and peak temperature in the duct regime. A monotonic (concave) ascent in temperatures from the left duct wall to the right duct wall is computed at all values of the thermal buoyancy parameter whereas a convex monotonic ascent is observed for nanoparticle concentration when Biot numbers are equal at both duct walls. Fig. 2d demonstrates that for the asymmetric case (unequal Biot numbers) a strong modification in temperature distributions is computed which deviates significantly from the symmetric Biot number case (Fig. 2b). The profiles become increasingly curved and more prominently warped towards the left duct wall. Profiles near the right duct wall are also more constricted indicating that in the proximity of the right wall there is less modification in temperatures with increment in thermal buoyancy effect. As anticipated, the unequal Biot numbers induce a non-symmetrical topology in the temperature profiles and the peak is also nearer the right wall. As with the symmetric Biot number case, the forced convection scenario \((\Lambda = 0)\) minimizes temperature magnitudes whereas the extreme natural (free) convection scenario \((\Lambda = 15)\) produces peak temperatures. The sensitivity of the temperature field to both buoyancy and wall thermal boundary conditions is therefore clearly captured.

The influence of Eckert numbers \(Ec\) on the temperature field and nanoparticle volume fraction field is presented in Figs 3a-3c. The Eckert number \(Ec\) is the parameter which quantifies the ratio of the heat dissipation via internal friction to the enthalpy difference (or the dynamic temperature to the temperature) driving force in convective transport. Therefore this number quantifies the relative effectiveness of heat dissipation transport by diffusion on \(\Theta\) and \(\Phi\). These figures reveal that as the Eckert number increases, temperature enhances but \(\Phi\) is diminished for similar and distinct Biot numbers. Clearly increasing viscous heating energizes the duct flow due to conversion of mechanical energy into heat. However, this boost in temperature and thermal diffusion has a counter-productive impact on nanoparticle species diffusion (the concentration conservation equation does not feature a dissipation term, and therefore the effect is indirect). The influence of \(Ec\) on the momentum is to decelerate flow due to dissipation of mechanical energy at all values of \(Bi\) which is a similar outcome to that seen in Figs. 2a and 2d and hence not exhibited. It is also interesting to note that for the symmetric
heating case (equal Biot numbers) the maximum temperature is computed for $Ec = 0.04$ closer to the right duct wall. However, for the asymmetric case (unequal Biot numbers) the peak temperature again for $Ec = 0.04$ is displaced closer to the left duct wall.

Figures 4a-4b and supplementary Figs. 4c and 4d shows the evolution in u, θ and ϕ across the duct with thermophoresis parameter, N_t, for distinct and identical values of Biot numbers. The impact of N_t on the velocity field is relatively minor (it induces a weak acceleration, notably in the core zone of the duct) whereas it significantly modifies temperatures and results in an intensification in temperature magnitudes for all values of Biot numbers. N_t is one of two nanoscale parameters featured in the Buongiorno model which arises in two terms in the model- viz the second degree temperature term, $+N_t \Pr \left(\frac{d\theta}{dy} \right)^2$ in the energy Eqn. (11) and the coupling term, $\frac{N_t}{Nb} \frac{d^2 \theta}{dy^2}$ in the nanoparticle (volume fraction) concentration Eqn. (12). N_t is associated with the thermophoretic body forces generated by temperature gradient which transports nanofluid molecules from a region of high temperature (i.e. near the surface- specifically the duct walls) to a region of low temperature (i.e. far away from the surface, viz core region of the duct). This enhances temperatures in the entire duct space. Conversely the nanoparticle concentration field is dwindled for larger values of N_t (Supplementary Fig. 4c). At very low N_t (= 0.05) the concentration distribution is approximately linear and ascends from the left wall to the right wall. However, the profiles become increasingly parabolic with increment in thermophoresis parameter (N_t =0.1, 0.15, 0.2) despite the suppression in concentration (nanoparticle volume fraction) magnitudes. As noted earlier, the unequal Biot number case (asymmetric heating) produces a shift in the peak temperature further away from the right duct wall, whereas the peak is much closer to the right wall for the equal Biot number scenario (symmetric heating). Furthermore, the profiles are distinctly inverted parabolas for the asymmetric case (Supplementary Fig. 4d) whereas they exhibit a distinctly monotonic nature for the symmetric heating case (Fig. 4b). However, the thermophoresis body force exerts the same overall effect for both heating cases- it enhances temperature across the duct.

The influence of the second nanoscale parameter, Brownian motion parameter, Nb on u and θ is similar to the impact computed with N_t and hence is not presented. The outcome of
Nb on nanoparticle volume fraction ϕ is however visualized in Supplementary Fig 5, and clearly produces An elevation in ϕ i.e. encourages nanoparticle diffusion for equivalent Bi (the trend is similar for divergent Bi and is therefore not displayed). Large values of this parameter correspond to smaller spherical nanoparticles and vice versa for lower Nb values (larger diameter nanoparticles), as elaborated in Buongiorno35, Bég et al.73 and Thumma et al.75. Larger Nb values clearly produce smaller nanoparticles which mobilizes improved diffusion in the duct regime. The parameter, Nb, arises again in two terms in the model, namely the mixed derivative term, $Nb Pr\frac{d\phi}{dy}\frac{d\theta}{dy}$ in the energy Eqn. (11) and the coupling term, $Nt\frac{d^2\theta}{Nb dy^2}$ in the nanoparticle (volume fraction) concentration Eqn. (12). In terms of ballistic collisions of nanoparticles, an increasing value of Nb accelerates the flow and in turn influences kinetic energy $\left(\frac{1}{2}mv^2=\frac{3}{2}K_B T\right)$ where K_B is Boltzmann constant which influences the temperature distribution (Brownian motion is associated with ballistic collisions of nanoparticles). This assists in nanoparticle diffusion in the regime, as noted by Das et al.59.

Figures 2 to 4b and supplementary Figs. 4c to 5 correspond to $R_T = 1$. For equal wall temperatures, the action of thermal buoyancy parameter, $A=Gr/Re$ (as defined in Eqn. (8), on u, θ and ϕ is depicted in Supplementary Figs. 6a to 6d. The momentum, energy and concentration fields are all consistently escalated by augmenting A for all values of Bi. In other words, the duct flow is accelerated and both temperature and nanoparticle concentration (volume fraction) are accentuated with stronger thermal buoyancy effect ($A = 5, 10$ i.e. natural convection) whereas the reverse trend is computed for forced convection ($A = 0$ i.e. vanishing thermal buoyancy effect). However, a weaker increase in nanoparticle concentration is produced (Supplementary Fig. 6c) compared with the boost in velocity and temperature magnitudes (Supplementary Figs. 6a, b). From all the figures one can conclude that the performance of Bi is more prominent at the cold duct wall for unequal Biot numbers when compared with equal Biot numbers. The impact of Prandtl number is omitted since the profiles are qualitatively similar to the influence of the Eckert number.
The values of \(Nu \) (Nusselt number), \(\bar{u} \) (mean velocity) and \(\theta_b \) (bulk temperature) are illustrated in Table 4. The Nusselt values are lowered with \(\Lambda \) and are enhanced with \(Ec, Nb, Nt \) at the left wall whereas Nusselt numbers are increased in magnitude at the right wall by boosting \(\Lambda \), \(Ec, Nb, Nt \) for identical Biot numbers (symmetric case). For distinct Biot numbers (asymmetric case), \(Nu \) at the left plate increases in magnitude with increment in thermal buoyancy parameter, \(\Lambda \) and is lowered in magnitude with greater values of \(Ec, Nb, Nt \). The Nusselt values at the right plate are intensified with \(\Lambda \) whereas they are suppressed with magnification in \(Ec, Nb, Nt \) when \(Bi_i =1, Bi_z =10 \). The mean velocity exhibits an upsurge with increasing values of \(\Lambda, Ec, Nb, Nt \) for all values of \(Bi \). The bulk temperature is boosted by raising \(\Lambda, Ec, Nb, Nt \) for equal Biot numbers whereas it is depleted with increment in \(\Lambda \) and expanded with augmenting \(Ec, Nb, Nt \) for unequal Biot numbers. The skin friction at the cold wall (left) is intensified with \(\Lambda, Ec, Nb, Nt \) and declined at the hot wall (right) with \(\Lambda, Ec, Nb, Nt \) for all values of \(Bi \) as shown in Table-5. The values of \(Sh \) (Sherwood number) at both the left and right duct walls are depicted in Table-6. \(Sh \) at the cold wall is reduced i.e. nanoparticle mass transfer rate to the wall is depressed by increasing \(\Lambda, Ec, Nt \) whereas it is elevated with a rise in \(Nb \) for all values of \(Bi \). At the hot wall \(Sh \) is markedly scaled up with an increase in \(\Lambda, Ec, Nb, Nt \) for all values of \(Bi \).

5. Conclusions

A comprehensive mathematical model for dissipative nanofluid buoyancy-driven flow in a thermal duct with Fourier-type boundary conditions has been developed, motivated by applications in thermal process engineering. The two-component Bungiiorno nanoscale model has been deployed. The duct left wall temperature is kept lower than that of the right wall. The non-dimensional coupled conservation equations for momentum, heat and nanoparticle concentration have been solved with appropriate boundary conditions using a regular perturbation method for Prandtl number, \(Pr <1 \). Numerical solutions with an efficient Runge-Kutta shooting method, have also been presented at all values of the control parameters for \((Pr \leq 1, Pr >1)\). The solutions obtained by the shooting method and perturbation method
match exactly for $Pr = 0$ whereas they deviate as Pr increases. For regular Newtonian viscous fluid the results agree very closely with Zanchini45. The present simulations have shown that:

1. With increasing thermal Grashof number, temperature and velocity are accentuated through the duct whereas nanoparticle concentration magnitudes are depleted, for both equal and unequal Biot numbers.
2. With increasing Eckert number, temperature is strongly elevated in the duct and nanoparticle concentration magnitudes are reduced, again for both equal and unequal Biot numbers.
3. The magnitude of intensification of the temperatures at the hot wall is predominant for unequal Biot numbers in comparison with identical duct wall Biot numbers.
4. Increment in thermophoresis and Brownian motion parameters boosts both velocity and temperature magnitudes for all values of Biot number prescribed at the duct walls i.e. both symmetric and asymmetric cases. However, elevation in thermophoresis parameter suppresses the nanoparticle concentration field whereas the Brownian motion effect enhances the nanoparticle concentration magnitudes across the duct span.
5. Nusselt number values are lowered with increasing thermal buoyancy parameter whereas they are magnified with Eckert number, Brownian motion parameter and thermophoresis parameter at the cold duct wall (left).
6. Nusselt number values at the hot duct wall, are enhanced with an increment in thermal buoyancy parameter, Eckert number, Brownian motion parameter and thermophoresis parameter for equal Biot numbers. The opposite trend is computed for different Biot numbers.
7. Strong natural convection generally accelerates the flow and elevates temperatures and nanoparticle concentrations compared with forced convection (vanishing thermal buoyancy effect).
8. For any given values of Biot numbers, the mean velocity and bulk temperature are boosted with increment in thermal buoyancy parameter, Eckert number, Brownian motion parameter and thermophoresis parameter.
9. The skin friction at the cold wall (left) is intensified with larger values of thermal buoyancy parameter, Eckert number, Brownian motion parameter and thermophoresis parameter whereas it is suppressed at the hot wall (right) for all values of Bi.

10. Sherwood numbers (i.e. dimensionless nanoparticle mass transfer rate to the duct walls) are diminished at the cold left wall with increasing thermal buoyancy parameter, Eckert number and thermophoresis parameter whereas they are amplified with stronger Brownian motion parameter Nb. At the hot wall the Sherwood numbers are however magnified with increment in all these parameters.

The present study has provided some deeper insight into thermofluid characteristics of nanofluids as deployed in duct systems. Future investigations may generalize the analysis to consider multiple (hybrid) nanoparticles (triple diffusion) as opposed to unitary nanofluids, porous media and more complex duct wall features (e.g. wavy walls) and efforts in this direction are currently underway.

REFERENCES:

28. Sowmya G, Gireesha BJ, Animasaun IL, Nehad AS. Significance of buoyancy and Lorentz forces on water-conveying iron(III) oxide and silver nanoparticles in a

