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Abstract b-defensins are important components of the
vertebrate innate immune system responsible for encoding
a variety of anti-microbial peptides. Pathogen-mediated
selection is thought to act on immune genes and potentially
maintain allelic variation in the face of genetic drift. The
Seychelles warbler,Acrocephalus sechellensis,is an
endemic passerine that underwent a recent bottleneck in its
last remaining population, resulting in a considerable
reduction in genome-wide variation. We genotyped avian
b-defensin (AvBD) genes in contemporary (2000–2008)
and museum samples (1876–1940) of the Seychelles war-
bler to investigate whether immunogenetic variation was
lost through this bottleneck, and examined AvBD variation
across four otherAcrocephalus species with varying
demographic histories. No variation was detected at four of
the six AvBD loci screened in the post-bottleneck popu-
lation of Seychelles warbler, but two silent nucleotide
polymorphisms were identi�ed atAvBD8 and one poten-
tially functional amino-acid variation was observed at

AvBD11.Variation in the Seychelles warbler was signi�-
cantly lower than in the mainland migratory congeneric
species investigated, but it similar to that found in other
bottlenecked species. In addition, screeningAvBD7 in 15
museum specimens of Seychelles warblers sampled prior to
the bottleneck (1877–1905) revealed that this locus pos-
sessed two alleles previously, compared to the single allele
in the contemporary population. Overall, the results show
that little AvBD variation remains in the Seychelles war-
bler, probably as a result of having low AvBD diversity
historically rather than the loss of variation due to drift
associated with past demographic history. Given the lim-
ited pathogen fauna, this lack of variation at the AvBD loci
may currently not pose a problem for this isolate popula-
tion of Seychelles warblers, but it may be detrimental to the
species’ long-term survival if new pathogens reach the
population in the future.

Keywords Seychelles warbler� Avian b-defensins�
Bottleneck� Demographic processes� Genetic drift�
Selection

Introduction

Drift is the predominant evolutionary force shaping genetic
variation in small populations (Hedrick et al.2001; Miller
and Lambert2004; Jensen et al.2013), and its effects on
genetic variation often outweigh the in�uence of selection
(Miller and Lambert2004; Alcaide 2010; Grueber et al.
2013). Nevertheless, various studies have shown that
within small natural populations, variation at speci�c key
loci can be elevated above that of the genome-wide aver-
age, and be maintained across bottleneck events as a result
of balancing selection (Aguilar et al.2004; Tompkins
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2007; van Oosterhout et al.2006). Given that a loss of
genetic variation within a population impacts on both
inbreeding depression and adaptive potential (for review,
see Garrigan and Hedrick2003), the maintenance of
polymorphisms at key loci will be important to a popula-
tions’ long-term viability (Meyers and Bull2002; Ellegren
and Sheldon2008; Zhu et al. 2013). However, not all
immune genes are under balancing selection (Mukherjee
et al.2009). By performing a temporal analysis comparing
variation before and after a bottleneck event it is possible
to discern the effects of balancing selection. Furthermore,
taking a candidate-gene approach and focusing on those
loci most likely to be under selection in natural populations
(Fitzpatrick et al.2005), avoids in�ating the possibility of
type 1 errors.

Genes that contribute to immune function are ideal can-
didates with which to assess the roles of drift and selection in
maintaining functional diversity within natural populations
(for review, see Acevedo-Whitehouse and Cunningham
2006). Many such studies have focused on the highly poly-
morphic genes of the major histocompatibility complex
(MHC), which play a central role in the acquired immune
system (Doherty and Zinkernagel1975; Klein 1986; Piert-
ney and Oliver2006). However, there are complex inter-
acting evolutionary forces acting upon the MHC, including
the effects of epistasis and selection against the so-called
‘sheltered load’ (van Oosterhout2009). Additionally, fre-
quent gene duplication (Eimes et al.2011) and recombina-
tion-like processes i.e., gene conversion (Ohta1995; Spurgin
et al. 2011) confound the interpretation of the population
genetic mechanisms maintaining variation at these genes. In
contrast, studies of variation within natural populations in
genes that play a role in the innate immune system are rel-
atively scarce (Sutton et al.2011), despite the fact that these
genes are often simpler in form and function than the MHC
(for review, see Kaiser2007). Variation in such genes may be
crucial, given that the innate immune response is the �rst line
of defence against pathogens. Moreover, a number of innate
immune gene families, including the toll-like receptors
(TLRs) and cytokines, have been shown to be targets of
balancing selection (for examples, see Schlenke and Begun
2003; Ferrer-admetlla et al.2008; Mukherjee et al.2009).

Anti-microbial peptides (AMPs) are effector molecules
involved in the innate immune system. AMPs directly kill
invading pathogens via the disruption of membranes through
cationic attack mechanisms (Hancock and Sahl2006). All
defensin molecules have six cysteine residues but are sorted
into three classes based on their physical structure (Yang
et al. 2002). Both a-defensins andb-defensins form beta-
sheet dimers but they have different lengths and pairing of
cysteine linkages, whereasc-defensins have a cyclic struc-
ture (Sugiarto and Yu2004). Different taxonomic groups
have different classes and numbers of defensins in their

immune repertoire (Selsted and Ouellette2005). For exam-
ple, birds have onlyb-defensins, of which 14 different loci
have been identi�ed in the domestic chicken,Gallus gallus
domesticus(Lynn et al. 2004; Xiao et al. 2004), whereas
mammals have botha andb-defensins (Yang et al.2002).
The number ofb-defensins in a species has been shown to
highly relevant to the ever-changing microbial challenges of
the environment in which that species’ inhabits (Tu et al.
2015). It has been well-shown that different defensin alleles
have different antimicrobial activities in vitro in a range of
vertebrate hosts (Meredith et al.2008; Mukherjee et al.2009;
Hellgren et al.2010; Chow et al.2012). These studies suggest
that the greater the variety of AMPs encoded, the greater the
ability to combat a range of bacteria. These studies therefore
suggest that there could be an advantage to individuals (and
populations) which are heterozygous at these loci.

Birds provide excellent systems in which to study the
causes and consequences of innate immune gene variation
under natural conditions. Functional variation at defensin
genes has been shown to exist within and among species
(for review, see van Dijk et al.2008) and locus-speci�c
protocols have been developed to screen for avianb-de-
fensins (AvBDs) in passerines (Hellgren and Sheldon
2011). Importantly, variation within these loci has been
shown to in�uence anti-microbial properties in vitro
(Hellgren and Ekblom2010; Hellgren et al.2010). Speci�c
defensin alleles have also been shown in vitro to be asso-
ciated with avian pathogens (Higgs et al.2007; Ma et al.
2012; Ramasamy et al.2012), although whether individual
heterozygosity is advantageous has yet to be shown.

The Seychelles warbler,Acrocephalus sechellensis, is
an ideal species in which to study the in�uence of different
evolutionary forces on AvBD genes. As a result of
anthropogenic factors- this population experienced a bot-
tleneck during the last century when it was on the verge of
extinction with ca 26 individuals remaining on a single
island (Collar and Stuart1985). As a result, considerable
variation has been lost across the warblers genome (Spur-
gin et al. 2014), although diversity appears to have been
maintained at MHC class I loci (Richardson and Wester-
dahl 2003; Hansson and Richardson2005) due to a com-
bination of natural and sexual selection (Richardson et al.
2005; Brouwer et al. 2010). Given these patterns, we
hypothesise that genetic variation could also have been
maintained at other immune loci. If we can identify loci at
which variation has been maintained then we can carry out
association analysis between this immunogenetic variation
and individual �tness parameters using data collected over
the last two decades.

Here, we screened six AvBD loci in the contemporary
bottlenecked population of the Seychelles warbler. For one
AvBD locus,AvBD7,that was identi�ed to be polymorphic
in most other passerine species for which AvBD genes
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have been characterised already (Hellgren and Ekblom
2010), we used museum samples of the Seychelles warbler
dating from 1877 to 1940 to assess variation that existed at
this locus prior to the population bottleneck. This enables
us to compare the variation in pre- and post-bottleneck
populations at this locus. We also screened AvBD variation
in a small sample of individuals from four otherAcro-
cephalusspecies to provide a comparison for the levels of
AvBD variation observed in the Seychelles warbler, and to
test for signatures of selection within the sequences across
the genus.

Materials and methods

Study species and sampling

The Seychelles warbler is a small (ca 12–15 g) insectivorous
passerine endemic to the Seychelles archipelago (Safford
and Hawkins2013). As a result of anthropogenic factors, the
species’ global population was dramatically reduced to an
estimated low of 26 individuals on the single small island of
Cousin in the 1960s (Collar and Stuart1985). This reduced
the species effective population size from 2600 to 9700 in the
early 1800s to\ 50 in the contemporary population (Spurgin
et al.2014). After conservation intervention, the population
on Cousin recovered and reached saturation by 1982
(Komdeur1992) remaining relatively stable at ca 320 adults
ever since (Brouwer et al.2009; Wright et al.2014a, b). Four
translocations have been undertaken from the original pop-
ulation on Cousin as part of a conservation programme. A
total of 29 birds were translocated to both Aride in 1988 and
to Cousine island in 1990 (Komdeur1994). A further 58
birds were translocated to Denis in 2004 (Richardson et al.
2006) and 59 to Fre´gate in 2011 (Wright et al.2014a, b). This
species has been intensively studied as a model system for
evolutionary, ecological and conservation questions (Kom-
deur1992; Richardson et al.2003; van de Crommenacker
et al.2011; Barrett et al.2013). Since 1997,[ 96 % of the
Cousin population has been caught, blood-sampled and
marked with a unique combination of colour rings and a
metal British Trust for Ornithology (BTO) ring (Richardson
et al.2002).

The great reed warbler,A. arundinaceus, and Eurasian
reed warbler,A. scirpaceus, are two mainland migratory
species classi�ed as ‘under least concern’ with estimated
populations (Nc) in Europe of 950,000 and 3.1 million
respectively (after Hagemeijer and Blair1997; IUCN
2015). In contrast, the Cape Verde warbler,A. brevipennis,
and Henderson’s Island warbler,A. taiti, are two island
species with restricted but stable populations of an Nc

estimated at 1000–1500 (Schulze-Hagen and Leisler2011)
and ca 7000 individuals (Brooke and Hartley1995; IUCN

2015) respectively. The Cape Verde warbler is endemic to
the Cape Verde islands and until recently, was thought to
be con�ned to just Santiago island until small populations
were discovered in Sa˜o Nicolau and Fogo in 1998 and
2004, respectively (IUCN2015). All samples used in this
study are from the Santiago population. The population of
Henderson’s Island warbler appears to have remained
stable despite the observed severe population bottlenecks
in other endemic species on the island during the human
colonisation of Henderson Island in the early 1900s
(Brooke2010).

Estimates of effective population sizes (Ne) are available
for the great reed warbler at ca 20,000 (Bensch and Has-
selquist1999). However, for the other warbler species with
only a census population size (Nc) known, we can only
estimate that the Ne will be ca 10 % or less of the popu-
lation size (Frankham1995). Samples were taken from all
Seychelles warbler museum specimens known to exist
(n = 26) (Spurgin et al.2014) including 19 from Cousin
Island and seven from Marianne Island, all collected
between 1876 and 1940 (Table S1). A small (ca
1.5 9 1.5 9 3.0 mm) piece of skin was cut from the
ventral surface of the foot and stored at room temperature
in a sterile microfuge tube. All otherAcrocephalussamples
were from unrelated adults ([ 1 year old) from single
populations with details as follows: 23 individuals were
sampled for the Seychelles warbler between 2000 and 2008
from the Cousin Island population (ca 320 adults, 0.3 km2,
Wright et al.2014a, b). The Cape Verde warbler samples
(n = 5) were sourced from the Santiago Island population
in 2011 (ca 500 adults, 991 km2, Batahla unpublished) and
the Henderson’s Island warbler were from Henderson
Island (n= 5) and randomly chosen from an extant pop-
ulation in the 2000s (ca 7200 adults, 41 km2, IUCN 2015)
(Brooke and Hartley1995). The two migratory Acro-
cephalusspeciesA. scirpaceus(n = 5) and A. arundi-
naceus(n = 6), were both sampled from breeding areas in
central Sweden and Belgium, respectively, and randomly
chosen from the same cohort used and outlined in previous
studies (Richardson et al.2000; Hansson and Richardson
2005; Hansson et al.2006).

Molecular methods

Genomic DNA was extracted from the Seychelles warbler
blood samples using a salt extraction method (Richardson
et al. 2001). The same procedure had been used for the
Cape Verde warbler blood samples (provided by Juan-
Carlos Illera) and the Eurasian reed warbler and the great
reed warbler DNA samples (provided by Andrew Dixon
and Bengt Hansson, respectively). The Henderson’s Island
warbler DNA samples were provided by Mike Brooke and
extracted by Ian Hartley using a phenol–chloroform
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protocol (Brooke and Hartley1995). We extracted DNA
from Seychelles warbler museum samples (Table S1) using
a Qiagen DNeasy tissue kit (Qiagen, Crawley, UK) under
the manufacturer’s instructions with the following changes:
(i) each sample was �nely chopped in a small volume of
ATL buffer prior to digestion with proteinase K, (ii) 20l l
1 M DTT (Dithiothreitol, Sigma-Aldrich, UK) was added
at incubation; and (iii) 1l l (Qiagen, �nal concentra-
tion = 20 pg/ml) was added during the precipitation phase.
All extractions and PCRs based on historical DNA were
carried out in a laminar �ow cabinet in a ‘clean room’
isolated from the main laboratory with no record of
passerine DNA use in that facility with sample controls
(see Spurgin et al.2014, for further details).

Locus-speci�c primers (Hellgren and Sheldon2011)
were used to screen six AvBD genes: AvBD4, AvBD7,
AvBD8, AvBD9, AvBD11and AvBD13. These loci were
chosen based on their successful ampli�cation in con-
generic species (Table S2) (Hellgren and Sheldon2011).
All AvBD loci and the available primer sets used produced
amplicon lengths short enough for ampli�cation in the
degraded DNA we obtained from the museum samples, as
they are all[ 200 base-pairs (bp) (Spurgin et al.2014).
However, we have very limited volumes of DNA from
these samples and thus could only choose one candidate
AvBD locus to characterise.AvBD7was chosen because it
was polymorphic in most bird species examined (Hellgren
et al.2010) and was a short enough fragment to amplify in
the degraded museum sample DNA.

For each locus, PCRs were carried out in volumes of 10l l
with genomic DNA at a concentration of 5–10 ng/l l. Taq
PCR Master Mix was used (Qiagen, UK), which included:
Taq-DNA Polymerase, QIAGEN PCR Buffer, 1.5 Mm
MgCl2, and 200l M of ultrapure dNTPs. PCRs were carried
out using the following conditions: 30 s at 94�C, 30 s at the
locus-speci�c annealing temperature of 55�C (AvBD4,
AvBD7, AvBD8, AvBD9) and 60�C (AvBD11, AvBD13), 45 s
at 72�C, run for a total of 40 cycles. All PCRs started with an
incubation step of 3 min at 94�C and �nished with an incu-
bation step of 10 min at 72�C. PCR products were elec-
trophoresed on a 2 % agarose gel containing ethidium
bromide to con�rm successful ampli�cation of the expected
size fragment. Positive samples were submitted to the Gen-
ome Analysis Centre, Norwich, for Sanger-sequencing. All
sequence polymorphisms were con�rmed by sequencing in
both the forward and reverse direction.

All sequences were aligned against target sequences of the
given loci from other passerine species available using the
basic local alignment search tool (BLAST) from the nucleo-
tide database (NCBI) using BioEdit (Hall1999) via ClustalW
codon alignment. Each chromatogram was examined by eye
to identify single-nucleotide polymorphisms (SNPs) and
haplotypes were constructed using Phase v 2.1 (Stephens et al.

2001; Stephens and Donnelly2003) in DnaSP (Librado and
Rozas2009). Given that Phase has an estimated rate of ca 5 %
(Marchini et al.2006), all reconstructed haplotypes were also
checked by eye. Amino acid sequences were translated in
BioEdit (Hall 1999).

Phylogenetic trees were constructed in Mega v6 (Tamura
et al.2007) using the maximum-likelihood method based on
the models best suited to that clustal-sequence alignment, as
determined by Mega. The trees were used to infer evolu-
tionary history both within and between AvBD loci across
the Acrocephalusgenus. The trees with the highest log
likelihood are presented, based on nucleotide variation
given the short sequence sizes of\ 150 bp. All Acro-
cephalussequences used originate from this study. Out-
group non-Acrocephaluspasserine species sequences were
obtained using the NCBI BLAST database and included:
Eurasian blackcap,Sylvia atricapilla,house sparrow,Pas-
ser domesticus,icterine warbler,Hippolais icterina,lesser
redpoll, Carduelis cabaretand zebra �nch,Taeniopygia
guttata (Table S3). Model details are as follows,AvBD4:
Jukes-Cantor model (Jukes and Cantor1969) all gaps and
missing data eliminated and total of 42 positions analysed in
the �nal dataset. AvBD7: Kimura 2-parameter model
(Kimura 1980), all gaps and missing data eliminated and
total of 102 positions analysed in the �nal dataset.AvBD8:
Tamura 3-parameter model (Tamura1992), all sites are
considered due to an entire codon insertion in some
sequences and total of 93 positions analysed in the �nal
dataset.AvBD9: Jukes-Cantor model, all gaps and missing
data eliminated and total of 66 positions considered in �nal
dataset.AvBD11:Kimura 2-parameter model, all gaps and
missing data eliminated and total of 113 positions analysed
in �nal dataset.AvBD13: Kimura 2-parameter model, all
gaps and missing data eliminated and total of 68 positions
analysed in �nal data set. These trees were constructed to
examine allelic richness at each locus for the Seychelles
warbler, and provide further insight into AvBD loci evo-
lution across theAcrocephalusgenus. An overall tree was
constructed to encompass all AvBD loci with the single
most common allele at each locus used for eachAcro-
cephalusspecies. The evolutionary history was inferred
using the Neighbour-Joining method (Saitou and Nei1987).
The percentage of replicate trees in which the associated
taxa clustered together in the bootstrap test (1000 replicates)
is shown next to the branches. The tree is drawn to scale,
with branch lengths in the same units as those of the evo-
lutionary distances used to infer the phylogenetic tree
(Felsenstein1985). The evolutionary distances were com-
puted using the number of differences method (Nei and
Kumar 2000) and are in the units of the number of base
differences per sequence. All positions containing gaps and
missing data were eliminated. Only bootstrap values above
50 % are presented.
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Analyses

Tests for linkage disequilibrium and deviation from the
Hardy–Weinberg equilibrium (HWE) were carried out
using GenePop (Raymond and Rousset1995) and tests
were based on (i) heterozygote excess and (ii) heterozygote
de�ciency. Polymorphism statistics and tests for neutrality
were carried out in the Seychelles warbler, including:
Tajima’s D statistic (Tajima1989), Fu and Li’s D (Fu and
Li 1993) and Fu and Li’s F statistics (Fu1996) in the
program DnaSP (Librado and Rozas2009).

Site-speci�c dN/dS tests were then carried out using two
different models (i) MEME and (ii) FUBAR to identify any
individual codons under putative selection. MEME is a
mixed effects model of evolution where the signi�cance
level of 0.1 is used to classify a site as positively or negatively
selected as this method tends to be more conservative than
empirical Bayesian approaches (Murrell et al.2012).
FUBAR is a fast unconstrained Bayesian approximation
model using a Markov chain Monte Carlo routine which has
a Bayes Factor/posterior probability set at 0.9 as a minimum
value for inclusion in the inferred Bayesian graph (Murrell
et al.2013). Both models come highly recommended as part
of the HyPhy package available for detecting individual sites
under episodic diversifying selection using the DataMonkey
web application (Delport et al.2010).

Measures of variation were compared between mainland
migratory Acrocephalus species and island endemic
Acrocephalusspecies using Welch’st tests of unequal
variances. Population size for each species was obtained
from IUCN (2015) and cross-referenced in Schulze-Hagen
and Leisler’s publication (2011). The relationship between
population size and AvBD haplotype diversity was anal-
ysed (and then the diversity of haplotypes which only
resulted in amino acid variation) by log-transforming
population size before using a simple linear regression
analysis in Sigmaplot from Systat Software Inc., San Jose
California USA. Haplotype diversity is a measure of the
uniqueness of a given haplotype in a given population of
individuals and includes a measure of the relative haplo-
type frequency (xi) in the sample of individuals as well as
any difference in sample size (N) (Nei1987).

Results

Four out of six AvBD loci were found to be monomorphic in
the contemporary Seychelles warbler population (Table1).
In the two that were variable we identi�ed two synonymous
single-nucleotide polymorphisms (SNPs) withinAvBD8and
one non-synonymous SNP withinAvBD11 (from 20
screened individuals) (Fig S1). Of the 26 museum DNA
samples screened, only 15 successfully ampli�ed theAvBD7

locus. From these, two alleles were identi�ed, but one allele
was found in just one individual (Table S1). This novel allele,
just one non-synonymous nucleotide different from the
common allele, was con�rmed by independent PCRs. Given
the low levels of variation identi�ed, no meaningful statis-
tical analysis of the difference inAvBD7variation between
the pre- and post-bottleneck populations, or the intra-speci�c
variation atAvBD8andAvBD11,were possible. There was
no evidence of selection atAvBD8or AvBD11based on the
tests of neutrality or results from the Z-tests of selection
based on dN/dS (Table S4). There was no evidence found of
linkage disequilibrium between all pairwise combinations of
polymorphic loci. Furthermore, there was no evidence of
signi�cant deviation from Hardy–Weinberg equilibrium
based on the observed allele frequencies (P[ 0.1) although
it must be noted that these test would have low power and
only test for deviations within that single generation (Fig.1).

Across theAcrocephalusgenus, �ve out of six loci
screened were polymorphic (Table1; Fig S1) and only
AvBD9 was monomorphic across all �veAcrocephalus
species. However, one of these polymorphic lociAvBD4,
only had one SNP (and additional allele) in the Eurasian reed
warbler and there was no other variation across the other
species. In the Seychelles warbler, there was no evidence for
selection within any of the six AvBD loci using Tajima’s D,
Fu and Li’s F and D statistical tests (P[ 0.1). However,
AvBD8, the most polymorphic locus observed showed evi-
dence for negative (purifying) selection in the Z-test of
selection looking across theAcrocephalusgenus (Z= 1.72,
df = 10, P = 0.04) (Table S4). Site-speci�c dN/dS based
tests were carried out onAvBD7, AvBD8andAvBD11as a
minimum of three unique haplotype sequences are needed.
The MEME model failed to detect any sites under episodic
diversifying selection across theAcrocephalusgenus, but the
FUBAR model which focuses on putative selection detected
one site under diversifying selection at theAvBD8 locus
(posterior probability dN[ dS = 0.90, dN- dS = 1.19). It
also detected two sites under purifying selection at the same
locus (posterior probability dN\ dS = 0.90 and 0.91,
dN- dS = - 2.89 and- 0.86 respectively), in addition to one
site each atAvBD7(posterior probability dN\ dS = 0.98,
dN- dS = - 4.04) and AvBD11 (posterior probability
dN\ dS = 0.98, dN- dS = - 4.18).

Welch’s t tests showed that mainland migratory species
A. arundinaceusandA. scirpaceushad signi�cantly more
nucleotide variation observed across the AvBD loci in
comparison to the island endemic species,A. taiti, A.
brevipennisand A. sechellensis(mean vs mean respec-
tively, t = 2.427, df= 27, P = 0.022). Even when only
considering amino acid variation (only dN substitutions)
the difference between mainland and island species was
still signi�cant (t = 2.844, df= 27, P = 0.008). This is
further supported by the signi�cant difference in overall
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number of alleles observed within these two categories of
species (t= 2.732, df= 27, P = 0.011).

When exploring the association between census popu-
lation size and mean AvBD haplotype diversity, there was
a signi�cant difference between different population sizes
and AvBD variation—whether focusing on all variation
(F = 12.32, df= 27, P = 0.002) or just amino acid vari-
ation (F= 6.96, df= 27, P = 0.014). There was a posi-
tive linear relationship between population size (log-
transformed) and AvBD variation both, for nucleotide
variation (t= 3.51, df= 27, P = 0.002) and amino acid
variation (t= 2.64, df= 27, P = 0.014).

The maximum-likelihood trees show the levels of
polymorphism that occur within and between theAcro-
cephalus species for each locus (Fig.2). Outgroup
passerine species consistently cluster separately from the
Acrocephalusspecies for each AvBD locus. The tree for all

AvBD loci combined using the single most common hap-
lotype for eachAcrocephalusspecies and the reference
sequences for outgroup species, shows de�nite segregation
by locus and con�rm independent locus-speci�c evolution
of these immune genes (Fig.3).

Discussion

We characterised variation within the AvBD gene group in
the Seychelles warbler. Four out of the six AvBD loci
examined were monomorphic in the contemporary post-
bottleneck population, while two loci had low levels of
polymorphism with only a single nucleotide polymorphism
causing a change in the protein translated at one locus
(AvBD11). In the historical samples, we detected only two
alleles, diverging by a single nucleotide substitution, in the

Table 1 Polymorphism indices
for AvBD genes across �ve
Acrocephalusspecies with
different demographic histories
including the contemporary
population of Seychelles
warbler

Locus N Size (bp) Species SNPs H Hd (Sd) Pi (Sd) dN dS

AvBD4 4 57 A. arundinaceus 0 1 0 0 0 0

4 57 A. brevipennis 0 1 0 0 0 0

4 57 A. scirpaceus 1 2 0.25 (0.18) 0.005 (0.0033) 1 0

5 57 A. taiti 0 1 0 0 0 0

22 57 A. sechellensis 0 1 0 0 0 0

AvBD7 4 102 A. arundinaceus 4 3 0.61 (0.16) 0.016 (0.0043) 3 1

4 102 A. brevipennis 3 3 0.71 (0.12) 0.014 (0.0035) 1 2

4 102 A. scirpaceus 1 2 0.43 (0.17) 0.004 (0.0012) 1 0

4 102 A. taiti 0 1 0 0 0 0

20 102 A. sechellensis 0 1 0 0 0 0

AvBD8 4 93 A. arundinaceus 2 1 0.25 (0.18) 0.0025 (0.0018) 1 1

4 93 A. brevipennis 0 1 0 0 0 0

4 93 A. scirpaceus 6 7 0.96 (0.08) 0.019 (0.0032) 2 4

5 93 A. taiti 0 1 0 0 0 0

22 93 A. sechellensis 2 3 0.17 (0.07) 0.0022 (0.001) 0 2

AvBD9 4 66 A. arundinaceus 0 1 0 0 0 0

3 66 A. brevipennis 0 1 0 0 0 0

4 66 A. scirpaceus 0 1 0 0 0 0

4 66 A. taiti 0 1 0 0 0 0

20 66 A. sechellensis 0 1 0 0 0 0

AvBD11 4 115 A. arundinaceus 2 3 0.63 (0.07) 0.0063 (0.0011) 1 1

4 115 A. scirpaceus 1 2 0.40 (0.11) 0.0034 (0.0010) 0 1

4 115 A. taiti 0 1 0 0 0 0

24 115 A. sechellensis 1 2 0.04 (0.03) 0.0004 (0.0002) 1 0

AvBD13 3 69 A. arundinaceus 0 1 0 0 0 0

4 69 A. brevipennis 0 1 0 0 0 0

4 69 A. scirpaceus 2 3 0.61 (0.16) 0.011 (0.0037) 1 1

1 69 A. taiti 0 1 0 0 0 0

18 69 A. sechellensis 0 1 0 0 0 0

N number of individuals,SNP single-nucleotide polymorphism,H number of unique haplotypes,Hd
haplotype diversity,Pi nucleotide diversity,dN non-synonymous substitutions,dS synonymous substitu-
tions and fragment sizes are in base-pairs (bp). Standard deviation is provided in brackets
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usually highly polymorphicAvBD7 locus (Hellgren and
Ekblom 2010). These low levels of polymorphism meant
we were unable to perform meaningful tests of selection
using traditional population genetic tests. In order to
increase power, we characterised variation within the
AvBD gene group in a small number (3–5) individuals
from four other Acrocephalusspecies’ populations and
looked at the same loci across the genus. One locus,
AvBD8,was inferred to be under purifying selection given
its high ratio of synonymous substitutions compared to
non-synonymous substitution across the haplotype. Look-
ing at speci�c sites within the haplotype sequence, we
identi�ed one site to be under putative diversifying selec-
tion when all other loci failed to identify any sites under
episodic or putative positive selection. However, the

reliability of results from tree-based models can be con-
troversial (Anisimova et al.2003; Wong 2004). We found
that when changing the tree-build from neighbour-joining
to maximum-likelihood methods, this single site was no
longer identi�ed as being under diversifying selection.
Overall, the lack of variation at these loci in the Seychelles
warbler (and other island species) suggests that balancing
selection has not maintained AvBD variation in this bot-
tlenecked population.

Signi�cantly more variation at AvBD loci was observed
in the two outbred migratory species, the great reed warbler
and Eurasian reed warbler, in contrast to the three island
species, the Seychelles warbler, Cape Verde warbler and
Henderson’s Island warbler, where there was little or no
variation. This was found for nucleotide variation overall
and when only considering amino-acid variation i.e., non-
synonymous polymorphisms. Interestingly, the recently
bottlenecked Seychelles warbler has more variation
observed across all AvBD loci than the Henderson’s Island
warbler, despite the fact that the former species now exists
within a smaller population than the latter. Henderson’s
Island is, however, an uplifted coral atoll at the end of a
chain of small volcanic islands which are very isolated in
the middle of the Paci�c Ocean. Consequently it is highly
likely that Henderson’s island warbler has undergone
multiple sequential bottleneck events in colonising this
island, resulting in the low levels of genetic variation
observed in our study of AvBDs, and in studies looking at
neutral genetic markers (Brooke and Hartley1995). In
contrast, until recently the Seychelles warbler existed in a
larger population across multiple islands (Spurgin et al.
2014) and only lost ca 25 % of its genomic variation in the
recent bottleneck. Unfortunately, as far as we know there
are no other studies on AvBDs in bottlenecked wild pop-
ulations to compare our �ndings with.

Our results show that almost no functional variation
exists at the AvBD loci in the Seychelles warbler and this
refutes our a priori hypothesis that pathogen-mediated
selection would maintain variation at these immunologi-
cally-important loci. Similar losses in diversity in immune
defence genes associated with bottleneck events have been
reported in other endangered vertebrates (Eimes et al.
2011; Jamieson2011; Basu et al.2012; Zhu et al.2013).
The majority of heterozygous Seychelles warbler individ-
uals have the rare variants observed, which suggests there
may be a selective advantage with heterozygosity. How-
ever, a lack of any deviation from Hardy–Weinberg pro-
portions, suggest that this is not the case. Therefore, it is
likely that the alternate variants are merely in the
heterozygous form because they are rare (it is unlikely that
both parents possess the same rare variant to pass onto
offspring). Our results do not, therefore, mirror those from
an outbred population of the blue tit,Parus major, where
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Fig. 1 Mean AvBD haplotype diversity (Hd) verses population size
(Nc) (log-transformed) in �veAcrocephalusspecies;a All nucleotide
substitutions (raw data presented on theleft, means on theright),
b only putatively functional substitutions resulting in different amino-
acids (raw data presented on theleft, means on theright). Mean
standard errors are shown. Thedashed linesrepresent the regression
and adjusted R-squared values are given based on the regression
analyses carried out on the raw data
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Fig. 2 Trees inferring intra-
locus evolutionary history of
AvBD genes across �ve
Acrocephalusspecies, inferred
by using the maximum
likelihood method based on
different models and
parameters, optimised
dependent upon the locus. Non-
Acrocephaluspasserine species
are included as outgroups (see
‘‘ Materials and methods’’
section). Trees are drawn to
scale with haplotype number
given in bracketsand branch
lengths measured in the number
of substitutions per site. Only
bootstrap values above 50 % are
presented
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all but one of 40 individuals screened showed functional
heterozygosity within the exon coding for the mature
defensin peptide ofAvBD2, 4, 7, 9, 10and 12, thus sup-
porting a heterozygote advantage (Hellgren2015).

Furthermore, when comparing patterns of variation at
AvBD loci in the Seychelles warbler with variation at
neutral markers in the same population, AvBD variation
appeared to be lower than expected. Hansson and

Fig. 2 continued
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Richardson (2005) found seven out of ten neutral
microsatellite markers (used to avoid ascertainment bias)
were polymorphic (70 %), whereas only two out of six
AvBD markers were polymorphic (33 %) in our study:
AvBD8andAvBD11.

Given the near-absence of variation found in both pre-
and post-bottleneck populations of this species, it is
impossible to statistically assess the roles that drift and
selection may have played in shaping AvBD variation
through this particular bottleneck. TheAvBD7locus shows
considerable intra-speci�c variation in other species with
many nucleotide substitutions among theAcrocephalus
genus and entire codon insertions between different fami-
lies in the Passeriformes (Hellgren et al.2010). At this
locus in the Seychelles warbler, we only detected two
alleles in the population prior to the bottleneck and one
thereafter. Given the low frequency of the additional allele
in the historical sample (1/15 individuals) a large sample
would need to be screened to con�rm its absence in the
contemporary population. Here we screened 20 individuals,
so if the allele is present it is probably at a frequency
\ 0.05. Therefore, we have no evidence for higher diversity
in the ancient samples, which supports the idea that AvBDs
had low diversity historically, rather than lose variation due
to bottlenecks and stochastic processes.

Pathogen-mediated selection (PMS) has been shown to
be an important force in maintaining variation at immune
genes such as the MHC and innate immune components
like cytokines (Potts and Slev1995; Jeffery and Bangham
2000; Spurgin and Richardson2010; Turner et al.2012).
However, while a number of studies onb-defensins have
been carried out on laboratory populations and in humans
(Hollox and Armour 2008; Lazzaro 2008; Ardia et al.
2011), to our knowledge there is as yet no information on
PMS acting onb-defensins in wild populations. Further-
more, remote isolated populations often have fewer
pathogens, as shown recently in a study of haematozoans,
bacteria and viruses in avian populations (Vo¨geli et al.
2011). Indeed, the diversity of pathogens in the Seychelles
warbler population is very low; despite extensive screening
efforts, no gastro-intestinal parasites or signs of virus
infection have been detected, and only one strain of avian

b Fig. 3 Phylogenetic tree for all AvBD loci across avian lineages. The
evolutionary history was inferred using the Neighbour-Joining
method. The percentage of replicate trees in which the associated
taxa clustered together in the bootstrap test (1000 replicates) is shown
next to the branches. The tree is drawn to scale, with branch lengths in
the same units as those of the evolutionary distances used to infer the
phylogenetic tree. The evolutionary distances were computed using
the number of differences method and are in the units of the number
of base differences per sequence. All positions containing gaps and
missing data were eliminated. Only bootstrap values above 50 % are
presented. There were a total of 35 positions in the �nal dataset
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malaria (GRW1) has ever been observed (Hutchings2009).
This shows that processes which prevail in small island
populations cannot only erode immunogenetic variation
(i.e., due to drift), but can reduce pathogen biodiversity
(Vögeli et al.2011). The combination of increased drift and
reduced pathogen-mediated selection may therefore
explain why variation at the AvBD genes is lost in bot-
tlenecked island populations, such as the Seychelles war-
bler. In addition, if the parasite biodiversity is reduced such
that only one (or a few) parasite strains are retained, the
effects of pathogen-mediated selection on immunogenetic
variation might be reversed and become purifying
(Mukherjee et al.2009). For example, the AvBD alleles
observed at each locus may have become �xed in the
Seychelles warbler because they provided adequate
defence against the limited pathogens remaining in the
environment. In such a situation, positive selection may
have acted in concert with neutral effects to eliminate
variation. Several studies have found that immunogenetic
variation eroded faster than (neutral) microsatellite varia-
tion in small isolated populations (Bollmer et al.2011;
Eimes et al.2011; Sutton et al.2011).

Investigating variation at a combination of both neutral
and critical markers, as we have done within this study, can
help us to understand the genetic vulnerabilities of any wild
population and species (Grueber and Carolyn2015). For
example, patterns of neutral variation across individuals
have been compared to that observed at MHC markers in
the Seychelles warbler. There is evidence that MHC class I
genes have historically been under balancing selection
(Richardson and Westerdahl2003) and that the recent
bottleneck resulted in ca 25 % loss of variation across the
entire genome in this species (Spurgin et al.2014). How-
ever, when comparing the rates of loss between the two
markers, the rate is slower at MHC loci compared to
neutral microsatellite loci, and this is more apparent when
also looking at patterns of variation in other congeneric
species with different demographic histories (Hansson and
Richardson2005).

Pathogens are being increasingly cited as major threats
in conservation (for review, see Tompkins and Poulin
2006). When developing conservation plans and manage-
ment for species and populations, the importance of
pathogens within the system is not often considered,
despite their roles in maintaining overall biodiversity (Hall
1999). Pathogens can have severe consequences in na�¨ve
populations, but endemic pathogens may play an important
role in maintaining genetic diversity. If PMS generates
balancing selection that can maintain diversity at immune
genes, then a paucity of pathogens could have important
consequences for the long-term genetic viability of a host
population. This is exacerbated in translocated or popula-
tions which undergo a series of bottleneck events and

already suffer from reduced genetic variability (Frankham
1995). If further variation is lost at their immune loci, they
will be more vulnerable to infectious diseases in the long-
term (O’Brien and Evermann1988). Ironically, this may
suggest that it would be unwise to deliberately remove or
exclude pathogens from a host system, unless the host was
on the brink of extinction and those actions were necessary
for an immediate recovery. By analysing immunogenetic
variation, the direct implications of a depauperate parasite
biodiversity can be assessed and monitored (for examples,
see Van Oosterhout et al.2007; Knowles et al. 2011;
Radwan et al.2012; Sutton et al.2013). Immune genes that
are under balancing selection can be identi�ed using pop-
ulation genetic analyses, and this knowledge can be used in
both in situ and ex situ (captive) breeding. For example,
population viability can be increased by genetic supple-
mentation, and increased individual �tness has been
directly attributable to outbreeding carried out in a natural
setting in genetic rescue (for examples, see Vila et al.2003;
Pimm et al.2006), including fewer studies where �tness
bene�ts are directly related to infectious diseases (Hogg
et al. 2006; Van Oosterhout et al.2007). In particular,
studies on natural populations are informative to elucidate
the effects of advantageous or deleterious genetic variants,
because the �tness effects of genetic variation is often
condition-dependent (for review, see Sommer2005). By
assessing the current status of immunogenetic variation
across different populations under the same pathogen-se-
lection regimes will increase our knowledge on the
importance of adaptive genetic variability with respect to
the role of candidate immune genes in evolutionary ecol-
ogy and conservation biology.

In conclusion, our results show that the low levels of
AvBD variation observed in the Seychelles warbler are in
line with the low levels observed in other small island
populations ofAcrocephalus, and contrast to the higher
levels found in mainland migratory congeneric popula-
tions. This suggests that drift may be the main force driving
the patterns of variation seen these bottlenecked species.
Nevertheless, it does not totally rule out the possibility that
balancing selection may have attenuated the loss of vari-
ation caused by a reduction in population size. However, in
the Seychelles warbler the effect must be very limited as
we only found one functional variant at just one of the �ve
AvBD loci and little evidence of this gene group having
more diversity before the bottleneck occurred. It is
important to report observations of invariant genes within
natural populations, such as observed here in this bottle-
necked species. Firstly, it prevents a publication-bias
towards studies that outline where and when genes are
polymorphic, potentially leading to erroneous conclusions.
Secondly, studies that show depleted genetic variation at
loci that are typically polymorphic can be of conservation
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interest as they may identify populations that are particu-
larly vulnerable to future challenges such as pathogen
infections and have effective conservation applications
(Frankel1974; Hedrick 2001; Pertoldi et al.2007).
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