From skin mechanics to tactile neural coding: Predicting afferent neural dynamics during active touch and perception

Wei, Y, Mcglone, F, Marshall, A, Makdani, A, Zou, Z, Ren, L and Wei, G ORCID: 2022, 'From skin mechanics to tactile neural coding: Predicting afferent neural dynamics during active touch and perception' , IEEE Transactions on Biomedical Engineering, 69 (2) , pp. 3748-3759.

PDF - Accepted Version
Download (1MB) | Preview


First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive stimulation while their role during active touch or sensorimotor control is understudied. To understand how human perception and sensorimotor controlling strategy depend on cutaneous neural signals under active tactile exploration, the finite element (FE) hand and Izhikevich neural dynamic model were combined to predict the cutaneous neural dynamics and the resulting perception during a discrimination test. Using in-vivo microneurography generated single afferent recordings, 75% of the data was applied for the model optimization and another 25% was used for validation. By using this integrated numerical model, the predicted tactile neural signals of the single afferent fibers agreed well with the microneurography test results, achieving the out-of-sample values of 0.94 and 0.82 for slowly adapting type I (SAI) and fast adapting type I unit (FAI) respectively. Similar discriminating capability with the human subject was achieved based on this computational model. Comparable performance with the published numerical model on predicting the cutaneous neural response under passive stimuli was also presented, ensuring the potential applicability of this multi-level numerical model in studying the human tactile sensing mechanisms during active touch. The predicted population-level 1st order afferent neural signals under active touch suggest that different coding strategies might be applied to the afferent neural signals elicited from different cutaneous neurons simultaneously.

Item Type: Article
Additional Information: “© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
Schools: Schools > School of Computing, Science and Engineering
Journal or Publication Title: IEEE Transactions on Biomedical Engineering
Publisher: Institute of Electrical and Electronics Engineers
ISSN: 0018-9294
Funders: National Key Research and Development Program of China
Depositing User: Dr Guowu Wei
Date Deposited: 03 Aug 2022 08:33
Last Modified: 02 Dec 2022 14:00

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)


Downloads per month over past year